Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Станнил хлористый

    Углеводородный компонент такого комплекса имеет высокий молекулярный вес (300 и больше) и на каждую молекулу около двух свободных валентностей, причем на каждую из них приходится по меньшей мере 2 моля хлористого алюминия. Этот комплекс способен растворить еще некоторое количество хлористого алюминия, что в присутствии хлористого водорода еще больше повышает активность катализатора. Во время изомеризации комплекс становится все более ненасыщенным. От углеводородов, связанных в комплексе, водород переходит к олефинам, образующимся в реакции. Тем самым хлористый алюминий в комплексе связывается все прочнее и прочнее, теряя постепенно свою активность. В результате катализатор медленно переходит в неактивное соединив и его необходимо удалять. [c.527]


    Для активации может быть применена также сушильная установка ленточно-конвейерного типа. Высокая температура при активации нужна по той причине, что цеолиты очень прочно удерживают воду. Особенно трудно удаляются остатки содержащейся в них воды. В результате термической обработки скелет цеолита становится устойчивым к механическим и тепловым воздействиям. После активации готовую продукцию упаковывают в герметическую тару во избежание поглощения влаги из атмосферы. Для получения Са-формы цеолита кристаллы Ка-цеолита после удаления раствора и промывки водой помещают в нагреваемый паром реактор 10, где кристаллы смешивают с раствором хлористого кальция СаС , а затем фильтруют на фильтре 11 и промывают. [c.103]

    Когда размеры ионов различаются сильнее, более выгодными становятся уже другие структуры например, хлористому натрию свойственна структура простой кубической решетки, показанная иа рис. 35. Если же отношение числа ионов (или атомов) элементов, составляющих данное соединение, равно не 1 1, а более сложно, или если в состав соединения входят не два, а большее число ионов различных видов, то очевидно, что структуры, отвечающие наиболее плотной упаковке, становятся более сложными и более разнообразными. К тому же объемы ионов не являются строго постоянными, так как поляризующее и деформирующее действие соседних ионов может несколько влиять и на размер ионов. [c.129]

    Зависимость степени гидратации ионов от их размеров становится наглядной при сопоставлении электропроводности различных электролитов. Можно было ожидать, что так как ионные радиусы катионов в кристаллическом состоянии возрастают от Li+ к s+, то наиболее сильно проводить электрический ток будет хлористый литий, а наименее сильно — хлористый цезий. Это подтверждается при сопоставлении электропроводности расплавленных хлоридов (табл. 36). [c.385]

    При подаче большого количества воздуха в последние реакторы образуется больше оксидов. В этом случае парциальное давление воздуха (О2) в нервом реакторе понижается, а парциальные давления H l и этилеиа возрастают, что способствует образованию хлористого этила за счет оксихлорирования этилена. Преимущественная подача воздуха в последний реактор может повысить температуру катализатора в нем. Если температура последнего реактора становится достаточно высокой, то образующийся ДХЭ крекируется, давая винилхлорид и НС1. Это обнаруживается по снижению конверсии НС1, сопровождающемуся повышением температуры. [c.282]


    В производстве хлористого метила, хлористого метилена и хлороформа хлорирование метана вытеснило методы, основанные на использовании более дорогих видов сырья—метанола и этанола в производстве четыреххлористого углерода хлорирование углеводородного сырья, в том числе и хлорорганических отходов фракций l—С3, вытеснило менее экономичный сероуглеродный метод. Наряду с этим становится перспективным процесс совместного получения четыреххлористого углерода и перхлорэтилена, основанный на деструктивном хлорировании углеводородного сырья при 550—600 °С. [c.391]

    Если из технологической схемы алкилирования исключить отдельную стадию получения катализаторного комплекса, процесс становится очень привлекательным жидкофазный катализатор противостоит отравлению, гомогенное алкилирование протекает при более высоких температурах, выделяющееся тепло используют для выработки пара, катализатор менее коррозионно активен, етил-бензол получается исключительно высокой чистоты, а расход хлористого алюминия снижается в несколько раз. [c.278]

    Первоначально алкилирование углей проводили под действием алкилхлоридов в качестве алкилирующих агентов и хлористого алюминия как катализатора. Навеску 10 г среднелетучего угля (24,6% летучих) тонко измельчали и суспендировали в 50 мл сероуглерода, а затем в суспензию добавляли 10 г порошкообразного хлористого алюминия. Полученную смесь при 45 °С обрабатывали 0,25 моль алкилхлорида. Используемые алкилхлориды содержали от 3 до 18 атомов углерода. Обычная продолжительность алкилирования составляла 3 ч, но в случае алкилхлоридов ie и i8 для завершения реакции требовалось 24 ч. Во всех опытах происходило присоединение алкильных групп к ароматическим молекулам угля, о чем можно было судить по увеличению массы образца. По приращению массы находили число присоединенных алкильных групп в расчете на 100 С-атомов угля (рис. 1). Оно составило 2—3 алкильные группы на 100 С-атомов. Исключение составлял пропилхлорид, в случае которого на 100 атомов углерода приходилось 7 пропильных групп. Видимо, это связано со способностью небольшой пропильной группы присоединяться в различные положения ароматических составляющих угля. С увеличением размера алкильных групп возможности замещения становятся более ограниченными, и это снижает степень алкилирования. Описанный процесс давал лишь незначительное повышение растворимости угля. Так, необработанный образец растворяется в пиридине на 27,2%, а в хлороформе на 47о алкилирование увеличивает растворимость в пиридине до 35%, а в хлороформе до 16%. При холостом опыте было показано, что повышение растворимости угля связано не только с действием хлористого алюминия. [c.302]

    Для определения перекисных соединений в сухую чистую коническую колбу с притертой пробкой емкостью 150—200 мл вносят точную навеску исследуемого вещества (0,2—1,5 г, в зависимости от предполагаемого содержания перекисных соединений в продукте) и растворяют в 10 мл ацетона. Затем добавляют 25 мл закисного железа и 5 мин взбалтывают. В присутствии перекиси закис-ное железо окисляется и раствор за счет образования роданистой окиси железа становится ярко-красным. После этого титруют раствором хлористого титана до первого обесцвечивания. По окончании титрования раствор быстро краснеет вследствие окисления кислородом воздуха закисного железа в окисное. [c.164]

    Пропилен присоединяет хлор очень легко при всех температурах вплоть до 300°, в результате чего образуется 1,2-дихлорпропан. Однако при дальнейшем повышении температуры становится заметной реакция замещения. При достаточно высокой температуре присоединение хлора полностью подавляется и основным продуктом реакции является хлористый аллил. [c.172]

    Соединенные бензольные вытяжки переносят в колбу с обратным водяным холодильником, прибавляют ранее отфильтрованный осадок и при перемешивании нагревают на водяной бане до полного растворения хинона. Горячий бензольный раствор переливают в другую колбу и встряхивают с хлористым кальцием (раствор становится прозрачным). Еще теплый раствор фильтруют и из колбы Вюрца медленно отгоняют бензол на водяной бане. [c.141]

    Одним из основных продуктов реакции при этом становится хлористый водород. Его образование происходит, скорее всего, за счет отщепления атомов водорода от водородсодержащих молекул при их столкновениях с атомами или молекулами хлора, подученными при распаде молецул фреона-И. Это подтверждается и появлением в Ж-спектре полос и С2Н ,С2Н1 в случае реакции ССЦР соответственно с этиленом или этаном. Заметим, что только при увеличении суммарного давления смеси до 40 гПа и соотношении концентраций СС1зР Н (или = 2 1 в Ж-спектрах наблвдалась полоса поглощения колебания 51Р ,небольшие количества которого могут образовываться за счет реакции атомов фтора или молекул ИР со стенками стеклянной кюветы. Это под- [c.97]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании. В качестве катализаторов используют активированный уголь, пемзу, отбеливающие земли и т. п., пропитанные металлическими солями, особенно медными. В соответствии с теорией Тэйлора их действие основано на способности их активных центров вызывать ионизацию хлора. Гетерогенное каталитическое хлорирование протекает по криптоионному механизму и нечувствительно к обрыву цепи, особенно если оп вызывается кислородом. Благодаря этой нечувствительности к кислороду становится возможной разработка такого процесса хлорирования, при котором хлор будет использоваться целиком именно потому, что процесс будет проходить в присутствии кислорода. При этом применяются такие контактные массы, которые делают возможным превращение образовавшегося хлористого водорода под воздействием кислорода в воду и хлор [,5]. [c.113]


    Большие количества хлористого метила потребляют для производства метилцеллюлозы путем этерификации алкалицеллюлозы. В результате этерификации целлюлоза становится водорастворимой и приобретает способность сильно набухать. Простой метиловый эфир целлюлозы, выпускавшийся в Германии под названием тилоза, применяется в качестве загустителя, клеящего вещества и т. д. При взаимодействии алкалицеллюлозы с хлористым метилом в автоклавах около 75% хлористого метила теряется в виде метанола и диметилового эфира. Хлористый метил применяется так же, как разбрызгиватель при распыливании ядохимикатов. [c.209]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]

    Способность веществ обратимо менять окраску при возникновении-исчезновении давления относится и к физике, и к химии, т. е. к физической химии. Вещества эти — студни, переходящие при увеличении давления в жидкую фазу и восстанавливающие студнеобразную структуру при снятии давления. Студни (гели) — обширный класс веществ самого разного состава, причем каждой структуре присуще свое критическое давление . Например, гель гидрата окиси железа имеет темный красно-коричневый цвет, а гель хлористого натрия сильно опалесцирует. Под давлением эти гели становятся 4шчт№ прозрачными. (Снятие нагрузки вызывает быстрое восстановление студнеобразных структур — снова появляется первоначальная окраска. Детали устройства индикатора давления, использующего этот эффект, даны в а. с. 823915. Для нас важно другое Указатель применения эффектов должен включать и чистую физику, и чистую химию, и физическую химию. Если учесть сочетания эффектов и приемов — фонд почти безграничный. Эффективно пользоваться им можно только при условии предварительного анализа задачи. Стоит отключить ориентировку на идеальность при решении задачи 9.7 — и выход на нужный эффект резко затруднится. [c.168]

    В промышленности часто приходится иметь дело с абсорбцией газовых смесей, имеющих различную растворимость. При этом состав невзрывоопасной исходной газовой смеси при прохождении через абсорбер меняется и смесь становится взрывоопасной. 3 этих условиях необходимо принимать меры, исключающие воз-южность воспламенения или взрыва газовой смеси. Однако при 1бсорбции газовых смесей не всегда обеспечиваются условия, [сключающие аварии. Отмечены случаи взрывов в аппаратуре юдородно-воздушной смеси при абсорбции водой хлористого водо-юда, содержащего некоторое количество водорода. [c.127]

    Дегидрохлорированне —. эндотермической процесс. Дегидрохлорирование хлористого этила, нанример, требует 15 300 кал и AS° реакции составляет - -31,3 кал1молъ град. AF° становится отрицательным для всех температур выше 250°, поэтому эта реакция имеет значение только при термическом хлорировании. [c.60]

    Хлорирование другими хлорирующими агентами. В качестве хлорирующего агента выгодно применять хлористый сульфурил, поскольку при диссоциации хлористого сульфурила поглощается тепло, в результате вся реакция хлорирования в целом становится менее экзотермической. Ход реакции контролируется количеством хлористого сульфурила. Диссоциация хлористого сульфурила может осуществляться под воздействием тепла, света, хлоридов металлов, активированного угля или перекисей. Разложение, катализируемое перекисями, удобный лабораторный метод хлорирования. Вместо хлористого сульфурила можно также использовать смесь двуокиси серы и хлора приблизительно в эквимолярпых количествах. [c.63]

    Гидрохлорид природного каучука был получен действием жидкого хлористого водорода и последующим нагреванием под давлением пропусканием газообразного хлористого водорода в раствор вальцованного каучука подвешиванием тонких пластин каучука в емкости, заполненные газообразным хлористым водородом. Газообразный хлористый водород можно также пропускать в латекс природного каучука при условии, что латекс предварительно стабилизирован путем добавки к нему катионного мыла, типа фиксанол , т. е. бромида цетилпиридина, или же неионного мыла типа эмульфор О , олеилалкоголь-полиэтиленоксид.. Гидрохлорид природного каучука, используемый для производства прозрачных пленок, применяемых для упаковки пищевых продуктов, гидро-хлорируется в бензольном растворе, затем смесь оставляется на некоторое время для созревания избыток хлористого водорода нейтрализуется. Теоретически вычисленное содержание хлора — 33,9%, но продукты с желательными свойствами получаются уже при содержании в них хлора в пределах 28—30%. Если реакция проходит слишком далеко, продукт становится нерастворимым. [c.222]

    Уже отмечалось, что избыток хлористого алюминия обладает заметным каталитическим эффектом. Если принять изложенный ниже механизм, то легко понять действие избытка хлористого алюмншш, и становится вполне обоснованным большой стерический фактор нри реакциях Фридо-ля —Крафтса. Проводится экспериментальная проверка обоснованности этого механизма [48]. [c.457]

    Для димеризации о-изопропенилфенола в раствор о-оксифенилдиметилкар- бинола пропускают хлористый водород. В качестве растворителя можно использовать диэтиловый эфир , этиловый спирт ", а можно обойтись и без раствори-телей . Сначала масса становится резиноподобной, а после 12 ч выдерживания при 40 °С закристаллизовывается. Димеризация о-изопропенилфенола происходит также при простом выдерживании при комнатной температуре в течение нескольких дней. Этот способ наиболее удобен. [c.192]

    Хлористый нитроз и л. Хлористый нитрозил NO I присоединяется двойной связи хлор становится к наименее гидрогенизированному [c.30]

    В присутствии непредельных соединений иодометричеокое определение меркаптанов становится невозможным. Шульце и Чаней (596) предлагают поэтому новый способ, основанный на окислений меркаптанов в дисульфиды хлорной медью. Образующаяся при этом хлористая медь окисляется титрованным раствором перманганата. Весь анализ ведется в отсутствии воздуха, который может перевести соли закиси меди в соли окиси. Необходимые растворы 1) 147 а [c.185]

    Оказалось, что в координатах v— W/AP экспериментальные точки хорошо располагаются на прямой (рис. V-4). Однако при экстраполяции этой прямой до ее пересечения с осью абсцисс обнаружено, что точка пересечения находится не в начале координат, а на расстоянии Vo вправо от оси ординат. Был сделан вывод, что удельное сопротивление осадка становится бесконечно большим и фильтрование прекращается раньше, чем пористость осадка достигает значения, равного нулю, иными словами, что существует недоступная для прохождения жидкости часть объема пор. Было также сделано предположение, что недоступная часть объема пор находится вблизи поверхности твердых частиц и заполнена пленкой жидкости, существование которой обусловлено электрокинети-ческими явлениями. Для подтверждения влияния электрокинетических факторов на процесс фильтрования были проведены дополнительные опыты. Они заключались в разделении на фильтре суспензий вспомогательного вещества в водных растворах хлористого натрия различной концентрации. [c.198]

    Растворение золота и платиновых металлов в царской водке становится термодинамически возможным благодаря комилексо-образованкю, а большая скорость реакции обеспечивается наличием в растворе хлора и хлористого нитрозила, активно взаимодействующих с этими металлами. Указанные металлы растворяются в концентрированной азотной -кислоте и в присутствии других комплексообразователей, но процесс протекает очень медленно. [c.410]

    Недавно было найдено, что хлорметилирование более реакционноспособных гомологов бензола протекает в отсутствие апротон-пых кислот, а катализатором является сам реагент — хлористый водород (или соляная кислота). В этом случае температуру нужно повысить до 90—140°С и процесс надо проводить под давлением, необходимым для сохранения реакционной массы в жидком состоянии. Побочного образования диарилметанов при таком варианте не наблюдается, так как протонные кислоты не катализируют конденсацию хлорпроизводных с ароматическими соединениями. Благодаря повышению выхода целевого продукта и отсутствию необхо-дпвдости Б дополнительном катализаторе процесс становится значи-гельно более экономичным. [c.554]

    Для колориметрирования к 20 мл раствора добавляли 1 мл 10%-пого раствора в концентрированной соляной кислоте хлористого олова. Прозрачный раствор становился желтым. Затем растворы заливали в кюветы фотоколориметра и при номощи синего светофильтра определяли оптическую плотность раствора по отношению к воде. Центром, поглощающим свет, являлся ион [Р13пС14 По результатам измерения оптических плотностей эталонов был получен градуировочный график. [c.814]

    Подвижность ионов и электронов зависит от вида газа и наличия частиц. Чистый азот, например, поглощает лйшь незначительное количество электронов. Ток передается главным образом электронами, которые обладают большой подвижностью, поэтому ток короны возрастает очень резко. С другой стороны, такие электроотрицательные газы, как кислород или хлористый метил, легко поглощают электроны, и ионы газа, обладающие гораздо меньшей подвижностью, становятся носителями электрического тока, но он будет гораздо слабее (рис. Х-4). [c.439]

    А1С12, причем наиболее предпочтительной является смесь двух последних соединений, которые берутся в отношении 50 50. Присутствие хлористого алюминия, остающегося после приготовления алюминийалкилхлорида, нежелательно. Реакция сополимеризации протекает при комнатной температуре и сопровождается интенсивньПк выделением тепла. Температура реакции поддерживается в заданных пределах с помощью системы охлаждения и путем регулирования скорости подачи алкенов. При эффективном охлаждении продолжительность полимеризации одной загрузки не превышает 20-30 мин. Процесс прерывают, когда раствор полимера становится слишком вязким для эффективного перемешивания и охлаждения. [c.123]

    При это.м обычно наблюдается сильное вспенивание и бурное-выделение хлористого водорода. После прибав.ления рассчитанного количества ортофосфорной кислоты реакционная масса разжижается, становится тестодб разной серовато-желтого цвета. Такая масса для полного завершения реакции нагревалась на масляной бане (температура не превышала 80° С) до полного прекращения выделения хлористого водорода (1 0—12 час.). [c.142]

    При анализе данных табл. 29 становится очевидным, что хотя с ростом концетрации хлористого иатрия величина набухания и АУ снижаются, а Р, увеличивается, но Еозрастает и скорость процесса. Причем, количественные изменения зависят от состава ионообменного комплекса глинистых пород. Так, бентонит и его гомоионные натриевая и кальциевая формы набухают в насыщенном растворе хлористого натрия меньше, чем в воде, соответственно па 40,5 33,0 и 13,75%. При этом скорости набухания увеличиваются в 2,13 1,82 и 20,83 раза, а величина — соответственно в 6,04 26,12 и 2,61 раза. Хлористый патри1а подавляет развитие структурно-адсорэционных деформаций. Полученные данные могут в некоторой мере дать объяснение причины поведения различных глинистых пород, слагающих стенки скважин. [c.63]

    Легкость взаи.модействия олефинов с хлористы.м алюмпние.м становится еш,е более понятной, если учесть их ненасыщениосп,, Олефин обладает неподеленной электронной парой, А1С1з—электронным секстетом поэтому комплекс Густавсона в электронной интерпретации образуется следующим образом  [c.332]

    Многие реагенты способны вызывать осаждение или коагуляцию коллоидно-растворимых белков. Осаждение может быть обратимым и необратимым иными словами, выпавшее в осадок вещество может снова растворяться или же становится нерастворимым. Кипячение растворов белков, особенно при добавлении уксусной кислоты и хлористого натрия или других электролитов, приводит к необратимой коагуляции белка. Эта реакция является одной из наиболее часто применяемых для обнаружения растворенных белковых веществ (например, для открытия белка в моче). Необратимое осаждение вызывают также минеральные кислоты (азотная, платимохлористоводородная, фосфорновольфрамовая, фосфорномолибдеповая, метафосфорная, железосннеродистая), пикриновая кислота, таннин и соли тяжелых металлов. Белки сохраняют растворимость, если их осаждать из водных растворов спиртом и ацетоном кроме того, обратимое осаждение может быть вызвано различными нейтральными солями, например сульфатами аммония, натрия и магния. Для этого необходимы определенные концентрации солей, минимальная величина которых зависит от вида белка (ср. альбумины и глобулины). [c.397]

    Б ромфенилметилкарбинол. Суспензию хлористого метилмагния получают пропусканием (при охлаждении льдом) газообразного технического хлористого метила, высушенного в колонке с хлористым кальцием, в безводный эфир, покрывающий 100 г магниевых стружек. После насыщения эфира хлористым метилом охлаждающую баню удаляют, а смеси дают нагреться до комнатной температуры. Обычно при этом легко начинается реакция между хлористым метилом и магнием, но иногда приходится повторять охлаждение и насыщение хлористым метилом. Как только реакция началась, прибавляют еще 500 мл эфира, в смесь медленно пропускают хлористый метил до растворения магния. Во время реакции выделяется серый осадок. Р,сли потеря эфира вследствие уноса непрореагировавшим хлористым метилом становится очень большой, то к реакционной смеси прибавляют эфир для ее восполнения. После того как закончится об-()азование магнийорганического соединения, к охлажденному раствору медленно прибавляют раствор 600 г 2-бромбензальдегида в 1200 мл сухого эфира. После прибавления 2-бромбензальдегида реакционную смесь медленно нагревают и в заключение кипятят около часа (слабое кипение). Обычно продукт реакции выделяется на этой стадии, но если этого не произошло, то реакционную смесь оставляют стоять до выделения продукта. Затем реакционную смесь обрабатывают обычным образом. Получают 568 г (выход 87% от теорет.) бесцветной вязкой жидкости с т. кип. 91—98° (2 мм). Повторной перегонкой получают вещество с т. кип. 108,5° (6,5 мм) 1,470 лЬ 1,5702 1,5678 [29 . [c.27]

    Действие солнечного света не только ускоряет процесс отщепления хлористого водорода, но и последующее окисление полимера. При облучении поливинилхлорида светом кварцевой лампы в течение первых 2 часов наблюдается заметное преобладание процесса окислительной деструкции над процессом сшивания цепей, полимер становится более пластичным, вязкость его раствора снижается. При более длительном облучении начинает преобладать процесс образования поперечных связей, возможно, с участием кислородных атомов. После 12—20 час. облучения полимер полностью утрачивает иластичиость и растворимость. [c.269]

    Медь и ее сплавы вытесняют серебро из цианистых электролитов, так как в этих растворах серебро имеет более электроположительный потенциал, чем медь. Образующаяся пленка серебра плохо сцепляется с основой и электролитические осадки, нанесенные на такую поверхность, легко отслаинаются. Для предупреждения отслаивания изделия из меди и ее сплавов амальгамируют или предварительно покрывают поверхность тонким слоем серебра при условиях, когда потенциал выделения серебра становится более электроотрицательным относительно меди. Изделия амальгамируют путем погружения на 3—5 с в раствор цианистой или хлористой ртути, после чего их тщательно промывают и, если нужно, протирают мягкой волосяной щеткой. [c.424]


Смотреть страницы где упоминается термин Станнил хлористый: [c.193]    [c.222]    [c.198]    [c.24]    [c.57]    [c.81]    [c.436]    [c.225]    [c.94]    [c.349]    [c.66]    [c.57]   
Качественный химический полумикроанализ (1949) -- [ c.164 ]




ПОИСК





Смотрите так же термины и статьи:

СНК СТАН

Станнан

Станниты



© 2024 chem21.info Реклама на сайте