Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеноструктурный рентгеновских лучей в больших

    Для исследования строения твердых тел применяются рентгеноструктурный, электронномикроскопический, кристаллооптический, металлографический, петрографический и другие методы. Особенно большое значение имеет рентгенографический и электронный анализы кристаллов. Рентгеновские лучи широко применяются для выяснения строения кристаллических решеток и их деформации под влиянием внешних воздействий. За последнее десятилетие метод рентгеновского анализа все с большим успехом применяется также для изучения строения жидкостей, для определения структуры молекул и расстояний между атомами в молекуле. [c.56]


    Рентгеноструктурный анализ множества кристаллических структур позволил подробно изучить геометрию различных групп атомов, включая хорошо определенные значения длин и углов между связями. Стереохимические законы оказали большую помощь при определении новых кристаллических структур, в частности природных макромолекул, которые состоят из малых основных единиц. В современном кристаллографическом анализе используются данные дифрактометров и быстродействующие электронно-вычислительные машины, что позволило определить строение белков. Данные дифракции рентгеновских лучей были использованы при установлении структуры дезоксирибонуклеиновой кислоты и при изучении водородной связи, которой обусловлена устойчивость этой структуры. [c.583]

    Изучение дифракции рентгеновских лучей на кристаллах Пр1 вело к созданию метода исследования атомного строения кристам лов Методами рентгеноструктурного анализа >же успешно ра< шифрованы структуры большого числа кристаллов Методик определения структуры также детально разработана - . [c.102]

    На микрофотографиях получены сферические частицы асфальтенов различных размеров. Самые маленькие из них в среднем 100 А. Большие частицы получились, вероятно, в результате объединения нескольких молекул. По рентгеноструктурным данным размеры пачек 17-20 S. Несовпадение данных объясняется, вероятно, тем, что на микрофотографии измеряется размер всей молекулы асфальтенов, а рентгеновские лучи рассеиваются только упорядоченной частью или ядром молекулы. [c.66]

    Так как при исследовании полимеров обычно /1=1, а ).= 1,54 А (трубка с медным излучением), то очевидно, что дифракции рентгеновских лучей а крупных структурных элементах (большие d) должны отвечать малые значения Q. Однако дифракционные. максимумы, соответствующие малым углам (0<2°), обнаружить обычными методами рентгеноструктурного анализа невозможно, так как на них будет накладываться интенсивный расходящийся первичный пучок. [c.50]

    Процесс полимеризации, очевидно, был не в состоянии нарушить ориентацию и текстуру мономерной фазы. Рентгеноструктурный анализ показал, что полимер обладает смектической структурой. Это было установлено по наличию трех узких рефлексов при малых углах и одного широкого — при больших углах. Было также обнаружено, что дугообразные рефлексы получаются, если пучок рентгеновских лучей распространяется в направлении, перпендикулярном оси волокна в системе, тогда как в случае параллельного распространения наблюдаются дебаевские кольца. Этот [c.50]


    Такие результаты обычно представляются в виде карт электронной плотности. Поскольку рентгеновские лучи рассеиваются электронами, кристалл при рентгеноструктурном исследовании ведет себя как трехмерное периодическое распределение электронов с большей плотностью [c.314]

    Исследование картины дифракции рентгеновских лучей в кристалле данного соединения позволяет при благоприятных условиях локализовать положение атомов, входящих в состав этого соединения, с точностью, в лучших работах достигающей нескольких тысячных ангстрема, и определить тем самым конформацию молекулы в кристалле. Получение такой картины требует, однако, очень большой вычислительной работы, которая заметно упрощается, если в кристалле присутствует один или несколько атомов с большим атомным номером. Лишь немногие нуклеозиды и нуклеотиды исследованы пока с помощью рентгеноструктурного анализа это связано помимо трудоемкости метода с существенным техническим ограничением — необходимостью иметь монокристалл вещества размером около 0,1 мм, получение которого в случае производных нуклеозидов и нуклеотидов может представлять значительные трудности .  [c.122]

    Рассмотрим сначала применение рентгеноструктурного метода. Интенсивность рентгеновских лучей, рассеянных данным атомом, примерно пропорциональна квадрату его атомного номера. Поэтому атом водорода обладает наименьшей рассеивающей способностью, и точно определить его положение обычно труднее всего. В действительности положение осложняется еще и тем, что тепловое движение приводит к большей размытости наблюдаемого рассеяния. Колебания атома в молекуле усиливаются по мере уменьшения его массы, и, следовательно, для атома водорода ха- [c.40]

    Доступный поток тепловых нейтронов слабее потока рентгеновских лучей, получаемого с помощью обычных источников, поэтому приходится использовать большие кристаллы. Часто несложно получить кристаллы гидрида переходного металла, подходящие по размеру для рентгеноструктурного анализа (годятся кристаллы с размером ребра 0,1 —0,2 мм), но получить кристаллы в 5—10 раз большего размера значительно труднее. Кроме того, оборудование для изучения дифракции нейтронов имеется только на очень немногих установках. По этим причинам для гидридных комплексов переходных металлов выполнено крайне незначительное число исследований с применением дифракции нейтронов. Однако эти немногочисленные исследования были чрезвычайно важны для получения подробных данных о стереохимии связи металл — водород. [c.42]

    Результаты первых работ по исследованию карбонилгидридов переходных металлов методами спектроскопии и дифракции электронов позволили сделать следующие выводы 1) атом водорода не влияет на стереохимию этих соединений, 2) атом водорода погружен в орбитали металла. С появлением рентгеноструктурных данных стало очевидно, что в действительности атом водорода проявляет стереохимическое влияние. Оказалось, что связь металл—водород имеет длину порядка 1,7 A, характерную для нормальной ковалентной связи. Геометрия молекул гидридных комплексов в большей мере зависит от числа и размера лигандов степень отклонения от идеальной геометрии увеличивается при возрастании объема лигандов и кратности связи в транс-положении к координированному гидрид-иону. Значительное трансвлияние координированного гидрид-иона очевидно из сравнения длин связей в этих комплексах. Методом дифракции рентгеновских лучей и (или) нейтронов изучены структуры примерно шестидесяти гидридных комплексов переходных металлов. Перечень этих структур включает соединения обширного ряда металлов с разнообразными лигандами геометрия этих комплексов варьируется от плоского квадрата (координационное число четыре) до центрированной тригональной призмы (координационное число девять). Среди комплексов, содержащих мостиковый водород, встречаются структуры, в которых атом водорода связывает два и больше атомов переходных металлов, или переходный металл и бор, или переходный металл и кремний. [c.76]

    Рентгеноструктурный анализ позволяет получать обширную информацию о строении полимеров и его изменении в результате тепловых, механических и других воздействий, о фазовых превращениях и конформации макромолекул, о характере ориентации кристаллографических и молекулярных осей в кристаллографической ячейке и их изменении в результате внешних воздействий. Кроме того, рентгеноструктурный метод дает возможность определять средние размеры и распределение по размерам кристаллитов, степень дефектности кристаллической структуры и. многое другое. Дифракция рентгеновских лучей под малыми углами дает основание для суждения о величине большого периода и его изменении при различных термомеханических воздействиях, о состоянии (плотности) аморфных прослоек, а также позволяет регистрировать возникновение мельчайших (субмикроскопических — до 10—100 А) трещин в полимерах. Особая ценность методов [c.81]


    Изменения кристалличности определяли непосредственно с помощью дифракции рентгеновских лучей [10, 34[ полученные данные были калибровочными при определении кристалличности другими методами с помощью ИК-спектроскопии [35] и по плотности [36[. На рис. 10 приведены кривые изменения кристалличности при облучении большими дозами. Кристалличность определяли рентгеноструктурным анализом на этот счет имеются также некоторые данные, полученные с помощью [c.268]

    В этих условиях рентгеновский метод не позволяет получить нужную информацию и, следовательно, не пригоден для определения ионной ассоциации и комплексных ионов. Другая трудность, с которой приходится сталкиваться при проведении рентгеноструктурных исследований, заключается в том, что решение уравнений для функций распределения в расплавленном электролите, состоящем из ионных частиц, требует введения некоторых предположений, а именно что атомы одного вида дифрагируют рентгеновские лучи значительно сильнее, чем другого, или что дифракция на атомах обоих видов одинакова [8, 9]. Такие предположения всегда носят приближенный характер, что еще больше ограничивает возможности метода. [c.215]

    При изучении ПВХ методами рентгеноструктурного анализа выявляются особенности, которые необходимо учитывать. Одной из особенностей является низкая фактическая интенсивность рассеяния поливинилхлоридом рентгеновских лучей по сравнению с большинством других полимеров. Причина этого — большой массовый коэффициент поглощения ц, обусловленный наличием тяжелого атома С1 в молекулах ПВХ. В табл. УП.5 приведены значения ц некоторых полимеров, рассчитанные по табличным значениям массовых ко фи-циентов поглощения элементов для разных длин волн Я. [c.216]

    Как правило, наиболее приемлемым способом оценки кристалличности полимерных мембран является рентгеноструктурный порошковый анализ по методу Дебая и Шерера и Хала [14]. По этому методу мембрану помещают на пути пучка монохроматических параллельных рентгеновских лучей. Ввиду большей или меньшей статистической ориентации при правильно выбранном угле к кристаллу плоскость кристаллической решетки всегда будет доступна. На плоской фотопленке рентгенограмма представляет собой систему концентрических колец. После определения параметров решетки и интенсивностей отражения кристаллы классифицируют по системе, классу, [c.114]

    В рентгеноструктурном анализе нашли применение три типа счетчиков счетчики Гейгера, пропорциональные и сцинтилляционные. Во всех этих счетчиках попадание квантов рентгеновских лучей отмечается электрическими импульсами. Поэтому интенсивность рентгеновских лучей измеряется по количеству импульсов, поступающих сначала в специальные устройства, усиливающие эти импульсы от 10 до 10 раз, а затем в измерительные. Сейчас больше всего применяются сцинтилляционные счетчики. [c.84]

    Рассеяние рентгеновских лучей. Наряду с рентгеноструктурным анализом дисперсных материалов, базирующимся на условии Брэгга — Вульфа и позволяющим определять параметры кристаллической структуры углеродных материалов, в последнее время для исследования характера функции распределения областей неоднородности электронной плотности по размерам (радиусам инерции) в интервале от 0,7 до 150 нм все большее применение находит метод диффузного рассеяния рентгеновских лучей под малыми углами [46—48]. [c.24]

    Хотя в отдельных случаях размер повторяющихся структурных единиц в фибрилле, вычисленный на основании обработки электронных микроснимков, совпадает с величиной большого периода, рассчитанной с помощью рентгеноструктурного анализа при облучении под малыми углами 9- определенно нельзя сказать о полной аналогии этих параметров. По крайней мере в отдельных случаях периодичность, наблюдаемая на картинах дифракции рентгеновских лучей, по-видимому, является искусственной и не связана с ка-кой-либо реальной периодичностью структуры образца. [c.433]

    Монокристаллы могут быть приготовлены и в случае очень крупных молекул, например глобулярных белков. Однако при исследовании кристаллов белков возникают дополнительные трудности, связанные с тем, что кристаллы почти наполовину состоят из растворителя и разрушаются при подсушивании. Нередко такие кристаллы разрушаются из-за длительного воздействия рентгеновских лучей. Кроме того, в отличие от более простых соединений прн расшифровке структуры белков приходится измерять интенсивности и определять положение огромного числа дифракционных пятен. Дополнительная трудность, связанная с фазовой проблемой [4], состоит в том, что, помимо кристаллов чистого белка, необходимо исследовать также кристаллы его специфических производных, получаемых введением в молекулы белка тяжелых атомов. Эти трудности столь велики, что для белков нереально было бы пытаться определить расстояние между атомами с точностью до 0,01 А, т. е. с той точностью, которая достигается прн рентгеноструктурных исследованиях совершенных кристаллов малых молекул. Вместо этого очень часто целью исследований становится определение расположения полипептидного остова в молекуле белка и локализация по возможности большего числа боковых групп. Для этого используется метод, который состоит в определении на основе рентгеновских данных положения ос-углеродных атомов всей [c.490]

    Однако при решении этой задачи в рамках рентгеноструктурного анализа возникают дополнительные трудности, обусловленные, с одной стороны, увеличением длительности экспозиции, так как величина амплитуды рассеяния для рентгеновских лучей значительно меньше, чем для электронов. Если в электронографии время фиксирования дифракционной картины на фотопластинку длится от нескольких секунд до двух-трех минут, то в рентгенографии экспозиция исчисляется часами, а в нейтронографии иногда и несколькими десятками часов. С другой стороны, более сильная зависимость амплитуды рассеяния рентгеновских лучей от порядкового номера атомов (по сравнению с электронами) не позволяет надежно исследовать строение молекул с резким различием в величинах зарядов атомных ядер. Поскольку рассеяние рентгеновских лучей происходит на электронных оболочках атомов, основной вклад в интенсивность рассеяния этого вида излучения вносится атомами с большим зарядом ядра. Рассеяние же на легких атомах будет незначительно, и поэтому отвечающие им межъядер-ные расстояния находят с невысокой точностью. [c.128]

    Рентгеноструктурный анализ основан на применении рентгенографии. При прохождении рентгеновских лучей через тонкий слой вещества наблюдаегся дифракция и интерференция лучей. На фотопленке, расположенной за объектом перпендикулярно падающему лучу, получается рентгенограмма, на которой можно видеть интерференционные кольца и пятна вокруг центрального иятна от неотклоняющегося луча. Интерференционные кольца и пятна в случае высокомолекулярных веществ могут получаться от правильного чередования одинаковых звеньев молекул, отдельные составные части которых повторяются через определенное расстояние. Это расстояние между одинаковыми элементами соседних звеньев молекул носит название периода идентичности. Ширина интерференционных полос на рентгенограмме зависит от периода идентичности чем меньше период идентичности, тем больше ширина кольца. Таким образом, ио ширине колец может быть вычислен период идентичности. [c.50]

    Теория малоутловой дифракции исходит из представлений, близких к применяемым в теории рассеяния света растворами макромолекул (с. 82). Теория позволяет связать наблюдаемую под теми или иными углами интенсивность рассеяния, т. е. его индикатрису с расстояниями между рассеивающими частицами. Для определения формы макромолекулы приходится задаться некоторыми о ней предположениями — представить макромолекулу в виде шара, эллипсоида или вытянутого цилиндра. Для таких, а также для других простых тел вычисляется индикатриса рассеяния как функция геометрических параметров макромолекулы. Так, для шара определяется электронный радиус инерции (электронный, так как рентгеновские лучи рассеиваются электронами). Для миоглобина этот радиус оказался равным 1,6 нм, что хорошо согласуется с размерами, определенными методом рентгеноструктурного анализа кристаллического миоглобина. Если рассеивающая система вытянута, то определяется электронный радиус инерции ее поперечного сечения. По индикатрисам рассеяния определены размеры, форма и молекулярные массы ряда биополимеров. Так, лизоцим представляется эквивалентным эллипсоидом вращения с размерами 2,8 X 2,8 X 5,0 нм . Более детальная информация о форме однородных частиц получается из анализа кривых рассеяния под большими углами (от [c.136]

    Единственным методом, который позволяет определить пространственные координаты большинства атомов биополимера (как правило, всех, кроме атомов водорода), является рентгеноструктурный анализ. Он применим к тем биополимерам, которые могут быть получены в виде кристаллов достаточно большого размера, по крайней мере несколько десятых долей миллиметра. Для биополимеров, имеющих вытянутую периодическую пространственную структуру, например для двунитевых спиральных структур нуклеи1швых кислот, геометрические параметры, описывающие основные элементы структуры, могут быть получены исследованием дифракции рентгеновских лучей на ориентированных нитях этих биополимеров. Именно такие данные, полученные для нитей ДНК английскими учеными Уилкинсоном и Розалинд Франклин, позволили Уотсону и Крику предложить пространственную структуру ДНК в виде двойной спирали. Возможность получения белка, нуклеиновой кислоты или их комплекса в виде кристалла достаточно высокого качества является основным ограничением на пути исследования пространственной структуры биополимеров. Одним из факторов, осложняющих кристаллизацию, является неизбежное возникновение конвекционных токов. В связи с этим определенные надежды на улучшение процедур кристаллизации возлагаются на выращивание кристаллов в условиях невесомости на орбитальных космических станциях. [c.309]

    Дифракция рентгеновских лучей и электронов относится к числу наиболее широко используемых методов изучения структуры кристаллических твердых тел. Данные рентгеноструктурного аналиж порошков и монокристаллов приводятся во многих работах по цеолитам. В последнее время большее распространение получило изучение дифракции электронов. Структурные исследования цеолитов, выполи ненные в предыдушие десять лет, привели к пониманию того, что ИК-спектроскопия может давать информацию не только о ближнем порядке и характеристиках связи, но и о дальнем порядке в кристаллических твердых телах. Последнее связано со взаимодействиями в решетке и электростатическими и другими эффектами. Все это характеризует ИК-спектроскопию как очень быстрый и эффективный метод исследования структуры. [c.104]

    В 1934 г. Уорен, на основании экспериментальных кривых рассеивания рентгеновских лучей, пользуясь интегральным анализом Фурье, определил взаимное расположение атомов углерода и доказал наличие в структуре сажи отдельных слоев графитовой решетки. Критикуя большое число работ по рентгеноструктурному анализу саж, Уорен правильно указывает, что все авторы, получая на рентгенограммах две или три сильно размытых П ллосы, примерно в тех местах, где расположены кольца графита, только на этом основании приписывали саже кристаллическую структуру графита, в го время как аналогичные рентгенограммы дают и жидкости и чисто аморфные тела. [c.66]

    При установлении этих формул большой вклад внес рентгеноструктурный анализ целлюлозы (П. Шеррер, Р. О. Герцог, 1920 г., Р. Поляни, 1921 г. интерпретация О. Л. Спонслера и В. X. Дора, 1926 г., К, X. Мейер и X. Марк). Несмотря на свой аморфный вид, целлюлоза ведет себя по отношению к рентгеновским лучам, как кристаллическое веш ество. Элементарная ячейка кристаллической решетки включает атомы пяти макромолекул. Размеры элементарной ячейки приведены на рис. 14. Период идентичности в направлении длины волокна Ь) равен 10,3 А и соответствует длине остатка целлобиозы, с учетом кресловидной формы циклов глюкозных остатков (О. Хассель). [c.290]

    Вскоре автор приступил к подготовке улучшенного издания. Новый текст опирался на ценные данные рентгеноструктурных исследований. Из него были исключены главы учебного характера, посвященные введению в кристаллооптическую методику, явлениям дифракции рентгеновских лучей и равновесиям плавкости в сухих системах. Читая в Берлинском университете лекции по технологии силикатов в строгом соответствии с классическим курсом Ф. Хабера, автор приобрел большой опыт и смог выделить все наиболее существенное в области исследований силикатов методами физической химии. Поэтому второе издание этой книги, без изменений выпущенное в свет в США в 1943 г., заключало много новых и важных положений кристалло-химичес-кой теории В. М. Гольдшмидта. Кроме того, в ней нашли отражение новейшие достижения в области твердофазовых реакций и физико-химических исследований стекла и гидравлических цементов. Неамотря на перерыв в получении важного материала в период между 194)1 и 1945 гг., рукопись третьего немецкого издания с многочисленными добавлениями и исправле-НИЯ1МИ была закончена весной 1945 г. [c.7]

    Другой важной особенностью поведения нейтронов при дифракционных исследованиях кристаллов является исключительно небольшой коэффициент поглощения их веществом, который обычно для одного и того же вещества в сотни раз меньше, чем коэффициент поглощения рентгеновских лучей. Это обстоятельство делает возможным использование очень больших кристаллов при исследованиях методом дифракции нейтронов. Но с этим одновременно связаны некоторые затруднения. При рентгеноструктурных исследованиях не сталкиваются с проблемой вторичного гашения. Оно состоит в кажущемся увеличении поглощения и уменьшении интенсивности отраженных лучей вследствие того, что при сильном отражении некоторые падающие пучки отражаются назад и не достигают внутренних мозаичных блоков кристалла. При рентгеноструктурпых исследованиях, если работают с очень малыми кристаллическими частицами размерами около 0,1мм, это явление не играет важной, роли. Для крупных кристаллов, используемых для исследований. [c.55]

    Рандль [69] указывает, что максимум интенсивности, появляющийся в центре спирали на проекции, полученной при рентгеноструктурном анализе амилозы, осажденной безводным бутанолом, является, вероятно, ложным, возникающим как результат преждевременного обрыва ряда Фурье из-за невозможности измерения интенсивности очень слабых дифракционных максимумов, полученных при больших углах падения рентгеновского луча. [c.531]

    Изучение дифракции рентгеновских лучей на кристаллах привело к созданию метода исследования атомного строения кристаллов. Методами рентгеноструктурного анализа в настоящее время уже успешно расшис )рованы структуры большого числа кристаллов. Методика определения структуры также детально разработана . [c.101]

    К интерференционно-дифракционным методам относятся дифракция рентгеновских лучей под большими и малыми углами. (рентгенография, рентгеноструктурный анализ), дифракция электронов (электронография), дифракция нейтронов (нейтронография) и рассеяние света. [c.75]

    Из спектров ЯМР можно получить значительно больше сведений, если использовать вместо порошков монокристаллы и снимать спектры кристаллов в различных известных ориентациях по отношению к внешнему магнитному полю. Проводя такие измерения для монокристалла простого гидрата, например Са304 2Н2О, можно найти направление линии в элементарной ячейке, соединяющей два протона в каждой молекуле воды, а также расстояние между протонами [6]. Был проведен ряд таких исследований в качестве примера можно привести мочевину (NH2)2 O [7]. Как было показано, рентгеноструктурный анализ (см. разд. 7.8) позволил сделать вывод, что это вещество дает тетрагональные кристаллы с параметрами ячейки а = Ь = 5,66 А и с = 4,41 А. Все связи С—О направлены вдоль оси четвертого порядка [с]. Судя по пространственной группе, молекула должна иметь симметрию тт С2 ). Положение всех атомов в молекуле мочевины было установлено методами дифракции рентгеновских лучей и нейтронов, причем было доказано плоское строение молекулы. Вместе с тем вопрос о выборе истинной конфигурации из двух возможных форм, обладающих симметрией тт(С2ь), — неплоской структуры (рис. 7.10) и плоской структуры (рис. 13.8) — относится к числу проблем, для решения которых особенно подходит метод ЯМР. Используем этот пример для иллюстрации возможности метода при исследовании монокристалла. [c.283]

    НО направлению мапнитного поля. Методом дифракции рентгеновских лучей под малыми и большими углами проводился детальный структурный анализ ориентированных образцов. Обнаружилось, что смектическая структура полимера характеризуется резко выраженным дальним порядком в направлении нормали слоя. Относительная флуктуация расстояния между слоями составляла примерно 1,4%. Можно было наблюдать до 80 слоев, расположенных штабелем один над другим. Отдельные слои оказались плоскими без сколько-нибудь заметных неровностей и дефектов штабельной упаковки. Смектическая структура ПЛБЭ состояла из отдельных смектических слоев, не проникающих друг в друга, тогда как для ПМБЭ наблюдались взаимно проникающие двойные слои. Боковые группы располагались перпендикулярно плоскости слоя для обеих изученных систем. Ближний порядок, существующий внутри смектических слоев, оказался очень сходным с порядком нематичеокой или изотропной фазы мономеров. Смектическая упорядоченность полимеров давала диаграмму рассеяния, аналогичную диаграмме рассеяния смектической модификации А низ-комолекулярных соединений. Никаких сведений об истинной конформации основной цепи получить не удалось. Однако данные рентгеноструктурного анализа показали, что основная цепь должна быть жестко связана с плоскостью смектического слоя. На этой плоскости цепь может образовывать двумерный клубок или двумерную пачечную структуру (рис. 5). Условия упаковки приводят к заключению, что из двух указанных структур более предпочтительной является двумерная пачечная структура. [c.49]

    Изучение кристаллических структур методами рентгеноструктурного (основан на дифракции рентгеновских лучей кристаллической решеткой вещества) и электронографического анализа (основан на дифракции электронов или нейтронов) показало, что реальные кристаллы отличаются от идеальных. В реальных кристаллах строгая пространственная периодичность нарушается из-за наличия дефектов кристаллической структуры. Многие свойства кристаллических тел объясняются наличием таких дефектов. Последние могут быть собственными, если они образуются вследствие теплового движения в кристалле, или примесными, если в кристалле появляются посторонние примеси, введенные случайно или преднамеренно. Дефекту. могут затрагивать одну или несколько элементарных ячеек или весь кристалл в целом. В технологии пигментов большой интерес представляют, например, такие дефекты, как ультрамикротрещины, определяющие прочность кристалла, что в свою очередь играет важную роль в процессах измельчения и диспергирования пигментов. Если в момент кристаллизации возникают механические помехи росту кристалла, в нем может возникнуть дефект, называемый дислокацией. При деформациях кристалла дислокации и их скопления могут перерастать в ультрамикротрещины. Во многих случаях в узлах кристаллической решетки могут отсутствовать структурные единицы, т. е. атомы, ионы или молекулы. Такие дефекты носят название вакансий. В пространстве между узлами (в междоузлии ) могут присутствовать атомы, ионы или молекулы, причем как свои собственные (принадлежащие веществу кристалла), так и примесные (принадлежащие другому веществу). Вакансии и наличие атомов, ионов или молекул в междоузлиях оказывают существенное влияние на оптические свойства пигментов (цвет, показатель преломления), их электропроводность, а также на скорость роста кристаллов, особенно при реакциях в твердой фазе. [c.182]

    Со времени Вернера было накоплено большое количество структурных данных с целью определения координационных чисел и более топких деталей стереохимии. Не вызывающие сомнений прямые данные о структуре в твердом состоянии получают главным образом методом дифракции рентгеновских лучей, и эта область координационной химии за последние десять лет получила огромное развитие в литературе по неорганической химии публикуется от 20 до 30 рентгеноструктурных нсследовапий каж- [c.22]


Смотреть страницы где упоминается термин Рентгеноструктурный рентгеновских лучей в больших: [c.131]    [c.313]    [c.313]    [c.511]    [c.49]    [c.81]    [c.317]    [c.70]    [c.21]    [c.282]    [c.49]    [c.273]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.0 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте