Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия Р от расстояния

    Рассмотренные молекулярные параметры энергия диссоциации, межъядерные расстояния, равновесная конфигурация, число симметрии — важны для химии не только как индивидуальные характеристики молекул. По ним можно рассчитать термодинамические свойства веществ и константы равновесия химических реакций. В нашей стране ведутся обширные исследования молекулярных параметров методами спектроскопии (В. И. Кондратьев, В. М. Татевский, Л. В. Гурвич, А. А.. Мальцев и др.), м асс-спектрометрии (Л. И. Горохов, Л. И. Сидоров и др.), газовой электронографии и другими физическими методами. [c.50]


    В принципе это явление наблюдается в любой спектральной области, но наибольшее применение оно нашло в ИК-спектроскопии. Расстояние, на которое проникает излучение при внутреннем отражении, зависит от длины волны для средней ИК-области оно составляет 5 мкм и менее. Такое явление получило название нарушенного полного внутреннего отражения (НПВО). [c.123]

    Парамагнитный резонанс является составной частью спектроскопии, поскольку дает возможность определить положение энергетических уровней магнитных частиц. Диапазон применяемых в этом методе частот лежит далеко за пределами инфракрасного спектра и находится между 10 и 10 гц (область радиочастот), что позволяет находить расстояния между очень близкими энергетическими уровнями, которые не могут быть определены обычными спектроскопическими методами. Методы парамагнитного резонанса называют также методами радиочастотной спектроскопии. [c.60]

    Разрядную трубку, заполненную водородом (или гелием, неоном), закрепите в штативе в вертикальном положении и присоедините к концам вторичной обмотки индукционной катушки. Установите спектроскоп так, чтобы его щель находилась на небольшом расстоянии от разрядной трубки и была расположена параллельно капилляру трубки. Индукционную катушку присоедините к источнику постоянного тока и включите ток. [c.5]

    Методы инфракрасной, КР- и микроволновой спектроскопии представляют собой ценное средство исследования структуры молекул. Прежде всего это касается упомянутых в разд. 5.4 переходов зеемановских уровней. Расстояния между этими магнитными энергетическими уровнями в магнитных полях, создаваемых обычными лабораторными установками, соответствуют микроволновому диапазону для спина электронов, дециметровому и метровому диапазонам для ядерного спина. [c.69]

    Определение содержаний порядка 10 % и менее стало повседневной потребностью многих отраслей промышленности, поскольку содержание примесей на этом уровне стало определять качество продукции. Эти сложные задачи были решены путем использования новых методов разделения, концентрирования и определения. Наибольшее практическое значение приобрели экстракционные, хроматографические, оптические и электрохимические методы. Интенсивно развиваются в последнее время атомно-абсорбционная спектроскопия, рентгено-флуоресцентные и резонансные методы, кинетические методы анализа и некоторые другие. Современная аналитическая химия приобретает новые черты — она становится более экспрессной, точной, автоматизированной, способной проводить анализ без разрушения и на расстоянии. [c.12]


    В спектроскопии ПМР, когда протонные химические сдвиги сравнительно невелики, из-за перекрывания мультиплетных сигналов спектры часто бывают сложными. Как уже указывалось, один из возможных путей упрощения спектров не первого порядка (приближения их к первому порядку за счет увеличения разницы химических сдвигов сигналов) является повышение напряженности постоянного поля Н (т. е, использование соответствующего спектрометра). Другим путем упрощения является применение метода двухмерной спектроскопии ЯМР. При отсутствии таких возможностей иногда используется еще один путь — добавка небольших количеств комплексных соединений парамагнитных ионов лантаноидов с дикетонами так называемых сдвигающих реагентов. Эти реагенты могут индуцировать разные по величине сдвиги резонансных сигналов у различных групп протонов, увеличивая расстояния между сигналами и устраняя их перекрывание. Это происходит -в результате образования ионом лантаноида до- [c.33]

    Длиной химической связи называют расстояние между ядрами атомов в молекуле. Ее определяют экспериментально, при помощи молекулярной спектроскопии, дифракции рентгеновских лучей и др. [c.39]

    В спектроскопии часто применяют шкалу длин волн, однако при анализе расстояний между энергетическими уровнями основными являются пропорциональные друг другу шкалы частот, волновых чисел и энергии. Из табл. 6.2 следует, что величина ку мала в области радиочастот, увеличивается в оптической области, достигает Ю эВ для 7-излучения. [c.214]

    Линии в спектрах ЯМР твердых тел имеют довольно большую ширину (порядка 10—10 эрстед), поэтому этот раздел спектроскопии часто называют ЯМР широких линий . Метод позволяет изучать диполь-дипольное взаимодействие магнитных моментов ядер., относительную ориентацию ядер и расстояние между ними. [c.285]

    Для многих молекул однозначно определить структуру по кривой J r) не представляется возможным. Например, если в молекуле имеется несколько близких по величине межъядерных расстояний, которые на кривой /(г) проявляются в виде одного широкого пика сложной формы, или когда в молекуле наряду с тяжелыми атомами присутствуют легкие (водород), которые вследствие малого заряда ядра и, соответственно, малого числа электронов обладают небольшой рассеивающей способностью. Тогда обычно рассматривается несколько моделей структур, при этом в качестве структуры исследуемой молекулы принимается та модель, для которой наблюдается лучшее согласование экспериментальной и теоретической кривых лМ(х). Часто структурную задачу удается решить лишь при анализе электронографических данных совместно с данными других методов (ИК-и КР-спектроскопии, микроволновой спектроскопии). [c.282]

    Так, в работах /123, 124/ на основе данных электронной и /125/ рентгеновской дифракции бып сделан вывод, что для структуры углеводородных цепей в жидкой фазе характерна высокая упорядоченность. Упорядочшные области, образованные параллельными участками цепей в транс-конформациях, могут в случае н-алканов и полиэтилена простираться на расстояния 10 нм и занимать до 60% объема расплава. Однако последующие исследования функций радиального распределения, полученных методами электронографии и рентгенографии /125/, поставили под сомнение выводы авторов /123, 124/ и выявили лишь локальную упорядоченность в располож ии участков молекул, по сути дела ничем не отличающуюся от ближнего порядка в структуре простых низкомолекулярных жидкостей. Аналогичные выводы получены методами ИК-спектроскопии /106/ и методом малоуглового рассеяния нейтронов /107/. [c.159]

    Спектроскопы предназначены для визуального наблюдения спектра. В них за фокальной поверхностью на небольшом расстоянии от нее ставят сложную линзу с небольшим фокусным расстоянием — окуляр, через который наблюдают мнимое, увеличенное изображение спектра (рис. 69, а). Объектив и окуляр в спектроскопах образуют уже не камеру, а телескопическую систему. Она подобна оптическим системам телескопов и зрительных труб, предназначенных для наблюдения удаленных объектов, лучи от которых идут а) почти параллельным пучком. [c.97]

    Таким образом, для различных /=0, 1, 2... получаем в спектре ряд вращательных линий с частотами 25, 45, 65... расстояние между любыми соседними линиями одинаково и равно 25. Величина 5 зависит от момента инерции молекулы. Измеряя р(а СстО Я.Н Ие между двумя В(ра.щательны м и линиям и, можио найти момент инерции молекулы и, следовательно, межъядерное расстояние. Однако эти параметры молекулы для большинства молекул были 1найдены из кол ебательно-вр1ащательных и электронно-колебательно-вращательных спектров, так как чисто вращательный спектр молекул, как правило, лежит в области радиочастот. Техника радиочастотной спектроскопии была разработа- [c.196]

    И все же действительно тройные связи, как правило, более подвержены нуклеофильным и менее — электрофильным атакам, чем двойные связи, несмотря на более высокую электронную плотность в алкинах. Одно из объяснений этого заключается в том, что электроны тройной связи удерживаются более прочно из-за меньшего расстояния между атомами углерода поэтому атакующему электрофилу труднее оторвать пару электронов от такой связи. Данные спектроскопии в дальней УФ-области свидетельствуют в пользу этого вывода [71]. Другое возможное объяснение базируется на доступности свободной орбитали алкина. Показано, что я "-орбиталь изогнутых алкинов (таких, как циклооктин) имеет более низкую энергию, чем л -орбиталь алкенов, и предполагается [72], что линейные алкины могут принимать изогнутые конфигурации в переходных состояниях при взаимодействии с электрофилами. В тех случаях, когда электрофильное присоединение включает образова- [c.150]


    Диаграмма, показывающая, в какие состояния объединенного и разъединенных атомов переходит данная МО при изменении межъядерного расстояния, называется корреляционной диаграммой. Корреляционная диаграмма МО гомоядерной молекулы показана на рис. 31. Диаграмма построена на основании точных теоретических расчетов энергии МО гомоядерных молекул в зависимости от межъядерного расстояния i ab. Эти расчеты совместно с данными молекулярной спектроскопии дают следующий порядок МО для молекул, построенных из атомов первого и второго периодов  [c.124]

    Рентгена- и электронография, как уже упоминалось, дают самую непосредственную информацию о геометрии молекул— межатомных расстояниях и валентных углах. Векторный характер дипольных моментов позволяет делать важные выводы об ориентации полярных связей. Менее прямую, но практически очень ценную, часто используемую стереохими-ческую информацию несут ультрафиолетовая и инфракрасная спектроскопия. [c.86]

    JTpH обычных способах записи спектров ЯМР (на стационарных спектрометрах с полевой или частотной разверткой) использование ЭВМ для накопления спектров и улучшения чувствительности прибора мало эффективно из-за большой длительности снятия спектра. Действительно, одна развертка спектра в среднем занимает одну минуту. Это значит, что для улучшения отношения сигнал/шум в 10 раз нужно было бы совершить 100 разверток спектра, т. е. затратить 100 минут, причем за все это время магнитное поле спектрометра не должно сместиться на расстояние более половины ширины сигнала ЯМР, иначе процесс накопления спектров теряет всякий смысл. Выполнить это условие очень трудно и не всегда возможно. Поэтому накопители сигналов ЯМР имели ограниченное применение до тех пор, пока не появился путь радикального ускорения снятия отдельных neKTpogJ (см. Импульсные спектрометры и принципы Фурье-спектроскопии ), [c.47]

    Инфракрасный спектр позволяет узнать, какие функциональные группы содержат неизвестные сначала вещества. Малейшие нюансы в структуре молекулы, например природа позиционных или стереоизомеров, находят свое отражение в ИК-спектре, поэтому инфракрасная спектроскопия позволяет судить о силах связи, атомных расстояниях и валентных углах. Таким образом, ИК-спектр особенно пригоден для выяснения структуры соединений. Путем сравнения спектров неизвестного чистого компонента с предполагаемым чистым веществом можно однозначно идентифицировать данный компонент. [c.255]

    Межатомные расстояния (длины связей) в молекулах и кристаллах можно определить методами спектроскопии (включая микроволновую спектроскопию), рентгеноструктурного анализа, методами дифракции электронов и нейтронов, методом ядерного магнитного резонанса. Описание этих методов выходит за рамки данной книги. За последние сорок лет были определены длины связей для многих сотен веществ, и полученные значения оказались весьма полезными при рассмотрении электронных структур молекул и кристаллов. [c.163]

    Однослойные углеродные ианотрубки средним диаметром 1.2-1.4 нм были исследованы после обработки высоким давлением 9.5-15 ГПа и температурой до 1500°С. Были использованы спектроскопия КРС, рентгеновская дифракция, электронная микроскопия высокого разрешения. Также были измерены плотность образцов и их твердость. Рентгеновские дифракционные картины обработанньге давлением образцов, также как и исходного материала, не содержат отчетливых пиков, поскольку трубки не были упорядочены. В то же время, отсутствие характерного для аморфного углерода пика в области межплоскостных расстояний [c.62]

    ЯМР-Спектры. Характерные структурные особенности порфиринов делают их очень удобны ми объектами для изучения и идентификации с помощью ЯМР-спектроскопии. Расстояния между протонами ядра и за-местителями в ядре достаточно велики, что обусловливает слабое магнитное взаимодействие между ими (за исключением взаимодействия Нротойов в таких заместителях, как этильная, винилыная и другие группы). Это приводит к тому, что ПМР-апектр порфирина состоит в основном из синглето В и легко поддается расшифровке. [c.107]

    Донорные свойства непредельной связи и акцепторные свой-ства атакующей положительной частицы способствуют образованию я-комплексов, или комплексов с переносом заряда, что приводит к повышению дипольного момента либо появлению новых полос, определяемых УФ-спектроскопией. я-Комплекс способен распадаться на исходные компоненты, так как энергия связи в нем составляет лишь несколько кДж/моль и характеризуется значительно большими межатомными расстояниями, чем в а-комплексе. Образование комплексов зависит от наличия в реакционной смеси промоторов типа НС1 и Н2О, поскольку чистые олефины при контакте с безводными металлгалогенидами [c.64]

    Фазовый состав катализаторов. Для общего фазового анализа катализаторов используются в основном два метода — рентгенография и дифракция электронов (электронография), хотя для некоторых специальных задач могут применяться и другие физические методы — магнитной восприимчивости, термография, ЭПР, различные виды спектроскопии. Практически наиболее широко применяется рентгенография, основанная иа дифракции характеристического рентгеновского излучения на поликристаллических образцах. Каждая фаза имеет свою кристаллическую решетку и, следовательно, дает вполне определенную дифракционную картину. На дебаеграмме каждой фазе соответствует определенная серия линий. Расположение линий на дебаеграмме определяется межплоскостными расстояниями кристалла, а их относительная интенсивность эависит от расположения атомов в элементарной ячейке. Межплоскостные расстояния d вычисляются по уравнению Брэгга—Вульфа  [c.379]

    Из физико-химических (инструментальных) йй-бдов исследования, применяемых для установления молекулярной структуры органических веществ, наиболее часто используются оптическая спектроскопия (в ультрафиолетовой, видимой и инфракрасных областях спектра), спектроскопия ядерного магнитного резонанса (ЯМР), хроматография, метод дипольных моментов молекул, рентгеноструктурный анализ, молекулярная масс-спектроскопия и др. С помощью этих методов получают ценную информацию о взаимном расположении атомов в молекуле, их взаимовлиянии, внутримолекулярных расстояниях, поляризуемости связей, валентных углах и распределении электронной плотности и т. д. [c.123]

    Для удобства обслуживания ручной спектроскоп лучше укрепить в штативе. При этом у работающего со спектроскопом высвобождаются руки и он не сможет уже неосторожным движением переместить спектроскоп слишком близко к пламени горелки. Расстояние до пламени должно быть 8 см. Ширину щели можно регулировать о помощью винта с накатанной головкой. Оптимальную ширину щели можно определить только на практике. При работе со слишком широкой щелью цолучают широкие, нечеткие линии, частично перекрывающие другие слабые линии. Хотя слишком узкая щель и дает воз- Можность получить четкие линии, но она пропускает слишком мало света, поэтому наряду с другими могут не появиться и аналитически важные линии. [c.40]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    Строгого правила отбора для До колебательных переходов, как и в оптической электронной спектроскопии, в фотоэлектронных спектрах нет, и часто наблюдается хорошо развитая колебательная структура полос. Она видна, например, на рис. 1.5, где приведен фотоэлектронный спектр бромоводорода. Соответствующий более низкому значению энергии I дублет интенсивных узких пиков без колебательной структуры относится к ионизации с несвязывающей орбитали Вг и обусловлен спин-орбитальной связью (см. гл. VI 2.2). Полоса при более высоких энергиях / относится к ионизации со связывающей орбитали и расстояния между пиками ее структуры соответствуют частоте валентного колебания v(H—Вг) ионизованной молекулы. В ФЭС также справедлив принцип Франка —Кон дон а, т. е. наиболее вероятны вертикальные переходы. [c.145]

    Прямые доказательства существования иона Н3О+ получены при исследовании моногидратов серной, азотной, галогеноводородных и хлорной кислот методом протонного ядерного магнитного резонанса и рентгеноструктурным методом, а также при исследовании кислых растворов методами ИК-спектроскопии и измерения молярной рефракции. Ион Н3О+ представляет собой сильно сплюснутую пирамиду, в вершине которой расположен атом О углы при вершине равны 115°, длина связи О—Н составляет 0,102 нм, а расстояние Н—Н 0,172 нм. Ион Н3О+ окружен гидратной оболочкой, причем в первичной гидратационной сфере содержится, по-видимому, 3—4 молекулы воды. Чаще всего комплексу из Н3О+ и молекул воды приписывают формулу Н9О4+. Подвижность такого кластера вряд ли может превысить подвижности гидратированных ионов К+ и С1-. Поэтому для объяснения высокой подвижности ионов водорода предполагают непосредственный перескок протона от частицы Н3О+ к ориентированной соответствующим образом соседней молекуле воды  [c.84]

    Ядра, имеющие спин, равный нулю, не изменяют своего энергетического состояния в магнитном поле, поэтому не являются объектами исследования ЯМР-спектроскопии. Ядра со спином /2 (Н, С , Р ) во внешнем магнитном поле могут находиться в двух энергетических состояних, соответствующих ориентации магнитного момента ц параллельно приложенному полю В (магнитное квантовое число + /2) и антипараллельно полю В (магнитное квантовое число — /2) Расстояние между этими энергетическими уровнями зависит от величины магнитного момента ядра и направленности магнитного поля В  [c.250]

    Результаты расчета энергии электронов в молек-уле Нг представлены на рис. 1.31. Кривые 2 и 3 соответствуют выражениям (1.49) и (1.50), причем кривая, полученная с помощью симметричной волновой функции, имеет вид, хлрактерный, у1я устойчивой молекулы, - она показывает образование химической связи. Вычисленные по методу Гейтлера и Лондона равновесное расстояние между атомами водорода гц составляет 86,9 пм, а энергия молекулы о-3,14 эВ. Наиболее точный эксперимент (спектроскопия) дает Го-74,142 пм и Ео-4,1505 эВ. Принимая во внимание весьма приближенный характер использованной волновой функции для молекулы, составленной из неизменных волновых функций атомов и не учитывающей в явном виде взаимного отталкивания электронов, такое совпадение можно считать вполне удовлетворительным. [c.84]

    Уширение спектральных линий не всегда является недостатком реагентов в ЯМР-спектроскопии. Свойство некоторых парамагнитных ионов уширять пики в спектрах ЯМР нашло практическое применение. Существует целая группа так называемых лантаноидных уширяющих реагентов (ЛУР). Среди них лучшими считаются хелаты гадолиния 0(1 (ДПМ)з и 0(1 (ФОД)з. Применение их основано на том, что уширению подвергаются прежде всего пики тех ядер, которые ближе всего располагаются в аддукте к парамагнитному центру. Уширение определяется только расстоянием г, оно обратно пропорционально г . Например, если добавлять ЛУР к пиридину в СС14 и измерять спектр ПМР, то можно заметить, что вначале происходит уширение сигналов протонов 2- и 6-Н (сдвиг сигналов почти не происходит). При некоторой концентрации ЛУР сигнал становится настолько широким, что теряется в шумах. Затем начинает уширяться сигнал протонов 3- и 5-Н и уже при большем содержании реагента — сигнал наиболее удаленного от азота протона 4-Н, Хорошие результаты дает совместное применение ЛСР и ЛУР сначала спектр растягивают с помощью ЛСР, затем поочередно удаляют из него те или иные сигналы (обычно наиболее сдвинутые) добавками ЛУР, убеждаясь в правильности отнесений пиков. [c.112]

    Из рассмотренного выше очевидно, что мера сложности структуры зависит как от способа, согласно которому множество А было получено из структуры, так и от используемого для разбиения соотношения эквивалентности. Для данной химической структуры классы эквивалентности, полученные при разбиении множества вершин графов со стертыми атомами водорода, будут отличаться от непересекающихся подмножеств, полученных из множества вершин целого (без удаления атомов водорода) молекулярного графа. Ра-шевский [29], Трукко [30] и Мовшович [31] рассчитали информационное содержание графов со стертыми атомами водорода, в которых топологически эквивалентные вершины (т. е. вершины, составляющие орбиты группы автоморфизмов) размещались в одном и том же подмножестве. Кайер [32] рассчитал информационное содержание целого молекулярного графа, в котором множество его вершин было разбито на классы эквивалентности на основе операций симметрии и экспериментальных данных спектроскопии ЯМР. Эквивалентность вершин на основании геометрической группы симметрии, порядок расстояний в матрице расстояний и распределение связок ( onne tions), определенных как число пар смежных ребер, также использовались авторами в качестве критериев для определения соотношения эквивалентности на множестве вершин [3, 33, 34]. [c.211]

    Кроме химического сдвига ценную информацию о структуре органических соединений можно получить, изучая спин-спиновое взаимодействие ядер. Это явление в спектроскопии ЯМР обусловлено магнитным взаимодействием химически неэквивалентных ядер, которое осуществляется через электронные облака атомных связей н приводит к дополнительному расщеплению сигналов в спектре. Одиако это взаимодействие быстро исчезает с увеличением расстояния. Это взаимодействие лучше разобрать на примере 1,1,2-трнх-лорэтана  [c.89]


Смотреть страницы где упоминается термин Спектроскопия Р от расстояния: [c.94]    [c.4]    [c.675]    [c.355]    [c.286]    [c.154]    [c.166]    [c.9]    [c.69]    [c.419]    [c.38]    [c.73]    [c.153]    [c.76]    [c.28]    [c.268]   
Введение в курс спектроскопии ЯМР (1984) -- [ c.412 ]




ПОИСК





Смотрите так же термины и статьи:

Общие сведения по рентгеновской спектроскопии Межплоскостные расстояния кристаллов

Расстояние



© 2025 chem21.info Реклама на сайте