Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система вязкоупругие

    Хорошо известна в нефтяной промышленности система на основе бентонитовой глины и полиакриламида - ПДС, полимер-дисперсный состав [9]. Данная система прошла всесторонние лабораторные и промысловые испытания и в настоящий момент известны ее достоинства и недостатки. К достоинствам этой системы относятся высокие реологические характеристики (вязкоупругость) и, соответственно, высокая изолирующая способность. К недостаткам можно отнести высокую цену полиакриламида, а также грубую дисперсность, снижающую проникающую способность. Последнее обстоятельство может привести к малому охвату пласта по площади, если данная система будет задерживаться в зонах, прилегающих к нагнетательным скважинам, и не оказывать воздействия на удаленные зоны пласта. Причиной недостаточной дисперсности бентонита являются флокулирующие свойства полиакриламида, способствующие образованию крупных агрегатов по мостиковому механизму - за счет связывания частиц глины адсорбированными молекулами полимера. [c.61]


    Рост прочности у синтетического полиизопрена без полярных групп с большой молекулярной массой и узким молекулярно-массовым распределением можно достаточно полно объяснить в рамках теории вязкоупругости линейных полимеров [23]. Высокие напряжения при деформации сажевых смесей стереорегулярных модифицированных полимеров, как было показано, связаны с их способностью к кристаллизации. Роль стереорегулярности в кристаллизации полимеров очевидна [24, с. 145—173 25 26, с. 205— 220]. Полярные группы увеличивают общее межмолекулярное взаимодействие и вязкость системы, усиливают взаимодействие с наполнителем за счет образования химических связей и адсорбционного связывания, которое способствует и увеличению напряжения при деформации и собственно кристаллизации, а также повышают суммарную скорость кристаллизации вследствие ускорения ее первой стадии — зародышеобразования. [c.235]

    Набухание соответствует неравновесному переходному состоянию системы от чистых сополимера и растворителя к их полному взаимному смешению. Согласно законам термодинамики самопроизвольное течение изобарно-изотермических процессов сопровождается уменьшением термодинамических потенциалов, поэтому можно считать, что причиной сорбции является стремление системы к выравниванию химических потенциалов компонентов. Набухание — это замедленный процесс смешения двух фаз. Из-за разницы в подвижности молекул компонентов набухание осуществляется диффузией растворителя в сополимер, тогда как макроцепи весьма медленно проникают в объем, занятый чистым растворителем. Диффузии сопутствуют процессы взаимодействия молекул растворителя со звеньями макроцепей, перемещения структурных элементов сополимера, изменение конформаций макроцепей. Полимеры (сополимеры) по своим механическим (реологическим) свойствам обладают ярко выраженной анизотропией (продольные свойства близки к свойствам твердых тел, в то время как поперечные приближаются к свойствам жидкостей), вследствие чего занимают промежуточное положение между твердыми телами и жидкостями. Силовое поле, наводимое диффузией растворителя в полимер, частично запасается в последнем, что приводит к возникновению комплекса релаксационных явлений или явлений вязкоупругости. [c.296]

    Создание однородного поля напряжений в условиях сдвига на практике реализуется относительно легко, а в случае растяжения требует множества ухищрений, поэтому большинство исследователей работают в условиях сдвигового поля. Оно создается либо с помощью ротационных систем (например, вращения цилиндра в цилиндре или конуса относительно плоскости) или длинных капиллярных трубок. Ротационные приборы подробно описаны в работе [51]. В предыдущем параграфе настоящей главы рассматривались вязкостные характеристики полимерных систем и лишь вскользь упоминались вязкоупругие свойства. Однако практически любая полимерная система способна при определенных условиях воздействия проявлять высокоэластическое деформационное состояние, в котором у нее наблюдаются большие обратимые деформации. Необратимые деформации у полимерных тел могут возникать уже при температурах, близких к температуре стеклования, но там они не играют основной роли. [c.175]


    Введение эквивалентного механического сопротивления 2 есть подмена системы с распределенными параметрами (поверхности) системой с сосредоточенными параметрами (таким же, по сути, вибратором), обеспечивающей дополнительное затухание колебаний. Затем при рассмотрении волнового движения использованная система с сосредоточенными параметрами (тело Фойгта), в свою очередь, заменялась системой с распределенными параметрами другого типа — сплошной неограниченной вязкоупругой средой, а капиллярные волны — поперечными волнами сдвига. При этом появляющийся в рассуждениях модуль М% есть модуль сдвига гипотетической сплошной среды, в которой комплексное волновое число сдвиговых волн такое же, как было бы у поперечных капиллярных волн на рассматриваемой поверхности раздела фаз, если бы она оказалась неограниченной. Далее находилось выражение для механического сопротивления этой сплошной среды в случае А, по известным формулам, связывающим волновое число упругих волн и модуль сдвига для неограниченного волнового поля с механическим сопротивлением. Затем, возвращаясь на исходные позиции, в полученное уравнение на место Г подставлялись выражения для Г и Г" капиллярных волн, связанные с величиной межфазного натяжения. [c.18]

    Аномалии в механических свойствах полимеров достаточно подробно рассмотрены в работах [2—5, 16, 17, 43, 48, 49]. Причины, вызывающие эти аномальные отклонения, кроются в свойствах и строении цепных макромолекул, а также в развитии тех или иных надмолекулярных структур. Исходя из современных представлений релаксационных явлений полимерных тел [16, 18, 42, 48], можно утверждать, что рассматриваемой системе полимер — растворитель при ограниченном набухании полимера с пространственной структурой присущи свойства, характерные как для жидкости, так и для твердого тела,— так называемые вязкоупругие свойства. Свойства вязкоупругости проявляются различными путями. Тело, не являющееся идеально твердым, не достигает постоянных значений деформации при постоянных напряжениях, а продолжает медленно деформироваться с течением времени (ползти). С другой стороны, не являющееся полностью жидким, тело при течении под действием постоянного напряжения может накапливать подводимую энергию, вместо того чтобы рассеивать ее в виде тепла. [c.308]

    Диаграмма связи диффузионных и релаксационных явлений в материале сополимера, полученная простым присоединением диаграммы связи реологической модели вязкоупругого состояния полимера к фрагменту диаграмм связи, отображающего диффузионные явления сплошной среды, представлена на рис. 4.4. Построенная диаграмма замкнута относительно преобразований энергии в ней, увязывает макроскопическое движение элементарного объема системы с физико-химическими характеристиками ее макроструктуры. Поэтому синтез уравнений системы по ее диаграмме приводит к замкнутой системе уравнений процесса набухания сополимера с учетом движения реальной сплошной среды и пере- [c.309]

    Деформирование полимеров не описывается ни одной из этих крайних схем. Поэтому концентрированные растворы и расплавы полимеров характеризуются различными комбинациями упругих и вязких свойств. В соответствии с этим говорят о вязкоупругих, или упруговязких, системах. [c.162]

    По-видимому, оно обоснованно и для большинства полимерных расплавов, которые представляют собой вязкоупругие жидкости почти при всех условиях течения. Экспериментальное подтверждение отсутствия проскальзывания полимерных расплавов при низких скоростях течения было дано ден Оттером [121. Он использовал для наблюдений частицы гель-фракции, введенные в расплав полиэтилена, и изучал условия течения вблизи стенки. Эксперименты, в которых использовались трассеры большого размера, показали возможность появления проскальзывания на стенке [13, 14]. Часть этих наблюдений ден Оттер интерпретировал как артефакты, возникшие из-за несовершенства экспериментальной системы и больших размеров трассеров. Проскальзывание на стенке может наблюдаться также при высоких скоростях течения в области разрушения расплава (см. гл. 13). Этот случай типичен, например, для расплавов ПЭВД [15]. Явление, которое имеет место при повышенных скоростях течения, — стик—слип (отлипание—прилипание) заключается в том, что под действием растягивающих напряжений расплав отрывается от стенки (силы адгезии преодолеваются) и прилипает обратно, когда напряжения восстанавливаются [14]. В любом случае, особенно при скоростях ниже области разрушения расплава, используют условие прилипания. [c.115]

    Текучесть системы зависит от вязкости вещества, характеризующей его внутреннее трение. Вязкое течение, наблюдаемое для веществ, находящихся в различных агрегатных состояниях, можно рассматривать как направленную самодиффузию под действием механического поля напряжений. Системы, которые одновременно могут проявлять и текучесть и упругость, называются вязкоупругими. В текучем состоянии вязкость различных систем может меняться в очень широких пределах (от 10- до 10 Па-с). Наибольшее значение вязкости 10 Па-с соответствует переходу низкомолекулярной системы из жидкого в твердое стеклообразное состояние. [c.146]


    Анализируя с позиций термодинамики равновесные процессы деформации эластомеров, следует иметь в виду, что понятие равновесный относительное, если его характеризовать с точки зрения времени, необходимого для достижения равновесия. Так, в системе с подвижными молекулами (или сегментами) равновесие устанавливается достаточно быстро, а в системе с малоподвижными элементами структуры может вообще не быть достигнуто. Это становится особенно ясным при учете представлений о вязкоупругости чем выще вязкое сопротивление перемещению сегментов, тем медленнее развивается эластическая деформация. [c.117]

    Технология СПС является логическим продолжением традиционного метода полимерного. заводнения, которое обладает высокой эффективностью на вторичной стадии нефтедобычи. Однако, на завершающей стадии разработки нефтяных месторождений, когда в коллекторе образовались промытые водой каналы от нагнетательных к добывающим скважинам, реологические свойства растворов полимера не обеспечивают существенного прироста в добыче нефти. Сшивка раствора полимера значительно усиливает его вязкоупругие свойства, за счет чего достигается эффективная изоляция высокопроницаемых интервалов и увеличение охвата пласта заводнением. В работе рассматривается математическое моделирование вытеснения нефти оторочкой сшитой полимерной системы. Компонентами водной фазы являются сшитая полимерная система и несшитый полимерный раствор. В математической модели учтены следующие [c.58]

    Анализ проведенных исследований показал, что в целом решается комплекс проблем по повышению нефтеотдачи от фундаментальных исследований физико-химических основ подбора химреагентов, изучения свойств и вытеснения нефти до опытнопромышленных работ и внедрения разработок. Проведен комплекс работ по созданию химических композиций на основе полифункциональных органических соединений с регулируемыми вязкоупругими, вытесняющими и поверхностно-активными свойствами с целью избирательного воздействия на нефтенасыщенный пласт в тex юлoгияx повышения нефтеотдачи и обработки призабойной зоны пласта применительно к исследуемым месторождениям Республики Башкортостан. Теоретически разработана и экспериментально подтверждена концепция эффективного применения полифункциональных реагентов, обладающих свойством межфазных катализаторов. Изучен механизм взаимодействия полифункциональных реагентов с нефтью и поверхностью коллектора с использованием различных методов спектрофотометрии. Выявлены основные закономерности, происходящие в пласте под воздействием химреагентов. Установлено, что при взаимодействии ПФР с металлопорфиринами нефтей происходит процесс комплексообразования по механизму реакции экстра координации. Образование малоустойчивых экстракомплексов приводит к изменению надмолекулярной структуры МП и изменению дисперсности системы. Проведены сравнение реакционной способности различных ПФР и расчет констант устойчивости экстракомплексов. Показано, что наибольшей комплексообразующей способностью обладают ими-дозолины. Определены факторы кинетической устойчивости различных нефтей до и после обработки реагентами. Установлено, что реагенты уротропинового ряда обладают большей диспергирую-и ей способностью, чем имидозолины. Уменьшение размера частиц дисперсной системы вызывает снижение структурной вязкости нефти, что в конечном счете положительно сказывается на повышении нефтеотдачи. Показано, что вязкость нефти после контакта с водными растворами ПФР снижается в 3-8 раз. Оптимальные концентрации реагентов зависят как от структуры применяемого ПФР, так и от состава исследуемой нефти. [c.178]

    В результате опытов было установлено, что добавки ПАВ данной концентрации не приводят к существенному изменению реологических характеристик вязкоупругой системы. [c.108]

    Для расчета абсолютного уровня температурных полей в случае применения степенного закона необходима, по нашему мнению, количественная оценка соотношения вязкой (необратимой, диссипативной) и упругой составляющих энергии, затрачиваемой на деформацию полимера. Это можно выполнить, если исходить из соотношения между средним временем релаксации и временем переработки полимера. Тогда решение системы (2)—(4) с учетом уравнения (6) возможно во всех случаях, кроме тех, когда вязкоупругость полимеров приводит к значительной аномалии гидродинамической обстановки процесса, как это бывает, например, в дисковых и комбинированных экструдерах. Тогда система уравнений (2)—(4) должна решаться совместно с уравнением состояния (7) или ему подобным. [c.99]

    По современным представлениям фильтрационное сопротивление системы полимер - пористая среда определяется вязкоупругими эффектами, возникающими при достаточно быстром движении жидкости через сужения и расширения пор или молекулярно-поверхностном взаимодействии с горными породами. Однако учет этих явлений в буровой практике при корректировке рецептуры подобных систем затрудняется тем, что стандартные методики исследования эксплуатационных параметров промывочных жидкостей ориентированы на более [c.3]

    Возникновение колебаний в мышце может определяться не линейностью нестационарных кинетических уравнений, не содержащих упругости в явном виде. Возможность колебаний обусловлена в этом случае кинетикой замыкания и размыкания мостиков. С другой стороны, сам мостик является вязкоупругой системой. Напряжение, генерируемое замкнутым мостиком, может изменяться шаг за шагом, в зависимости от угла, под которым головка ТММ S-1 располагается относительно актина,, а также от степени растяжения S-2. Переходы между этими шагами влияют на быстрый нестационарный ответ мышцы. Таким образом, причина колебаний при быстром отпуске состоит в упругой деформации самого мостика. Это наиболее правдоподобное,, но еще не доказанное предположение. [c.410]

    Релаксация — это процесс перехода системы из неравновесного состояния в равновесное. При действии напряжения равновесным становится деформированное состояние и, следовательно, время, необходимое для перехода в это состояние, по определению является временем релаксации. Необходимо, однако, уточнить, что в данном случае релаксирует деформация, а не напряжение. Для вязкоупругой жидкости та же величина I имеет смысл времени релаксации напряжений, по истечении которого уже не требуется воздействие напряжения для сохранения неизменной, первоначально заданной деформации. [c.818]

    Механические свойства при объемном сжатии также зависят от времени и характеризуются системой вязкоупругих функций, описывающих ползучесть объема B(i), релаксацию давления К((), динамические объемные модули К и К" и дина.мические объемные податливости В и В". Однако привести систему графиков, иллюстрирующих особенности этих функций, не представляется возможным вследствие малочис-ленности подобных данных. [c.55]

    Изменение толщины кожуха выявляет слабую зависимость коэффициентов демпфирования от данного параметра, с увеличением толщины кожуха до определенного значения определяющие коэффициенты демпфирования возрастают, а затем изменяются незначительно, уменьшаясь с дальнейшим утолщением кожуха. Этот факт свидетельствует о том, что на демпфирующие характеристики структурно-неоднородной системы основное влияние оказывает не количество вязкоупругого материала, а наличие в системе близких собственных частот. Чтобы добиться максимального демпфирования колебаний, необходимо такпм образом подобрать нсесткость кожуха, чтобы его основные частоты были близки тем собственным частотам стержня 7, которые требуется задемпфировать. Скорость затухания свободных колебаний можно увеличить за счет выбора стеклопластиков с оптимальным значением модуля Ег, который зависит, в частности, от схемы армирования, вида нанолнителя, степени наполнения, материала стеклопластикового кожуха, а также путем выбора оптимального кожуха. [c.151]

    При малых деформациях уравнение (6.3-13) превращается в уравнения ДВУ (6.3-8) и (6.3-9) ( [п " V). При больших деформациях, вводя в (6.3-13) выражение G (/—/ ) конкретного вида, можно получить обобщенные модели линейной вязкоупругости в деформируемой системе координат. Если, как и ран11ше, использовать один максвелловский элемент, можно получить следующий аналог (6.3-10)  [c.144]

    VII.17.21. В приборе дисперсная система подвергается периодической деформации по синусоидальному закону с заданной амплитудой Va ч частотой ш. Возникающие при эгом пттряжения т измеряются и также оказываются синусоидальными с амплитудой и сдвигом по фазе 9, т. е. T = Xa(sin(i)i-i-0) при Y = VaSIn i)i. Опрсдсличь, кзкие свой-ства —вязкоупругого твердого тела или вязкоупругой жидкости — преобладают, и вычислить вязкость т] и модуль упругости G. [c.241]

    Для характеристики особенностей строения макромолекул полимеров и их взаимодействия чаще всего проводятся исследования физических свойств разбавленных полимерных растворов разной концентрации. Вязкость, измеряГемая в обычных условиях, относится к почти предельно разрушенным пространственным структурам, обладающим в таких разбавленных растворах полимеров весьма малой прочностью. Случаю, когда практически отсутствует пространственная структура в системе, соответствует так называемая удельная вязкость (по терминологии Штаудингера). Исследования вязкоупругих свойств растворов полимеров в условиях [c.154]

    Реология изучает течение жидкостей, в которых наряду с вязкой существует и заметная обратимая деформация. Название реология происходит от греческого слова peo , что означает течение , течь . Предметом изучения реологии являются не только полимеры, но также и неполимериые вязкоупругие системы. Одним из наиболее знакомых нам примеров такого рода является тесто. Кусок теста можно растянуть и, отпустив, наблюдать его сокращение (обратимая деформация). Однако он при этом не восстановит форму полностью в нем сохранится остаточная деформация — необратимая деформация вязкого течения. [c.156]

    Принятые в табл. 1.2 -1.3 сокращения по технологиям ЩСПК + ГОК (щелочной сток производства капро-лактана) ГОК - гелеобразующий компонент ВУС - вязкоупругий состав ОЭЦ - оксиэтилцеллюлоза ПДС - полимердисперсные системы ВДС - волокнистодисперсные системы. [c.16]

    Очень важным свойством жидкостей является упругость. В первом приближении наличие упругости в жидкости можно наблюдать при перемешивании на ротационной мешалке. Для вязко-упругой системы наблюдается подъем жидкости по стержню мешалки (эффект Витценберга). Реологическое поведение вязкоупругих систем описывается моделями  [c.49]

    Реологическое поведение вязкоупругих жидкостей далеко не всегда удовлетворяет модели Максвелла, что связано, например, с разрушением имеющейся в системе структуры (или с конформаци-онными изменениями в случае полимеров) с увеличением скорости сдвига. При этом модуль Гука и коэффициент вязкости уже не являются постоянными, и метод Кросса оказывается неприменим. [c.55]

    Для экспрессной оценки упругих свойств растворов полиакриламида авторы используют метод вытягивания нити, реализованный с помощью прибора конструкции ИПНГ РАН. Метод основан на явлении прядомости вязкоупругих жидкостей. Благодаря наличию упругих свойств растворы полимеров способны образовывать сравнительно долгоживущие нити, скорость утончения и время жизни которых зависит от времени релаксации системы. К достоинствам метода можно отнести его экспрессность и достаточную точность недостатком является условность определяемого времени жизни нити. При этом эффект прядомости, то есть образования долгоживущих нитей, проявляется в довольно узком диапазоне вязкостей и упругостей сшитых растворов, когда жидкость еще сохраняет текучесть. Тем не менее данный метод весьма информативен в тех случаях, когда не представляется возможным измерить время релаксации в условиях чистого сдвига или вычислить из данных ротационной вискозиметрии. [c.55]

    Одним из путей увеличения технологической эффективности полимерных систем является их модификация путем введения добавок ПАВ в раствор полимера [6-7]. Подобные сложные композиции сочетают в себе нефтеотмывающие свойства, присущие ПАВ, и изолирующие свойства вязкоупругих полимерных растворов. Если имеет место взаимодействие макромолекул полимера и молекул ПАВ, то возможно также улучшение реологических характеристик системы. [c.104]

    Технология СПС на основе частично гидролизованного ПАА и солей хрома широко внедряется на многих нефтяных месторождениях России. Дальнейшее ее совершенствование может вестись путем введения добавок ПАВ, влияющих на вязкостные свойства СПС, представляется новым направлением и весьма перспективным, так как подобные сложные система будут сочетать нефтеотмывающие свойства, присущие ПАВ, с изолирующими свойствами вязкоупругих полимерных растворов, и их новизна подтверждается результатами патентных исследований. [c.120]

    Измерения времен Р. используют в хим. кинетике для изучения процессов, в к-рых быстро устанавливается равновесие (см. Релаксационные методы). Механическая Р. проявляется в уменьшении во времени напряжения, создавшего в теле деформацию. Механическая Р. связана с вязкоупругостью, она приводит к ползучести, гистерезисным явлениям при деформировании (см. Реология). Применительно к биол. системам термин Р. иногда используют для характеристики времени жизни системы, к-рая к моменту физиологической смерти приходит в состряние частичного равновесия (квазиравновесия) с окружающей средой. В прир. системах времена Р. разделены, сильными неравенствами расположение их в порядке возрастания или убывания позволяет рассматривать систему как последовательность иерархич. уровней с разл. степенью упорядоченности структуры (см. Термодинамика иерархических систем). [c.236]

    Капиллярный реометр Реограф 2001 фирмы Геттферт (Германия) предназначен для оценки реологических свойств резиновых смесей. Вращение шагового двигателя усиливается и преобразуется в линейное перемещение поршня, обеспечивая диапазон скорости сдвига от 10 до 10 с . Управление системой электрического и гидравлического привода осуществляется микропроцессором, который автоматически следит за показаниями давления и хранит данные установившегося режима течения резиновой смеси, благодаря чему уменьшается влияние оператора. После завершения каждой серии испытаний компьютер по специальной программе вычисляет все измеряемые и рассчитываемые данные (в том числе, для определения истинной вязкости производится расчёт поправок Бэгли и Рабиновича для эффективной вязкости), данные о вязкоупругости, измерения разбухания экструдата. [c.450]

    Принцип суперпозиции Больцмана применим для всех полимеров, структура которых не зависит от приложенных сил и ие меняется во времени. Ои позволяет описывать линейное вязкоупругое поведение системой дифференциальных уравнений вида La = Dt,, где L и D—линейные дифференциальные операторы по времени. Это выражение эквивалентно описанию вязко-упругого поведения с помощью моделей, состоящих из упругих пружии с различными модулями E и вязких элементов с вязкостями т) (рис. IX. 2). Пружинам приписываются механические свойства идеальной упругости — закон Гука, а вязким элементам — свойства идеально вязкой жидкости — закон Ньютона. [c.214]

    Таким образом, представления Джексона и Колдуэлла об антипластификации и антипластификаторах следует признать ошибочными. На самом деле один и тот же полярный пластификатор при введении в жесткоцепной полярный полимер будет приводить к ослаблению энергии межмолекулярного взаимодействия, если система полимер — пластификатор находится в высокоэластическом состоянии, и к усилению эффективности межмолекулярного взаимодействия, если эта система находится в стеклообразном состоянии. Такой двоякий характер влияния пластификатора на вязкоупругое поведение полимеров аналитически описан Перепечко в рамках феноменологической теории [134—136], хорошо корре-лируюш,ей с экспериментальными данными. [c.162]

    Диффузионные явления на границе раздела адгезив — субстрат. Установление контакта между разнородными полимерными материалами во многих случаях не ограничивается микрореологическими процессами, смачиванием и сорбцией полимерных молекул на твердой или вязкоупругой поверхности Иногда в системе проходят более глубокие изменения, приводящие к частичному размыванию или исчезновению границы раздела фаз вследствие протекания процесса диффузии, интенсивность которой зависит от взаимной растворимости полимеров. Одностороннее или взаимное проникновение фаз должно обеспечить более полный молекулярный контакт или даже химическое связывание по активным центрам разнородных молекул и соответственно ббльшую прочность связи. На- [c.91]

    Туннель, по которому происходит рептация, существует до тех пор, пока в нем находится полимерная молекула. После того как молекула выдернута из туннеля, он распадается и начинается формирование новой системы туннелей вокруг каждой макромолекулы. Очевидно, что направления и конфигурации туннелей случайны и поэтому не каждый из них имеет благоприятную для рептации фор.му и направление. В движении под действием некоторого деформирующего усилия в каждый момент времени участвует только часть молекул — та, которая случайным образом приобрела благоприятную конфигурацию, т. е. оказалась в туннеле подходящей формы и направления. Таким образом, поочередность движения распросфаияется не только на отдельные участки цепи, но и на перепутанные полимерные клубки в целом. В соответствии с этим, в рамках модели вязкоупругих жидкостей, полимер или [c.743]

    Для оценки ползучести целесообразно использовать обобщенную модель Кельвина — Фойхта [164]. Она состоит из группы простейших элементов, соединенных последовательно, причем возможны некоторые модификации, например дополнительное последовательное присоединение элементов Гука, и Ньютона. Возникающая при этом вязкоупругая система напоминает модель Бюргерса, отличаясь от нее большой универсальностью в описании высокоэластической составляющей общей деформации. [c.42]

    Прп взаимодействии алкоксидов бора с алкоголятами металлов в инертных растворителях (алифатические и ароматические углеводороды, галогенпроизводные алифатических углеводородов) образуются вязкоупругие системы даже при очень малых концентрациях (до 0,001 моль/л). В условиях калориметрического эксперимента это приводит к неполиому протеканию реакции взаимодействия колгиоиентов. Чувствительность метода микрокалориметрии позволяет работать с концентрациями меньше 0,001 моль/л, однако при этом значительно возрастает ошибка эксперимента, связанная с приготовлением растворов и влиянием сравнимых концентраций примесей. [c.71]


Смотреть страницы где упоминается термин Система вязкоупругие: [c.83]    [c.145]    [c.146]    [c.154]    [c.141]    [c.49]    [c.89]    [c.371]    [c.149]    [c.15]    [c.205]    [c.414]    [c.86]   
Биофизика (1983) -- [ c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругость

Вязкоупругость полимерных систем

Изменение вязкоупругих свойств системы при ценообразовании

Низкомолекулярные вязкоупругие системы

Примеры вязкоупругих свойств полимерных систем

Релаксационные (вязкоупругие) свойства текучих полимерных систем

Целлюлоза вязкоупругая система



© 2024 chem21.info Реклама на сайте