Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьмы методы отделения

    Экстракционный метод отделения мышьяка от сурьмы. При токсикологических исследованиях и других случаях бывает нужно перед броматометрическим определением мышьяка отделить его предварительно от сурьмы. Если мышьяк и сурьма находятся в высших степенях окисления (5+), то их восстанавливают до степени окисления 3- - сульфатом гидразина и затем экстрагируют бензолом. Обычно мышьяк может присутствовать в количестве от 0,5 мг до 6 мг в 10 мг смеси мышьяка и сурьмы (в виде окислов). [c.417]


    МЕТОДЫ ОТДЕЛЕНИЯ СУРЬМЫ ОТ СОПУТСТВУЮЩИХ ЭЛЕМЕНТОВ [c.99]

    Отделение сурьмы методами тонкослойной хроматографии [c.113]

    Отделение сурьмы методами бумажной хроматографии [c.115]

    Описано [396] определение Na, К и Са в сурьме методом фотометрии пламени без отделения основы (предел обнаружения 1-10- %). Рекомендованы [164, 211] методы фотометрии пламени для определения Na в сурьме и продуктах ее производства также без отделения основы. Предел обнаружения 1 10 %, ошибка 5 %. [c.173]

    Серебро легко отделить от большинства других элементов периодической системы осаждением в виде хлорида или сероводородом. Осаждение сероводородом является групповым методом отделения элементов четвертой аналитической группы от элементов других групп. Значительно чаще применяется осаждение серебра в виде хлорида. Таким путем серебро можно отделить от всех других элементов, за исключением свинца, ртути(1), таллия(1), меди(1), которые также образуют нерастворимые хлориды в осадке могут быть частично основные соли сурьмы и висмута. Для отделения от свинца, висмута и сурьмы осадок хлорида серебра можно перевести в раствор действием аммиака и снова осадить раствором соляной кислоты. Нередко необходимо проводить повторное переосаждение. Ионы Т1(1) предварительно окисляют до Т1(П1) обработкой раствором смеси соляной и азотной кислот. [c.138]

    Так, например, можно отделить алюминий, цинк, молибден, сурьму, вольфрам от железа, меди и др. Метод отделения амфотерных катионов имеет существенное преимущество вследствие устранения соосаждения амфотерных катионов с осадком гидроокисей катионов. [c.362]

    Отделение мышьяка., сурьмы и олова. Очень удобным методом отделения этих трех элементов является перегонка в приборе, показанном на рис. 9, в котором все части сделаны из стекла (без соединений посредством резиновых трубок и пробок). Емкость колбы 1 — 200 мл емкость воронки 2 — 65 мл. Расстояние от дна колбы до отводной трубки приблизительно 17 см, [c.96]

    Основной метод отделения германия заключается в отгонке его в виде хлорида германия (IV). Применяя соответствующую дистилляционную колонку, германий можно отделить не только от элементов, которые не отгоняются из солянокислых растворов, но и от мышьяка, олова, сурьмы, селена и теллура, хлориды которых летучи. Для этой цели может служить колонка , состоящая из трубки длиной 680 см и диаметром 20 мм, наполненной стеклянными бусами диаметром 7—9 мм. Трубка заключена в стеклянный кожух и снабжена специальной насадкой для перегонки. Дистилляция проводится, как описано выше (стр. 346). Хлорид германия (IV), заключенный в пузырьках воздуха, конденсируется с трудом, поэтому следует применять соответствующую поглотительную установку или, еще лучше, заменить концентрированную соляную кислоту газообразным хлористым водородом [c.347]


    Для отделения от молибдена умеренных количеств многих элементов целесообразно пользоваться осаждением аммиаком с переосаждением осадка, если он велик, и последующей обработкой фильтрата сульфидом аммония. Осаждение аммиаком, при наличии в растворе достаточного количества железа (П1), позволяет отделять от молибдена железо, фосфор, мышьяк, сурьму и, возможно, другие элементы, например висмут, олово, германий и редкоземельные металлы Свинец при этом должен отсутствовать, иначе выделяется молибдат- свинца. Обработкой фильтрата сульфидом аммония полностью удаляют кадмий, серебро и большую часть, а возможно, и всю медь. В тех случаях, когда не требуется определять железо и щелочноземельные металлы, осаждение аммиаком целесообразно проводить, как описано на стр. 363. Необходимо указать, что при медленном введении аммиака в слабокислый раствор некоторое количество молибдена захватывается осадком поэтому рекомендуется прозрачный анализируемый раствор вливать нри сильном перемешивании в избыточное количество аммиака. В некоторых случаях, как, нанример, для лучшего отделения меди, аммиак можно заменить едким натром и сульфидом натрия. Сплавление породы или окисленных минералов с карбонатом натрия и последующее извлечение молибдена в раствор обработкой плава водой также может служить для отделения умеренных количеств молибдена от целого ряда элементов. Следует иметь в виду, что все эти методы отделения молибдена от других элементов не равноценны и заменить друг друга не могут. Так, при осаждении аммиаком мышьяк совместно с другими элементами выделяется в осадок, тогда как при применении едкого натра или при выщелачивании карбонатного плава водой он практически полностью переходит с молибденом в раствор. Медь же, наоборот, переходит вместе с молибденом в аммиачный фильтрат, а при обработке раствора [c.359]

    Но при достаточном избытке концентрированной соляной кислоты можно отогнать весь мышьяк из раствора в виде треххлористого мышьяка (вместе с парами соляной кислоты). На этом основан аналитический метод отделения мышьяка от сурьмы и олова. Это разделение еще лучше у соответствующих бромидов. [c.709]

    Разделение электролизом с ртутным катодом. Это метод отделения алюминия от очень многих элементов. Обычно отбирают такую порцию раствора, чтобы в ней было от 10 до 100 мкг алюминия. Электролиз проводят в среде 8 и. серной кислоты при силе тока 3—5 а. Применяют прибор, описанный на стр. 240. Так отделяют 1 г меди или железа в течение 1 ч, 1 г олова, сурьмы, свинца или цинка в течение 2—3 ч. В растворе остаются алюминий, бериллий, ванадий, редкоземельные элементы, щелочные и щелочноземельные элементы и т. п., а также в небольшом количестве марганец. [c.698]

    Осаждение миндальной кислотой. Это, по-видимому, наиболее селективный метод отделения циркония. Осаждение проводят в 2j5 н. растворе соляной кислоты. Так можно отделить 0,1 мг и больше циркония от титана, железа (1П), ванадия (V), тория, молибдена, меди, олова (IV), висмута, сурьмы (III), вольфрама, алюминия, кадмия, церия (III), хрома (III), марганца, магния и никеля. [c.1157]

    Опишите кислый метод отделения сульфида мышьяка от сульфидов сурьмы и олова. Напишите уравнения реакций. [c.52]

    Предложены и другие методы отделения сурьмы от мешающих элементов при анализе сплавов цветных металлов — экстракция сурьмы из 1—2Н растворов соляной кислоты, содержащих лимонную кислоту и оксалат, этилацетатом [77] нри определении сурьмы в горных породах — осаждение сероводородом из серно-виннокислых растворов на коллекторе (меди) с последующим удалением галлия и остатков железа экстракцией из 1Н соляной кислоты изопропиловым эфиром [178] при определении в воде и солях [179], металлическом свинце [180] и сплавах [181] — осаждение сурьмы на двуокиси марганца из азотнокислых растворов. Для устранения мешающего влияния галлия рекомендовано уменьшение концентрации H I в водной фазе до , ЪН [180]. При анализе металлического свинца отделяют большую часть свинца в виде сульфата [182]. [c.141]

    Очень полезный метод отделения многих металлов в один прием заключается в электролизе со ртутным катодом в разбавленной серной кислоте. Таким путем можно отделить от алюминия большие количества следующих элементов железа, меди, никеля, кобальта, цинка, галлия, германия, серебра, кадмия, индия, олова, сурьмы, хрома, молибдена, свинца, висмута, мышьяка, селена, теллура, ртути, таллия, рения, золота и платиновых металлов (кроме рутения). Марганец удаляется лишь-частично, но остающиеся количества его обычно не мешают, если алюминий определяют алюминоном. Вместе с алюминием в растворе после электролиза остаются бериллий, ванадий, фосфор, магний, щелочноземельные и редкоземельные металлы. Ход анализа описан на стр. 147. [c.137]

    См. таблицу на стр. 46. Об отделении олова от мышьяка и сурьмы методом отгонки см. Н. Б и л ь ц, В. Б и л ь ц. Количественный анализ,, стр. 329, М. 1933. [c.366]


    Для вольфрама Сендел [12] предложил более детальный метод, основанный на разложении силикатной породы плавиковой и серной кислотами. Вольфрам отделяют от железа и титана осаждением щелочью, а от молибдена осаждением последнего в виде сульфида с сурьмой в качестве соосадителя. Этот метод отделения был критически изучен Чаном и Райли [13], которые нащли, что при низких содержаниях вольфрама некоторое количество его соосаждается в виде сульфида с молибденом и сурьмой. В данном методе было также замечено обесцвечивание органических экстрактов. Нижний предел обнаружения вольфрама для этого метода составляет 5- 10 % (при навеске 1 г), чувствительность метода меньще, чем для молибдена, и едва ли достаточна для больщинства основных пород. [c.311]

    Определение индия в рудах наиболее часто производится из солянокислых растворов, значительно реже применяются тартратные [55] и бромидные растворы [1]. Определению нз солянокислых растворов более всего мешает Сс1, потенциал полуволны которого почти совпадает с потенциалом полуволны 1п. Кроме того, определению мешают элементы, восстанавливающиеся на ртутном катоде раньше 1п большие количества меди, железа (III), свинца, олова, сурьмы, мышьяка и некоторые другие элементы. Методы отделения мешающих элементов, применяемые при анализе руд, приведены в работах [1, 3, 12, 15, 19, 27, 29—31, 55] и в разд. VI. [c.115]

    Определение индия с родамином С производится в 2,0—2,5 н НВг фотометрическим [26] или флуорометрическим [15] методами последний более удобен, так как он чувствительнее и точнее. Мешают все элементы, образующие флуоресцирующие и окрашенные соединения железо (П1), молибден, вольфрам таллий (И1), теллур (IV), золото, марганец, олово, мышьяк, сурьма, медь. Отделение мешающих элементов производится экстрагированием, ионообменным методом или соосаждением (подробнее см. разд. VI). [c.116]

    Наряду с возможностью определения рения при совместном присутствии ряда элементов кислой сероводородной группы (As, Sb, Sn, Au, Ge, Se, Те), в некоторых случаях используют методы отделения рения от этих элементов. Отделение от мышьяка обычно проводят осаждением магний-аммоний арсената магнезиальной смесью [105]. Отделение от сурьмы производят [c.633]

    Отделение молибдена. Наилучшим методом отделения малых количеств других элементов группы мышьяка от молибдена, по-видимому, является введение в раствор достаточного количества соли железа и осаж -дение этих элементов вместе с железом добавлением аммиака, как описано в гл. Молибден , стр. 328. Метод этот оказался весьма удовлетворительным для отделения молибдена от мышьяка и сурьмы, и нет оснований предполагать, что отделение олова, германия, селена и теллура не будет проходить так же хорошо. Для отделения от молибдена больших количеств этих элементов могут служить следующие методы перегонка с соляной кислотой—для удаления мышьяка и германия восстановление сернистым ангидридом—для удаления теллура и селена восстановление свинцом—для удаления сурьмы и осаждение сероводородом в присутствии щавелевой или фтористоводородной кислоты—для отделения олова. [c.93]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов ЗЬОз , ЗЬОг , ЗЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит в фильтрат [53]. Лучще всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового и свинцового производств, в цинковом электролите, металлическом кадмии, В ряде работ, посвященных хроматографии на бумаге, имеются данные и о солях таллия. В качестве растворителя наиболее часто применяются амиловый или бутиловый спирты, насыщенные 1—2Л/ раствором НС1, или смеси изопропилового или этилового спиртов с 5Л/ раствором НС1 (9 1). Для характеристики разделения катионов приводим значения Rf [620—622] (табл. 17). [c.74]

    Соединения с водородом. Известны два соединения сурьмы с водородом дигидрид НаЗЬа и сурьмянистый водород (стибин) ЗЬНз. Дигидрид сурьмы — твердое вещество, образуется только при взаимодействии антимонидов натрия или калия с водой. В аналитической химии сурьмы НаЗЬа не используется, в то время как стибин находит широкое применение в методах отделения сурьмы и в методах ее качественного и количественного определения. [c.15]

    Работа посвящена изз епию возможности повышения чувствительности полярографического и химико-спектрального методов определения примесей в сурьме. Для отделения сурьмы от микропримесей применяли экстракцию бутилацетатом. Повышение чувствительности свелось к анализу микропримесей из навесок 2—10 г, что способствовало снижению поправки холостого опыта на применяемые реактивы. Чувствительность химикоспектрального метода повышалась также добавкой к угольному порошку, на котором концентрировались микропримеси, 4% хлористого натрия. [c.195]

    Главный метод отделения свинца основан на нерастворимости его сульфата. Описанное на стр. 262 выпаривание с серной кислотой служит для отделения свинца от многочисленных элементов, образуюш их растворимые сульфаты. При необходимости точного определения свинца в растворах, содержаш их соляную или азотную кислоту, их слуздует выпаривать до появления паров серной кислоты два или три раза, после каждого выпаривания обмывая стенки сосуда, чтобы быть уверенным в полном удалении соляной или азотной кислоты, так как эти кислоты частично растворяют РЬЗО . Следует также избегать добавления хлорной кислоты, так как она растворяет небольшое, но все же заметное количество сульфата свинца, даже и в т(зх случаях, когда в растворе имеется избыток свободной серной кислоты. Сульфат свинца слегка растворим также и в разбавленной серной кислоте, поэтому в точных работах его надо затем извлекать из фильтрата. При выполнении рядовых анализов, когда определяют только один свинец, сульфат свинца достаточно промывать разбавленным раствором серной кислоты, насыщенным сульфатом свинца при той же температуре, при которой применяется раствор. Часто рекомендуемое прибавление спирта уменьшает растворимость сульфата свища, но одновременно вызывает осложнения вследствие загрязнения осадка сульфата свинца сульфатами кальция и висмута, и поэтому в тех случаях, когда фильтрат надо подвергнуть Дальнейшему анализу, спирт добавлять не следует. Вместе с сульфатом свинца выделяется кремнекислота, а также и вольфрам, ниобий, тантал, барийименее полно стронций и кальций. Висмут, сурьма, серебро, медь, а также, без сомнения, и некоторые другие элементы отчасти загрязняют сульфат свинца. Никель и хром иногда создают затруднения, если серная кислота нагревалась выше температуры появления ее паров или почти полностью была выпарена. [c.258]

    Прекрасным методом отделения меди от кобальта, никеля, марганца, цинка, мышьяка, олова, висмута и сурьмы является осаждение ее в виде роданида меди (I). Ход анализа следующий. Приготовляют раствор, содержащий 0,1 г меди в виде ее сульфата в 5 мл серной кислоты, прибавляют 30 10 %-ного раствора винной кислоты и нагревают до растворения растворимых солей. Немного охлаждают, приливают раствор аммиака до щелочной реакции, затем серную кислоту точно до кислой реакции и сверх того еще 1 мл избытка. К раствору, который должен быть теперь горячим, прибавляют 2 мл сульфита натрия, размешивают до растворения соли и затем вливают раствор 1 з роданида калия в небольшом количестве воды. Сильно перемешивают, нагревают до кипения и дают отстояться несколько минут. Фильтруют через плотный бумажный фильтр и промывают осадок раствором, содержащим 1% роданида калия и такое же количество винной кислоты. Фильтр с осадком помещают обратно в сосуд, где происходило осаждение, и обрабатывают его 20 мл разбавленной (1 2) азотной кислоты. Покрыв стакан часовым стеклом, нагревают до кипения, прибавляют 20 мл воды, фильтруют, промывают фильтр вместе с бумажной массой, сжигают их при низкой температу )е в фарфоровом тигле растворяют золу в разбавленной азотной кислоте и нолу 1ен-ный раствор прибавляют к главному раствору. Затем кипятят для разрушения роданистоводородной кислоты и определяют медь электролизом, как описано далее (стр. 286). [c.283]

    Наилучшим методом отделения мышьяка от остальных элементов является перегонка его из солянокислого растрора, содержащего весь мышьяк в трехвалентном состоянии. При этом отделении, насколько известно, только германий количественно отгоняется вместе с мышьяком. Другие элементы, как сурьма, олово (IV), ртуть (И), могут улетучиваться [c.303]

    Следующим по значению является метод отделения мышьяка осаждением его сероводородом в сильно солянокислом растворе. Обычно это отделение проводят после предварительного, выделения всей группы мышьяка. Отделение это хорошо проходит в присутствии олова и сурьмы — элементов, обычно сопровождающих мышьяк, но оно не удается в присутствии германия, молибдена-, ртути и меди, также образующих маЛО-растворимые сульфиды. Осаждение сульфида мышьяка (V) должно проводиться при пропускании быстрого тока сероводорода через охлаждаемый льдом, 10 н. по содержанию соляной кислоты, раствор (см. стр. 310). В менее кислых растворах осаждение идет медленно, в теплых растворах получается смесь AsgSs и AsaSg. Чаще применяется осаждение сульфида мышьяка (III), так как оно может проводиться прй кислотности ниже 9 н. и при обыкновенной температуре (стр. 310). [c.305]

    Из известных методов отделения сурьмы важнейшие основаны на свойствах ее сульфида. Так, сурьма отделяется от элементов, не входяш,их в группу сероводорода, осаждением сероводородом в кислом растворе стр. 83) и от элементов группы меди — растворением сульфида сурьмы в ш елочном растворе (стр. 87). Далее, сурьму можно отделить от мышьяка — осаждением очень мало растворимого сульфида последнего в сильно солянокислом растворе (стр. 305) от олова и германия — осаждением сероводородом в растворе, содержаш,ем фтористоводородную кислоту стр. 89), и от олова — осаждением сероводородом в ш авелевокислом или виннокислом растворе (стр. 89). Из всех этих методов отделения наиболее важным является отделение мышьяка в сильно солянокислом растворе, так как мышьяк во всех методах мешает определению сурьМы. Мышьяк можно отделить как в виде сульфида мышьяка (III), так и в виде сульфида мышьяка (V) (стр. 309), и отделение может быть проведено прямо в кислом растворе анализируемого вещества или поспе совместного осаждения сурьмы и мышьяка в виде сульфидов и растворения их в кислоте. [c.321]

    Важнейшие методы отделения олова основаны на свойствах его сульфидов. Так, например, олово может быть отделено от элементов, не входящих в группу сероводорода, осаждением сероводородом в умереннокислом растворе (стр. 85) от сульфидов элементов группы меди — осаждением последних в растворах сульфидов щелочных металлов (стр. 87) от мышьяка — осаждением этого элемента сероводородом в сильно солянокислом растворе (стр. 83) и от мышьяка (П1) и сурьмы (III) — осаждением последних сероводородом в растворе, содержащем олоГво в четырехвалентном состояний и либо щцвелевую, либо фтористоводородную-кислоту (стр, 89),  [c.334]

    Посторонние вещества, восстанавливающиеся в редукторе с образованием растворимых соединений, должны отсутствовать. К этим веществам относятся азотная кислота, органические соединения, нолитионовые кислоты, соли железа, хрома, титана, мышьяка, сурьмы, ванадия, урана, вольфрама и ниобия. Применяемые методы отделения, естественно, зависят от характера присутствующих посторонних элементов и должны соответствовать методам, приведенным в разделе Методы отделения . Так, разрушение органических веществ обьгчно достигается обработкой горячего концентрированного сернокислого раствора азотной кислотой. Последующим повторным выпариванием раствора до появления паров серной кислоты удаляют азотную кислоту Двукратное осаждение аммиаком, при наличии в растворе избытка железа, служит для отделения железа, хрома, титана, мышьяка, сурьмы, ванадия, урана и ниобия. Для отделения молибдена от вольфрама и политионовых кислот аммиачный фильтрат обрабатывают винной кислотой и сероводородом, фильтруют, фильтрат подкисляют и затем снова фильтруют.  [c.362]

    Для отделения ниобия и тантала от титана наиболее часто применяется так называемый ииросульфатно-танниновый метод основанный на гидролитическом осаждении ниобия и тантала в присутствии таннина. При этом происходит отделение ниобия и тантала также от большинства других сопутствующих элементов, за исключением вольфрама, олова, сурьмы. Метод заключается в выщелачиванщ пиросульфатного плава анализируемого материала, или предварительно выделенных и прокаленных окислов, 1 %-ным раствором таннина в 1 н. растворе серной кислоты при нагревании. Согласно указанию автора метода, таким путем происходит более четкое отделение ниобия и тантала от титана, чем нри гидролизе без таннина, благодаря погашению адсорбционной способности водных окислов ниобия и тантала таннином, имеющим противоположный им заряд. Кроме того, титан образует в кислом растворе с таннином растворимые комплексные соединения, что также способствует удержанию его в растворе. [c.676]

    На том же принципе основаны быстрые методы отделения меди от свинца [70 ] и от олова и сурьмы [81 ] в растворе тартрата аммония. Некоторые разделения, в которых также применяются органические комплексообразующие реагенты, основаны na том, что оксалатные комплексы цинка и кадмия менее прочны, чем соответствующие комплексы других элементов, в частности, меди [19] и урана. В качестве примера можно указать на метод опредеДепия следовых количеств кадмия в уране [17 ]. Изучались также условия разделения цинка и кадмия в цитратной среде [30] наилучшие результаты получаются при pH 4 (ср. [83]). [c.365]

    Экстракционный комплексонный метод отделения урана. После разлолсения руды подходящим способом к раствору прибавляют аммиак и комплексон III, после чего уран экстрагируют хлороформом, диэтиловым эфиром, амиловым спиртом, этилацетатом или амилацетатом из нейтрального раствора. Бериллий, сурьма, титан и отчасти марганец при этом не образуют прочных комплексов и при нейтрализации выпадают в осадок. Вместе с ураном экстрагируются медь, серебро, висмут, ртуть, таллий, мышьяк, селен и теллур. В присутствии комплексона III не экстрагируются железо, кобальт, никель, индий, галлий, свинец, ва- [c.318]

    ВНУТРЕННИЙ ЭЛЕКТРОЛИЗ — вьщеление металлов из р-ров в результате процесса, происходящего внутри гальванич. элемента нрименяетоя в аналитич. химии как метод отделения металла от других химич. элементов с целью колич, его определения. Для В. э. применяются разнообразные приборы, в конструкции к-рых всегда входят 2 различных металла, соединен-ныхдругс другом маленькой муфтой и,пи проволокой, охватывающей оба металла. При погружении такой гальванич. нары в раствор возникает необходимая разность потенциалов. На менее активном из двух металлов (катоде) происходит процесс восстановления с выделением из раствора определяемого металла электрод, сделанный из более активного металла (анод), окисляясь, переходит в раствор. Катодом чаще всего служит платиновая сетка иногда для этой же цели применяют латунную сетку, железную проволоку (при выделении сурьмы) и т. п. Анодом служит пластинка или цилиндр из 2п, А1, РЬ и др. Применяя аноды из разных металлов, можно производить отделение определяемого элемента от различных мешающих примесей. [c.301]

    О дальнейших аналитических методах отделения и определения гремучей ртути, сернистой сурьмы и других обычных составных частей, см. Wogrinz, затем Ni olardot и BoudeHagen и. и t e s с h e г. [c.687]

    Экстракционный способ. Экстракционный метод отделения таллия от других элементов часто применяется в аналитической химии. Трехвалентный таллий экстрагируется диэтиловым эфиром, изопропиловым эфиром и подобными им растворителями из солянокислых, бромистоводородных и иодистоводородных растворов. Экстрагирование происходит в виде комплексных галогеноводородных кислот Н[Т1Х4]. Таллий хорошо экстрагируется из слабокислых растворов (1—2 п.), что позволяет отделять его от таких элементов, как железо, галлий, сурьма и т. п., которые экстрагируются из более кислых растворов (5—6 н.). [c.228]

    Уайтт [8] разработал также метод отделения малых количеств сурьмы, мышьяка и олова от других элементов при помощи диэтилдитиокарбамата диэтиламмония, который, но сравнению с другими карбаматами, является, по его мнению, более устойчивым, имеет более высокую растворимость в органических растворителях и легко может быть получен в чистом виде. Кроме того, он образует комплексные соединения не только с мышьяком [3], сурьмой [3] и оловом [2], по также с медью [21 и ВИСхМуТОМ. [c.148]

    NaOH, сурьма количественно проходит в фильтрат, а таллий полностью задерживается катионитом. В щелочной среде сурьма находится в виде анионов SbOs , ЗЬОг" , 5ЬОз и, следовательно, не задерживается катионитом. Аналогичное явление наблюдается в присутствии разных комплексообразующих анионов (пирофосфат, цитрат, тартрат, оксалат) таллий количественно адсорбируется катионитом, сурьма переходит з фильтрат [53]. Лучше всего использовать при хроматографическом разделении сурьмы и таллия винную или лимонную кислоты. Этот метод отделения таллия от сурьмы применяется при определении таллия в пылях цинкового.и свинцового производств, в цинковом электролите, металлическом кадмии. [c.74]

    Бромид олова заметно летуч, и метод отделения олова, основанный на его отгонке из раствора бромистоводородной кислоты, применялся Ониши и Сенделом для определения малых количеств олова в силикатных породах. Сначала удаляли отгонкой из солянокислого раствора мышьяк, сурьму и германий. Единственным элементом, сопровождающим олово в процессе отгонки бромида и оказывающим мешающее действие при последующем определении, является селен. [c.413]

    За последние годы широкое распространение получили экстракционные методы отделения сурьмы бт с(зпутствуюиих элементов. Лучшими экстрагентами являются изопропиловый эфир и этилацетат. Изопропиловый эф.ир экстрагирует сурьму (У) из достаточно концентрированных солянокислых растворов (6,5-8,5 н.) в виде ее хлоридното комплекса /б/ вместе с сурьмой экстрагируются Аи, Т1, 6а, Ре.  [c.7]

    Представляет интерес работа Шпеккера [68] по изучению пригодности различных экстракционных методов отделения железа применительно к определению в нем примесей других элементов. Котрбова [69] разработала спектральный метод качественного определения в металлическом железе меди, серебра, магния, цинка, кадмия, бора, алюминия, кремния, олова, свинца, титана, сурьмы, висмута, ванадия, хрома, вольфрама, марганца, кобаль- [c.26]

    М тод имеет существенное преимущество перед обычным химическим методом отделения, вследствие устранения соосажде-ния отделяемых амфотерных ионов с осадком основных гидроокисей. Превращение катионов хрома и марганца в комплексные анионы позволяет отделить их от железа. Висмут, удержанный катионитом, затем извлекается в виде комплексного иона действием раствора иодистого калт-я и отделяется таким путем от ионов меди и свинца. Отделение висмута от сурьмы достигается вымыванием висмута из колонки раствором роданистого аммония, образующего с висмутом комплекс. [c.117]

    С, Д. Гурьев [19] разработал колориметрический метод определения таллия, основанный на цветной твердофазной реакции анионов трехва-.чентного таллия с катионами основных красителей- -метилфяолетового пли кристаллфиолетового. Образующиеся соединения экстрагируются толуолом, окрашивая его в фиолетовый цвет. Определению мешают сурьма (V) и ЗОЛОТО. Для отделения от сурьмы проводят отделение таллия экстракцией эфиром. [c.128]


Смотреть страницы где упоминается термин Сурьмы методы отделения: [c.140]    [c.269]   
Фотометрическое определение элементов (1971) -- [ c.374 , c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2025 chem21.info Реклама на сайте