Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытий характеристики прочность

    Одной из основных характеристик качества гальванических покрытий является прочность сцепления покрытия с основным металлом. [c.238]

    Применение метриола улучшает качественную характеристику смол, придает покрытиям большую прочность, гибкость, теплостойкость и устойчивость к химическим воздействиям. [c.202]

    Наиболее характерными видами деформации элементов эмалированной аппаратуры являются растяжение и изгиб. Так как разрушение при растяжении покрытий происходит при меньших значениях предельных напряжений, чем при изгибе, то согласно ОСТ 26-01-750—73 Покрытия стеклоэмалевые. Методы механических испытаний на растяжение за основную характеристику прочности композиции металл — эмаль приняты предельные напряжения при растяжении, зависимость которых от температуры эксплуатации для серийно изготовляемых эмалей и сталей приведена на рис. 1 и 2. [c.5]


    Существенной характеристикой эмалевого покрытия является его прочность на удар. Из-за трудности определения напряжений, возникающих в композиции металлическая основа — эмалевое покрытие при ударе, данные, полученные при испытании на удар, сопоставимы только в случае применения одинаковых приборов и образцов и носят сравнительный характер. Вследствие своей простоты эти испытания широко применяются для контроля качества эмалевого покрытия. Ударная прочность покрытия существенно зависит от формы поверхности. Например, ударная прочность покрытия на выпуклой поверхности в 1,5—3 раза ниже, чем на плоской и вогнутой. [c.6]

    Для количественной оценки прочности материалов используют различные характеристики. Прочность материалов, применяемых в качестве противокоррозионных покрытий, оценивают в основном по разрушающему напряжению (а) при сжатии, растяжении, изгибе, а также но твердости. Следует различать кратковременную и длительную прочность. Кратковременная прочность характеризуется напряжением, вызывающим разрушение образца при кратковременном нагружении при заданной скорости нагружения. Длительная прочность характеризуется напряжением, вызывающим разрушение об- [c.18]

    Наполнители представляют собой белые или слабо окрашенные природные, реже синтетические (осажденные), неорганические порошкообразные вещества кристаллического иногда аморфного строения со сравнительно низким показателем преломления (1,4—1,75). Он мало отличается от показателя преломления масел и смол, поэтому наполнители не обладают укрывистостью в среде неводных пленкообразующих. В водных красках некоторые наполнители после улетучивания воды имеют достаточную укрывистость и могут играть роль пигментов. Наполнители значительно дешевле большинства пигментов и часто добавляются в лакокрасочные материалы для снижения их стоимости. Однако наряду с этим можно путем тщательного подбора соответствующих пигментов и наполнителей значительно улучшить такие характеристики красок, как вязкость, розлив, уменьшить оседание пигментов, повысить механическую прочность и атмосферостойкость лакокрасочных покрытий. В красках с высокой объемной концентрацией пигмента можно сохранить достаточную укрывистость, заменив часть пигментов наполнителями, и тем самым значительно снизить стоимость красок. Наполнители являются активной составной частью сложных лакокрасочных систем и оказывают существенное влияние не только на физико-химические и технические свойства красок и покрытий (твердость, прочность, теплопроводность, теплостойкость, стойкость к действию агрессивных сред диэлектрические, фрикционные и другие свойства), на и на распределение пигмента в пленкообразующем и структурообразование лакокрасочных Систем. Механизм взаимодействия пленкообразующего с наполнителем определяется химической природой этих материалов и характером поверхности наполнителя. Наибольший эффект достигается при возникновении между наполнителем и пленкообразующим химических связей или значительных адгезионных сил. Наполнители, способные к такому взаимодействию с полимерами, называют активными, а не взаимодействующие с полимерами — инертными. [c.404]


    Внутренние напряжения, возникшие в результате обработки, ухудшают в большинстве случаев эти свойства. Далее при гальванической обработке необходимо учитывать возможные изменения структуры стали, вызванные термической обработкой (закалкой, цементацией, отпуском и др.), так как характеристики прочности гальванически обработанных материалов почти во всех случаях с повышением напряженности структурной решет-кп ухудшаются. Кроме перенапряжений структурной решетки, обусловленных термической обработкой, к внутренним напряжениям приводят также нарушения в строении материала, вызванные местными пороками, посторонними включениями и т. д. Изменение структуры материала может быть вызвано и механическими нагрузками от наклепа в процессе изготовления. Так, изготовленный с помощью холодной обработки корпус (например, отражатель прожектора) из относительно однородной а-ла-туни испытывает большие внутренние напряжения, вызванные растяжением его структурной решетки, которые отрицательно влияют на строение и технологические свойства покрытия. При напряженном режиме обработки также возникают внутренние напряжения, которые как по величине, так и по направленности мало изучены. При больших давлениях резания обрабатываемая поверхность подвергается холодной деформации и наклепу. Наклеп поверхности, происходящий при шлифовании с чрезмерно большой подачей, дополненный местным перегревом, приводит иногда к шлифовальным трещинам, вызванным неподдающимися учету нагрузками, и почти всегда вредно действует на последующую гальваническую обработку. [c.153]

    При расчете напряжений жесткостью эмалевого покрытия пренебрегают, т. к. толщина покрытия s k мала по сравнению с толщиной покрываемого металла Sm (отношение Sok/sm 0,1 4-0,2). Соответствующая погрешность располагается в запас расчета и не превышает 20%. Характеристикой прочности эмалевого покрытия обычно служит предел упругости эмалированной стали <То,оо5, зависящий от материала покрытия, технологии эмалирования, марки стали и рабочей температуры сосуда (табл. 18). Достижение напряжениями в эмалированной стали предела упругости отвечает началу разрушения эмалевого покрытия. Образующиеся при этом в пограничном слое металла полосы Чернова — Людерса представляют собой как бы дефекты на внутренней поверхности покрытия, вызывающие концентрацию напряжений, и как следствие этого исчерпание когезионной прочности покрытия. [c.91]

    В рецептурах кремнийорганических эмалей в качестве наполнителей обычно используются слюда, тальк, асбест. Изучено влияние этих наполнителей на такие свойства покрытий на основе полиорганосилоксанового лака КО-08, как модуль упругости Е, термический коэффициент расширения а, температура стеклования Тс и механические характеристики — прочность Ор, удлинение при разрыве ер, внутренние напряжения Ов. Для [c.44]

    Для лент общего применения в большинстве требований указываются два или три стандарта качества, приводя прочность покрытия на разрыв, удлинение при разрыве и, в некоторых случаях, износостойкость. Полимерные материалы, применяемые в смесях покрытия для выполнения данных требований, — это обычно НК и БНК. Натуральный каучук выбирается за более высокие качества там, где требуются износостойкость и стойкость к порезам. Износ ленты, как и износ шин, это свойство, которое нельзя оценить в лабораторных условиях, все попытки установить регулятивные нормы на износ не удались. Износ, возникающий на вращающемся барабане или диске — это мера потерь объема исключительно в контролируемых условиях такое испытание не может скопировать условия на месте эксплуатации, поскольку характеристики материала, вес, частота остановок конвейера и неблагоприятные условия окружающей среды меняются изо дня в день и от места к месту. Кроме того, в технологии резины действует правило чем сложнее стандарт качества, тем ниже общие характеристики. Прочность покрытия на разрыв, износоустойчивость и адгезия обычно ниже при более высоких масло-, огне- и теплостойкости. [c.238]

    Адгезия (прилипаемость) изоляционного покрытия к металлу трубы является его важной характеристикой. Адгезия покрытия к металлу определяется адгезионной прочностью соединения. Адгезионная прочность сцепления покрытия с металлом трубы косвенно определяет защитную способность покрытия. Адгезионная прочность обеспечивается абсорбционной, электростатической или химической связью покрытия с наиболее химически активными центрами металла трубы. Во всяком случае, чем больше активных центров металла вступили в адгезионную связь (что определяет адгезионную прочность данного покрытия), тем меньше вероятность коррозионного процесса. Другое объяснение зависимости защитных свойств покрытия от адгезионной прочности заключается в том, что для обеспечения высокого значения последней необходимо, чтобы покрытие как можно более плотно прилегало к металлу трубы. Таким образом, создаются условия, при которых невозможно накопление электро.чита на поверхности металла под покрытием, что обеспечивает, в свою очередь, невозможность протекания коррозионного процесса. [c.19]


    Материал покрытия должен обладать высокой адгезионной способностью иметь необходимую прочность, чтобы выдержать нагрузки, возникающие при давлении грунта иметь технические характеристики, совместимые со средствами обеспечения катодной защиты обладать низкой абсорбционной способностью. [c.36]

    Скорость разрушения битумов. Как указывалось ранее, большая часть работ по изучению скорости разрушения битумов проводилась методом захоронения й землю или модификацией этого метода. В течение длительного времени скорость микробиологического действия по этим методам определялась либо визуально, либо по изменению физических свойств или абсолютной вязкости. Эти испытания достаточно хороши для определения прочности битума, о почти не дают информации о механизме микробиологического действия. Гаррис [8] испробовал метод, предназначенный для определения характеристик роста различных организмов, на битумах для покрытия трубопроводов в какой-то степени этим методом можно установить скорость разрушения битума. В табл. 5.2 показано развитие бактериальных культур на битуме для покрытия трубопроводов [8]. от битум служил единственным источником энергии для микроорганизмов. Рост был определен после инкубационного периода в течение 5 дней при 30 °С. [c.181]

    Выбор наполнителя диктуется областью применения и специфическими эксплуатационными свойствами. В мастики, наносимые кистью, вводят наполнители в небольших концентрациях, достаточных только для получения требуемых эксплуатационных характеристик. Быстротвердеющие мастики содержат больше наполнителя, и часто в них вводят также коротковолокнистый асбест. Последний способствует образованию более толстых пленок и придает им хорошую когезионную прочность. Добавка асбеста в защитные покрытия позволяет, помимо упрочнения этого покрытия, регулировать толщину пленки, текучесть битума и его способность к сползанию в присутствии асбеста лучше заделываются трещины и шероховатости. В гидроизоляционных композициях также обычно содержатся относительно большие количества асбестового волокна, благодаря чему достигается необходимая прочность битума и предупреждается его сползание с вертикальных поверхностей. [c.209]

    В то же время следует отметить, что количественных требований к величине адгезии, например битумных покры ий к металлу, ранее не было установлено. Была сделана попытка установить нижний предел адгезии стандартного битумного покрытия к поверхности трубопровода, исходя из его реологических свойств, прочностных характеристик, а также воспринимаемых им усилий грунта. Мы исходили из того, что величина адгезии Л а не дол на быть меньше когезионной прочности покрытия при всех этих воздействиях (ТУд Л к). Из исследований следует, что когезионная прочность покрытия при положительных температурах нарушается под действием постоянной нагрузки 2—10 Н/см и 20—25 Б/см при отрицательной температуре (см. рис. 6.2). Сцепление покрытия с грунтом N при отрицательной температуре составляет (см. гл. 3) 30— 40 Н/см при —5° С и 90—120 Н/см при температу]>е ниже —5° С. Очевидно, величина сцепления (адгезии) покрытия с поверхностью трубы должна быть не менее названных величин, т. е. Же N3 Ма Как показали лабораторные (см. табл. 6.5) и производственные исследования, сцепление стандартного битумного покрытия при нормативном технологическом регламенте производства изоляционных работ при положительной температуре составляет 40—50 Н/см , а при отрицательной — до 200 Н/см . При отрицатель- [c.152]

    Таким образом, сравнивая свойства битумо-минеральных, битумо-резиновых и битумо-полимерных мастик исследуемых составов и полученных термомеханическим способом, следует подчеркнуть, что введение наполнителей улучшает структурно-механические характеристики мастик, их технологические и эксплуатационные свойства. При положительных эксплуатационных температурах битумо-минеральные покрытия имеют меньшую упругость и теплостойкость чем битумо-резиновые, а последние — меньшую, чем битумо-ноли-мерные. При технологических температурах тот же порядок сохраняется по характеристикам релаксационной вязкости и прочности структуры. [c.158]

    Другой важной задачей Является расширение температурного диапазона работоспособности вязких битумов с повышением их тепло- и трещиностойкости. В связи с увеличением относительной доли тяжелых грузовых машин и с повышением нагрузки на ось, износ несущей поверхности дорожного покрытия за последние десятилетия неуклонно возрастает. Следовательно, главная цель работ по повышению технических характеристик тех слоев, где в качестве связующего материала применяется битум, заключается в том, чтобы увеличить их прочность, сопротивление образованию трещин и выбоин и повысить их упругость при низких температурах. [c.49]

    Конструкция бутербродного типа (рис. 29, Г) появилась во Франции в начале 80-х годов и характеризуется низким расходом вяжущего, прочностью слоя вяжущего " и хорошими дренирующими характеристиками слоя поверхностной обработки. В этом случае первый слой щебня формирует своеобразный впитывающий экран, предотвращающий потенциальный выход битума на поверхность, и вдавливается в верхний слой асфальтобетонного покрытия, удовлетворяя потребность в минерале. Технология производства работ и средние дозировки материалов при устройстве поверхностных обработок описанным способом следующие  [c.148]

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]

    Реология битумов изучена недостаточно. Основными показателями, определяемыми при исследовании реологических свойств дорожных битумов в диапазоне температур приготовления и укладки смеси, а также эксплуатации покрытия от —60 до 4-180 °С, являются вязкость и деформативные характеристики битума (модуль упругости, модуль деформации и др.). Поведение битумов под действием внешних деформирующих сил определяется комплексом механических свойств, которые можно изучать, руководствуясь работами П. А. Ребиндера и его школы [205]. К этим свойствам относятся вязкость, упругость, пластичность, хрупкость, усталость (изменение свойств под воздействием нагрузки), ползучесть и прочность. Каждое из этих свойств зависит от температуры и характера напряженного состояния и связано с межмолекулярными взаимодействиями и наличием структуры [207]. [c.58]

    Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом. [c.129]

    Мы изучали поведение углеродных волокон на основе полиак-рилонитрила, покрытых медью и никелем. Покрытия наносили химическим методом, то есть осаждением из растворов солей, при температурах 20 и 80° С для меди и никеля соответственно. Для выбранных нами металлов исключена возможность образования химических соединений при температурах нанесения покрытия [5], а следовательно, и снижение прочностных характеристик углеродных волокон (что подтверждено экспериментально). Поэтому изучалось влияние на свойства металлизированного углеродного волокна температур, близких к технологическим и эксплуатационным. Для этого определяли прочность на разрыв волокон без покрытия после отжига в контакте с металлами. Отжиг проводили в вакууме с давлением 5 Ю мм рт. ст. в течение 24 ч. Предварительно было [c.129]

    Никель — белый металл, по прочности равный стали, имеет высокую стойкость к атмосферной и водной коррозии. Скорость атмосферной коррозии, составляющая 0,02—0,2 мкм в год, с увеличением срока службы покрытия стремится к снижению благодаря пассивации поверхности металла в результате образования инертной окисной пленки. Никель — пластичный металл, однако пластичность никелевого покрытия зависит от метода его нанесения и чистоты. Многие никелевые покрытия, получаемые в процессе электроосаждения (особенно в присутствии органических блескообразователей), могут быть хрупкими и иметь высокие внутренние напряжения. Никелевые покрытия, осаждаемые химическими способами, обладают большой твердостью, хрупкостью и низкими коррозионными характеристиками из-за образования фосфора и бора в осадках (что характерно для осаждения из сложных растворов). [c.117]

    Наполнители значительно дешевле большинства пигментов, и их часто добавляют в лакокрасочные материалы для снижения стоимости. Однако путем тщательного подбора соответствующих пигментов и наполнителей можно значительно улучшить такие характеристики лакокрасочных материалов, как вязкость, розлив, уменьшить оседание пигментов, повысить механическую прочность и атмосферостойкость покрытий. [c.68]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    Проектируя морское сооружение из низколегированной стали, конструктор, при заданной прочности мог бы взять меньшую толщину стенок, чем при использовании углеродистой стали. Однако при более высокой скорости коррозии это может привести к ускоренному разрушению конструкции. Таким образом, при проектировании, в принципе, следовало бы предусматривать больший допуск на коррозию низколегированных сталей, чем для углеродистой стали. В то же время при использовании подходящего защитного покрытия более высокие прочностные характеристики низколегированных сталей позволяют добиться общего выигрыша. Катодную защиту в случае низколегированных сталей следует применять с большой осторожностью, поскольку эти сплавы нередко более склонны к водородному охрупчиванию, чем углеродистая сталь. [c.57]

    Имеется положительный опыт использования этого вида отходов е качестве связующего при изготовлении асфальтовых дорожных покрытий [46]. Сравнительно небольшая (10 - 15%) добавка ПВХ в асфальт существенно повышает его эксплуатационные характеристики прочность и долговечность. По опыту дорожного строительства в УССР использование отходов ПВХ в асфальте позволяет продлить срок эксплуатации дорожного покрытия без ремонта до 15 лет. Однако масштабы дорожного строительства несопоставимы с количеством твердых отходов, образующихся на действующих производствах ПВХ в СССР. [c.168]

    Прочность покрытий является одним из основных качеств, определяющих их пригодность к использованию. Определение удельных давлений, необходимых для разрушения получаемых поли-капроамидных пленок толщиной от 1 до 5 мкм при статическом нагружении и прорезании, показало, что покрытия способны выдерживать значительные статические и динамические нагрузки (до 5-10 Па). Можно полагать, что высокие значения разрушающих нагрузок не являются количественной характеристикой прочности пленок и определяют скорее локальные деформативные свойства, т. е. свойства отдельных структурных образований, зависящие не только от степени совершенства строения последних, но и от жесткости основы. [c.170]

    Характеристики прочности, пластичности и ударной вязкости были получены испытаниями стандартны образцов при температуре 20° С без покрытия и с никель-фосфорным покрытием толщиной 40 мкм в нетермообработанном и термообработанном состоянии. По усредненным значениям экспериментальных данных построена диаграмма изменения механических свойств стали в зависимости от состояния образцов (рис. 33). [c.68]

    Примерно в то же время Нибойер [411 произвел обзор различных, исследований битумных дорожных покрытий. Он описал реологические свойства битумов и привел характеристики минеральных агрегатов, влияющие на пластические и эластические свойства дорожных смесей (жесткость, прочность на разрыв, упругость и усталостные характеристики дорожных смесей). Разрывная прочность оказалась-зависимой от продолжительности приложения нагрузки. [c.149]

    Преобразователи для контроля анизотропии механических и электрофизических свойств металлов. Одной из важнейших характеристик современных металлов и сплавов, во многом определяющей их механические и физические свойства, является степень совершенства кристаллографической текстуры, под которой понимается преимущественная пространственная ориентация зерен в полюфисталле. Текстура, обусловливая анизотропию свойств, обеспечивает избирательно в различных направлениях повышение пластичности, прочности, модуля упругости, магнитных свойств, стойкости металлических покрытий против коррозии и т. д. Создание в материалах совершенной кристаллографической текстуры является в ряде случаев одним из путей повышения их эксплуатационных характеристик. Для этого исследователям и специалистам-пракгикам необходимы методы и средства для получения сведений о типе и степени совершенства кристаллографической текстуры. Другой не менее важный аспект необходимости измерения анизотропии физических свойств металлов, обусловивший рождение на свет разнообразных конструкций датчржов, вызван необходимостью определения механических остаточных напряжений в деталях машин и механизмов, элементах строительных конструкций и т. д., выполненных из различных марок конструкционных сталей. Для этих целей используется явление магнитоупругого эффекта, под которым в общем случае принято понимать изменение магнитных свойств материала под воздействием механических напряжений. Измерив изменение величины или характера анизотропии магнитных свойств, можно, используя градуировочные кривые зависимости магнитных свойств исследуемого материала от величины механических напряжений, судить об их наличии в металле, а иногда и оценить их величину [50]. [c.134]

    Так, результаты испытаний показали, что относительное удлинение образцов из углеродистой стапи после выдермжи в течение 90 ч в водном растворе, содержащем 5 % Na l, 0,5 % СН3СООН и насыщенном HjS (pH = 3,5), в 5 раз ниже по сравнению с исходным, а число перегибов до разрушения снижается в 2,5 раза. Характеристики пластических свойств аналогичных стальных образцов, защищенных покрытием из ингибированной композиции ЛОМ, после выдержки в среде остались на уровне исходных образцов. Время до разрушения цилиндрических образцов без покрытия при напряжении, равном 0,8 от предела прочности на разрыв, составило 1,75 ч, а для образцов, покрытых ингибированной композицией, - 141 ч. При этом в 5,7 раза увеличивается время до разрушения [c.174]

    У композиционных покрытий на основе медн физико-механические характеристики (твердость, износостойкость, прочность при высоких температурах) выше, чем у чисто мсдиых покрытий КЭП на основе медн получают ил кистых (сульфатных, фторборатнь(х) или щелочных (mipo фосфатных, эти юцднаминовых) электролитов [33] [c.185]

    На протяжении многих лет проводятся больщне исследования с целью установления связи между химическим составом и свойствами битумов, с одной стороны и поведением их в дорожных покрытиях— с другой. Однако эти исследования до сих пор не позволили дать точные характеристики наиболее важных технологических (строительных) и эксплуатационных свойств битума, а также раскрыть то влияние, которое они оказывают на прочность и долговечность дорожного покрытия. Трудности рещения этой проблемы объясняются не только сложностью химического состава битума, но и отсутствием прямого однозначного влияния его на свойства битумоминерального материала. [c.9]

    В начале 70-х годов фирмой Du Pont (США) разработан низкомолекулярный этиленпропиленовый термополимер марки Nardel-2722 и ряд термостойких электроизоляционных композиций на его основе, которые не распространяют горение, обладают высокой термостойкостью, механической прочностью, радиационной стойкостью и высокой стабильностью электрических характеристик, что позволяет успешно использовать их в качестве электроизоляционного материала и огнестойкого покрытия одновременно. Высокие огнезащитные и другие свойства этого термополимера [c.144]

    Тип межфазных связей в адгезионном соед. устанавливают путем выявления линейных зависимостей между ст и отдельными компонентами у (на практике-более доступными характеристиками типа критич. поверхностного натяжения). При наличии такой зависимости от т адгезионное взаимод. обусловлено преим. ван-дер-ваальсовым взаимодействием, от у -хим. связями. По известным значениям у можно теоретически прогнозировать эффективность адгезионного взаимод. разл. объектов, а на практике-регулировать последнюю (и обусловленную ею прочность адгезионных соед.). Это достигается введением в молекулы адгезивов и субстратов фуикц. групп, повышающих поверхностную энергию и гибкость молекул контактирующих фаз. Данный подход составляет основу разработки рецептур клеев и процессов подготовки субстратов к склеиванию или нанесению покрытий. [c.31]


Смотреть страницы где упоминается термин Покрытий характеристики прочность: [c.187]    [c.52]    [c.296]    [c.67]    [c.40]    [c.78]    [c.77]    [c.168]    [c.108]    [c.130]    [c.295]   
Защита от коррозии на стадии проектирования (1980) -- [ c.279 , c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Равномерность толщины, прочность сцепления, тверi дость и антифрикционные характеристики никель-фосфорных покрытий



© 2025 chem21.info Реклама на сайте