Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тройная связь поляризуемость

    Тройная углерод-углеродная связь имеет еще большую поляризуемость, чем двойная, и характеризуется большими величинами инкремента молекулярной рефракции = и связевой рефракции с помощью которых [c.195]

    В состав больщей части органических ингибиторов входит, по крайней мере, одна полярная группа с атомом азота, серы или кислорода, а в некоторых случаях — селена или фосфора, то есть элементов, имеющих на внешней орбите неподеленные пары электронов, способных поэтому к активному донорно-акцептор-ному взаимодействию. Использование органических соединений, содержащих кратные (двойные и тройные) связи, обусловлено наличием п-связей, для которых характерны высокая поляризуемость и способность к взаимодействию с металлом. При равной стабильности ингибирующих соединений эффективность функционального атома в адсорбционных процессах изменяется в последовательности селен > сера > азот > кислород, что связано с меньшей электроотрицательностью элементов слева [4]. Кроме того, адсорбция поверхностно-активных органических веществ растет с увеличением их молекулярной массы и дипольного момента, более эффективными ингибиторами оказываются органические соединения асимметричного строения. [c.326]


    Связанная с поляризуемостью рефракция используется в структурной химии. Рефракция молекулы может быть представлена как сумма рефракций составляющих ее атомов (аддитивность рефракции). При этом учитываются дополнительные слагаемые (инкременты) для двойной, тройной связи и т. д. Помимо систем атомных рефракций используются системы рефракций связей. Сравнивая экспериментальную Ят с вычисленной по аддитивной схеме, судят о строении молекулы. При наличии сопряженных связей в открытых цепях органических молекул наблюдается заметное превышение экспериментальной Ят над вычисленной (экзальтация рефракции). [c.88]

    Высокомолекулярные органические ингибиторы, которые преимущественно применяют в настоящее время в нефтяной и газовой промышленности, относятся к соединениям, содержащим азот, серу или кислород, т. е. элементы, имеющие на внешней орбите неподеленные пары электронов и способные поэтому к активному донорно-акцепторному взаимодействию. Использование органических соединений, содержащих кратные (двойные и тройные) связи, обусловлено наличием я-связей, для которых характерна высокая поляризуемость и способность, к взаимодействию с металлом. [c.90]

    Величина молярной поляризуемости Р является аддитивной и складывается из поляризуемостей атомов, а также из инкрементов поляризу емости, связанных с наличием различных типов химических связей (двойная, тройная) и с другими особенностями строения молекул. Здесь картина та же, что и в слу чае оценки молярной рефракции. Для неполярных диэлектриков диэлектрическая проницаемость обусловлена только деформационной поляризацией и, согласно соотношению Максвелла, практически совпадает с квадратом показателя преломления в области высоких частот е г п . Для таких полимеров (полиэтилен, политетрафторэтилен, полибутадиен и т. д.) молярная рефракция R практически совпадает с молярной поляризацией Р. [c.260]

    Из сопоставления энергий ординарной (350 кДж/моль), двойной (610 кДж/моль) и тройной (840 кДж/моль) связей следует, что в соединениях ацетиленового ряда энергия тройной связи на 210 кДж/моль меньше, чем сумма энергий трех ординарных, а я-электроны, как и в соединениях этиленового ряда, обладают высокой поляризуемостью. Поэтому для соединений ацетиленового ряда характерно большинство из рассмотренных в разд. 1.1 реакций присоединения электрофильных реагентов. Однако во всех этих реакциях соединения ацетиленового ряда менее реакционноспособны, чем соответствующие соединения этиленового ряда. [c.51]


    Химические свойства. Непредельные углеводороды чрезвычайно активны в химическом отношении. Для них характерны реакции присоединения, сопровождающиеся разрывом кратной (двойной или тройной) связи. При этом чаще всего реакции с участием непредельных углеводородов протекают по гетеролитическому типу, что обусловлено легкой поляризуемостью кратной связи и, как следствие этого, способностью ее к гетеролитическому разрыву с переносом пары электронов, как показано ниже на примере этилена  [c.138]

    При образовании кратных связей состояние углеродного атома существенно изменяется и изменяется различно в случае двойных и тройных связей. Известно, что кратные связи образуются с выделением большего количества энергии. Атомы углерода, связанные кратной связью, располагаются на более близком расстоянии в образовании этих связей принимают участие электроны, легче поляризуемые, т. е. слабее связанные в молекуле. По месту кратной связи молекула способна присоединять другие атомы, проявляя, как принято говорить, ненасы-щенность. Основываясь на выводах квантовой механики н используя некоторые [c.66]

    С ростом цепи углеводорода или длины полифенильной цепи, цепи конденсированных бензольных ядер растворимость сильно понижается. Тройная Связь резко повышает растворимость ацетилена, что обусловлено ростом поляризуемости тройной связи. Ацетилен хорошо растворим в ацетоне под давлением и в таком виде транспортируется. Гексан, циклогексан, бензол, бензин являются хорошими растворителями многих неполярных соединений. [c.379]

    Для алкинов характерна большая молекулярная рефракция, чем у алкенов У с=с=4,17, Яс=с =5,96. Это свидетельствует о большей поляризуемости тройной связи. [c.147]

    Молекулы этилена и ацетилена, содержащие л-электроны, имеют значительные квадрупольные моменты [87, 88]. Предполагалось, что л-электроны решетки графита могут создавать вблизи поверхности базисной грани графита сравнительно сильное, но быстро убывающее с расстоянием электростатическое поле [89]. Поэтому можно было бы предположить, что найденное указанным выше путем более сильное взаимодействие с атомами С графита атомов С молекул углеводородов, образующих двойные и тройные связи, чем атомов С, образующих только ординарные связи, частично или полностью обусловлено тем, что в общую энергию взаимодействия ненасыщенных углеводородов с графитом заметный вклад вносит электростатическое взаимодействие квадрупольного момента молекулы ненасыщенных углеводородов с электростатическим полем базисной грани графита. Однако экспериментально установлено, что теплоты адсорбции на графитированных термических сажах даже молекул с большими периферическими дипольными моментами близки к теплотам адсорбции неполярных молекул с близкой средней поляризуемостью и геометрической структурой [90, 91]. Например, теплота адсорбции на графитированной термической саже диэтилового эфира не превышает теплоту адсорбции м-пентана (см. гл. V). Таким образом, в случае адсорбции на графитированных термических сажах энергия электростатического взаимодействия может вносить лишь незначительный вклад в общую энергию адсорбции и электростатическое взаимодействие молекул ненасыщенных углеводородов с графитом не может быть сильным. [c.338]

    Аддитивность рефракции. Рефракция—мера поляризуемости электронной оболочки молекулы. Последняя слагается из оболочек атомов. Поэтому, если приписать определенные значения рефракции отдельным атомам или ионам, рефракция молекулы будет равна сумме рефракций атомов или ионов. Рассчитывая рефракцию молекулы через рефракции составляющих ее частиц, следует учитывать также валентные состояния атомов и особенности их расположения, для чего вводят слагаемые—инкременты двойной связи —С=С—, тройной связи —С=С— и др., а также поправки на особое положение отдельных атомов и групп в молекуле  [c.37]

    Хотя нитрилы имеют благодаря тройной связи линейное строение и поэтому едва ли можно ожидать пространственных препятствий для реакции присоединения, они все же менее реакционноспособны, чем карбонильные соединения. Это несколько неожиданно, учитывая дипольный момент группы и большую поляризуемость (ср. табл. 62) однако частота поглощения в ультрафиолете и полярографический потенциал полуволны позволяют сделать вывод о незначительной реакционной способности. Интересно, что при поглощении ультрафиолетового света перемещение я-электронов осуществляется не в направлении линии тройной связи, а перпендикулярно к ней, так что расположение атомов К—Сз Н, линейное в основном состоянии, при возбуждении принимает изогнутую форму. Наоборот, главная ось поляризуемости совпадает с линией связи. Таким образом, при химических реакциях, очевидно, также необходимо возбуждение с образованием изогнутой формы. [c.338]


    Этот краткий обзор физических данных дает прямые указания относительно некоторых особенностей в реакционной способности диацетиленов. При рассмотрении химических свойств диацетиленов необходимо учитывать линейность, высокую электрофильность, полярность и поляризуемость сопряженной диацетиленовой группировки. Особенностью химических превращений диацетиленов, зависящей от природы тройной связи, усугубляемой при сопряжении, является повышенная (по сравнению с алкенами) склонность к реакциям нуклеофильного присоединения. Эту особенность тройной связи, как известно, объясняют характером гибридизации. Асимметрия электронного распределения по цени облегчает атаку нуклеофильных агентов. [c.200]

    Моменты соединений серии 2 значительно меньше. При длине тройной связи в изонитрилах, равной 1,17 А (11,7"10 нм), ее вычисленный момент для полного переноса электрона равен 5,62 Д (18,55-Ю Кл-м) [4]. Необычно большое отклонение величин измеренных моментов от рассчитанных может быть, по-видимому, приписано большой обратной поляризации легко поляризуемой тройной связи в этих соединениях. [c.104]

    Значительные инкременты двойной и тройной связей означают, что в образовании их участвуют электроны, легче поляризуемые, т. е. несколько слабее связанные с молекулой, чем электроны, образующие одинарную связь первый потенциал ионизации олефиновых и ацетиленовых углеводородов ниже, чем предельных углеводородов (см. 18). [c.90]

    С другой стороны, собственное значение ковалентной рефракции углерода в направлении кратной связи будет заметно превыщать стандартную величину (2,1 см ) из-за увеличенной поляризуемости я-электроиов. В качестве эталона рефракции углерода с кратными связями можно взять экспериментальную величину (экстраполированную на .= оо) рефракции графита, равную 2,7 см . Следовательно, разница А/ = 2,7—2,1=0,6 см обусловлена лабилизацией электронов у чистого атома углерода. Если учесть, что в. молекуле ацетилена у каждого углерода имеется одна тройная и одна одинарная связь С—Н, то ковалентная рефракция R в такой молекуле [c.125]

    Как уже рассматривалось ранее, углерод в состоянии б-р-гибридизации более электроотрицателен, чем в состоянии 5р2-гибридизации, и поэтому у этинильной группы —С = СН —/-эффект больше, чем у винильной группы —СН = СН2. В то же время, учитывая меньшую реакционную способность и поляризуемость тройной связи, можно утверждать, что +М-эф-фект этинильной группы меньше, чем винильной. [c.79]

    Поскольку величина двулу чепреломления полимера в стеклообразном состоянии в известных пределах пропорциональна анизотропии поляризуемости связей элементарного звена, увеличение анизотропии поляризуемости макромолекулы, а следовательно, и оптической чу вствительности полимера, может бьггь достигнуто введением в моле1д лу исходного мономера или олигомера групп с большой анизотропией поляризуемости, таких как ароматические кольца типа бензольных, нафталиновых, антраценовых, карбонильных фупп и вообще молекулярных группировок, содержащих двойные или тройные связи, те. группировок, содержащих подвижные л-элекгроны. [c.237]

    Строение органических соединений. Для орг. соед. характерны неполярные ковалентные связи С—С и полярные ковалентные связи С—О, С—N, С—Hal, С—металл и т.д. Образование ковалентных связей было объяснено на основании развитых Г. Льюнсом и В. Косселем (1916) предположений о важной роли электронных образований-октетов и дублетов. Молекула устойчива, если валентная оболочка таких элементов, как С, N, О, Hal, содержит 8 электронов (правило октета), а валентная оболочка водорода-2 электрона. Хим. связь образуется обобществленной парой электронов разл. атомов (простая связь). Двойные и тройные связи образуются соотв. двумя и тремя такими парами. Электроотрицат. атомы (F, О, N) используют для связи с углеродом не все свои валентные электроны неиспользо-ванвые электроны образуют неподеленные (свободные) электронные пары. Полярность и поляризуемость ковалентных связей в орг. соед. в электронной теории Льюиса-Косселя объясняется смещением электронных пар от менее электроотрицательного к более электроотрицат. атому, что находит выражение в индуктивном эффекте и мезомериом эффекте. [c.398]

    Чтобы яснее представить, почему большинство синтезируемых в биохимической лаборатории живой клетки веществ бесцветные и лишь некоторые соединения (пигменты) имеют окраску, нужно обратиться к некоторым свойствам органических соединений. Рассмотрим химические и физико-химические закономерности строения органических соединений, обусловливающих цветность вещества, т. е. оказывающих физиологическое воздействие на человеческий глаз и вызывающих зрительное восприятие первичного цвета. Электромагнитные излучения с диапазоном волн 365—750 нм (а в специальных условиях 302—950 нм) воспринимаются человеком с ощущением цвета. Цветность микробных пигментов, как и цветность любого органического соединения, зависит от неиасыщенности и поляризуемости, т. е. наличия двойных и тройных связей или же свободных радикалов. Все микробные пигменты имеют в молекуле двойные связи. Существует взаимосвязь между ненасы-щенностью соединения и поглощением света в видимой области спектра. Ненасыщенные группы с областью поглощения 180— 800 нм названы хромофорами . Введение хромофоров в бесцветные (прозрачные) соединения превращают их в вещества, поглощающие свет в видимой области, т. е. обладающие цветностью они названы хромогенами. Имеются данные о строении хромофорных радикалов. Гиллем и Штерн [64] приводят перечень следующих хромофорных групп  [c.44]

    Не Имеет смысла подробно описывать тройную связь С = С. В молекуле ацетилена оба атома углерода имеют зр-гибридизацию, 2ру и 2р2-АО в гибридизации участия не принимают. Все четыре атома (2С и 2Н) располагаются по оси х, где находятся три а-связи и две я-связи (рис. 1.Й.10). Собственные значения связывающих и антисвязывающих МО одинаковы. я-МО охватывают скелет так, что электронное облако имеет симметрию, близкую к цилиндрической. Длина тройной связи С = С всего 0,121 нм (см. табл. 1.2.2). Электронная поляризуемость ацетилена меньше, чем у этилена. Из-за этого инкремент молярной рефракции связи С = С (6,025) меньше, чем ожидаемое значение, рассчитанное из соотношения 2(С С 4,151) — 1 (С—С 1,209) = 7,093. Если исходить из энергии простой связи 347 кДл -моль- , то тройная связь ацетилена беднее энергией но сравнению с расчетом на 228 кДл< моль-  [c.62]

    Для алкинов и циклоалкинов, как и для соединений с двойными связями С=С, типичны реакции присоединения. Однако из-за повышенной электроотрицательности 5р-гибридизованных атомов углерода и укороченности связей поляризуемость я-электронов тройной связи С=С уменьшена. Вместе с тем положительно заряженные ядра атомов углерода с внешней стороны экранированы в меньшей степени. В соответствии с этим тройная связь С=С по сравнению с двойной связью С—С менее реакционноспособна в отношении электрофильных агентов. С другой стороны, в ряду алкинов легче протекает нуклеофильное присоединение. Наконец, благодаря разобранным выше факторам алкины с концевой этинильной группой обладают слабой С—Н-кислотностью (ацетилен имеет р/Са =20). [c.252]

    Реакционная способность нитрилов увеличивается и круг их реакций расширяется в присутствии катализаторов. В электро-фильных реакциях нитрилов в качестве катализаторов применяются как кислоты, так и основания, действие которых в первую очередь основано на увеличении поляризуемости цианогруппы. Кислоты, блокируя неподеленную электронную пару нитрильного азота, раскрывают тройную связь и тем самым увеличивают элек-троноакцепторные свойства нитрильной группы. В случае протонных кислот это приводит к образованию комплексов КС Ы-НХ а протонированных нитрилов. Хотя протонированные дитрилы [c.23]

    Так как энергия я-связи в алкенах равна 272 кДж/моль, то формальной точки зрения алкины должны быть более реак-вдионноспособны в реакциях присоединения. Но заметное укорачивание тройной связи (0,120 нм) по сравнению с двойной (0,134 нм) приводит к заметному уменьшению поляризуемости и, как следствие, к понижению реакционной способности в отношении электрофильных агентов (например, Haig, HHal). Присоединение нуклеофильных агентов, напротив, протекает легче, чем к алкенам. [c.183]

    Напротив, в этане есть плоскость симметрии, перпендикулярная линии связи С—С. Согласно приведенным в табл. 17 значениям, поляризуемость минимальна в этой плоскости и максимальна в направлении связи (ось симметрии), т. е. в направлении наибольщего протяжения молекулы. Таковы же соотношения в этилене с той разницей, что л-электроны обусловливают еще большую разницу в поляризуемостях вдоль и перпендикулярно линии связж поляризуемость перпендикулярно линии связи меньше, чем в этане, а вдоль линии связи, напротив, повышена. В ацетилене тенденция к увеличению продольной поляризуемости за счет перпендикулярной выражена еще сильнее. Отсюда видно, что высокая поляризуемость двойной и тройной связей, которую приходилось учитывать путем введения особых поправок (инкрементов) при выводе атомных рефракций, практически вызывается исключительно легкостью сдвига электронов вдоль направления связи. Это обстоятельство очень важно, так как таким путем можно связать вызванную внешним электрическим полем поляризацию молекулы с определенными изменениями в электронной плот- [c.87]

    Тем не менее симбатное изменение коэффициента А и функции поляризуемости само по себе достаточно красноречиво. Оно указывает на то, что для изучения систем основной причиной отклонения от закона Генри является, видимо, взаимодействие типа переноса заряда, в котором ацетилен играет роль акцептора электрона (своего рода нуклеофильная атака на тройную связь, в которой нуклеофилом является гетероатом с неяоде ен-ными электронными парами). В случае сульфидов большая диффуз- [c.95]

    Электронное облако двузамещенной тройной связи более вытянуто, чем однозамещенной, что, возможно, указывает на ее большую поляризуемость. Эти данные получены из определений степени деполяризации рамановских линий этих связей. [c.200]

    Значительно меньший сдвиг максимумов поглощения в УФ-спектрах диацетиленов в длинноволновую область по сравнению с диенами, возможно, указывает на меньшую разрыхленность (поляризуемость) электронов тройной связи по сравнению с двойной [5]. [c.200]

    НЫМ образом благодаря дисперсионным (вандерваальсовым) взаимодействиям между адсорбентом и недиссоциированными молекулами. При адсорбции на полярных адсорбентах решающее значение имеют число и характер полярных функциональных групп в молекуле адсорбированного вещества. В табл. 4.3 функциональные группы расположены в порядке возрастания адсорбируемости (определенной на силикагеле) тех соединений, в состав которых входят эти группы [65] такое распределение носит очень приближенный характер, поскольку существует еще различие между алифатическими и ароматическими соединениями. Далее, оказывают влияние величины дипольного момента и поляризуемости молекул. Влияние двойных или тройных связей на адсорбционные свойства ничтожно мало по сравнению с влиянием числа упомянутых функциональных групп. Влияние данной функциональной группы соединения на его адсор-бируемость различно для разных адсорбентов. Среди других факторов, в большей или меньшей степени влияющих на адсор-бируемость, следует упомянуть pH адсорбента, стерические факторы и полярность элюирующей системы. На адсорбцию на неполярных адсорбентах влияют главным образом размеры молекул (они возрастают с возрастанием молекулярной массы, достигая определенного максимума, а затем убывают) и стерические факторы. [c.159]

    Принципиальным отличием углеводородов ацетиленового ряда от соответствующих соединений винилового типа, как известно, является большая симметрия распределения электронов вокруг оси, соединяющей ядра, меньшая поляризуемость л-электронов, повышенная реакционная способность по отношению к нуклеофильным реагентам и, наконец, высокая плотность электронного облака тройной связи. Однако соответствующие расчеты показывают, что процессы раскрытия тройных связей с образованием линейных полисопряженных систем термодинамически возможны и, следовательно, могут быть осуществлены, если будут преодолены кинетические трудности. [c.50]

    Для свойств неопределенных органических соединений имеет большое значение то, что я-связь поляризуется гораздо легче о-связи. Поэтому двойные и тройные связи обладают высокой поляризуемостью, и в молекулах непредельных соединений часто происходит смещение электронной плотности. Отсутствие симметричного распределения электронной плотности характерно для всех несимметрично построенных гомологов этилена, что обусловливает подмеченный Марковни-ковым порядок присоединения по месту разрыва двойной связи (см. стр. 84). [c.38]

    При образовании кратных связей состояние углерод.чсни атома существенно изменяется н изменяется различно в случае двойных и тройных связей. Известно, что кратные связи образуются с выделением большего количества энергии. Атомы углерода, связанные кратной связью, располагаются на более близком расстоянии в образовании этих связей принимают участие электроны, легче поляризуемые, т. е. слабее связанные в молекуле. По месту кратной связи молекула способна присоединять другие атомы, проявляя, как принято говорить, ненасыи1,енность. Основываясь на выводах квантовой механики н используя некоторые допущения, можно показать, что одна электронная пара и в этом случае образует 5-связь. Другие же электроны связаны слабее и легко поляризуются. Их называют --электронами, а образуемые ими связи 71-связями (пи-связи). [c.67]

    Из данных измерений дипольных моментов комплексов trans-[Р1С1з(КСаК )аш] (аш — амин) [25] следует, что ацетиленовый лиганд является донором электронов. Однако прямая коорреляция между устойчивостью комплексов и потенциалами ионизации соответствующих ацетиленов, а также-поляризуемостью заместителей при тройной связи отсутствует. Чатт [25 считает, что большую роль в стабилизации комплексов играют пространственные препятствия, которые затрудняют доступ к комплексу различных реагентов. [c.400]

    Большое влияние на поляризуемость молекулы оказывает динамическое электронное смещение Ed, часто именуемое электромерньш или таутомерным эффектом. Суть его сводится к тому, что под воздействием внешнего фактора усиливается электронное смещение двойных и тройных я-связей вплоть до полного перескока я-электронной пары. Смещение Ed считается отрицательным, когда атом или группа атомов принимают смещенные я-электроны и приобретают отрицательный заряд, и положительным, если атомы или группы атомов отдают я-электронную пару и приобретают положительный заряд. [c.200]

    Двойные и тройные углерод-углеродные связи представляют собой структурные элементы с более высокой энергией, чем простые углерод-углеродные связи, и обладают поэтому повышемной реакционной способностью. Поскольку л-связь обладает большой поляризуемостью, то кратные углерод-углеродные связи легко реагируют с электроф ьпьными агентами и, следовательно, проявляют нуклеофильные свойства. Однако наряду с этим наличне связей С = С и С = С обусловливает —/-эффект . Поэтому кратные связи подвергаются также воздействию иуклеофильны.ч агентов. [c.325]


Смотреть страницы где упоминается термин Тройная связь поляризуемость: [c.146]    [c.144]    [c.338]    [c.261]    [c.100]    [c.283]    [c.124]    [c.159]    [c.371]   
Курс физической органический химии (1972) -- [ c.284 ]




ПОИСК





Смотрите так же термины и статьи:

Поляризуемость

Связь тройная



© 2025 chem21.info Реклама на сайте