Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ кадмия и его соединений

    Анализ органических соединений. Общая идея комплексонометрического определения органических соединений состоит в количественном выделении анализируемого вещества в виде соединения с цинком или кадмием. После выделения можно комплексонометрически определить не вошедшее в реакцию количество ионов цинка или кадмия или найти их содержание в осадке. Например, 8-оксихинолин и его производные можно количественно осадить в виде цинковой соли и избыток ионов цинка в растворе определить комплексонометрически. Гексаметилентетрамин (СНг)бГ 4 в различных препаратах определяют осаждением координационного соединения состава [ d2( H2)6N4] (5СН)4 при добавлении к пробе тиоцианата кадмия. В фильтрате после отделения осадка определяют содержание кадмия с помощью комплексона. [c.244]


    Фазовый анализ на соединения кадмия [c.175]

    Глава VII АНАЛИЗ КАДМИЯ И ЕГО СОЕДИНЕНИЙ [c.185]

    Химические и физико-химические методы анализа кадмия и его соединений высокой чистоты [c.190]

    Ионы лантаноидов образуют с полидентатными лигандами стабильные комплексы [Kmy 10 —102°). Кинетические исследования проведены с лантаноидами, переходными металлами и металлами III группы периодической таблицы элементов [55]. Скорости их реакций изменяются в широких пределах 10 , а скорости диссоциации комплексов зависят от pH [56]. Реакции при pH 7,5 можно применять для определения щелочноземельных металлов ионы других металлов реагируют слишком медленно и поэтому не могут оказать мешающего влияния при таком значении pH. Переходные металлы можно определять при pH == 4, поскольку ионы щелочноземельных металлов при этом реагируют быстро и не могут оказать мешающего действия. Анализы двойных смесей соединений лантана и кадмия можно выполнять при низком соотношении констант скорости реакций, порядка 1,4, а анализ смесей соединений самария и европия — при соотношении констант скорости реакций 1,7. Можно изменить соотношение констант скоростей реакций, изменяя такие факторы, как pH, температуру и анионный состав раствора. Так, соотношение констант скоростей реакций кадмия и свинца при 25 °С составляет 1,8, а при 11 °С оно равно 7,6. Соотношение констант скорости реакций меди и кобальта при 25 °С обычно составляет 1,2, а в 0,1 М хлорной кислоте оно равно И. Для повышения селективности кинетических определений могут быть рекомендованы маскирующие агенты [57]. Так, тиосульфат маскирует Ag и Hg , а цианид с последующим добавлением хлоральгидрата маскирует Ni , Со и Fe .  [c.439]

    При определении основных компонентов в труднорастворимых молибденовокислых солях кальция, стронция, бария, кадмия и свинца большое затруднение представляет анализ этих соединений на содержание молибдена. [c.116]

    Анализ координационных соединений оксихинолинатов кадмия [c.105]

    Более совершенны схемы, включающие физико-химические методы анализа. Одно из их достоинств — достаточно точное определение группового состава сернистых соединений не только бензиновых, но и среднедистиллятных фракций [5, 26]. Рассмотрим одну из них (рис. 3). Вначале обработкой образца нефтепродукта подкисленным раствором хлористого кадмия удаляют сероводород, а затем, в отличие от предыдущей схемы, используют [c.85]


    Для косвенного полярографического анализа соединений , содержащих аминогруппы, применяются также ионы кадмия, кобальта, ртути [13, 66]. [c.63]

    Ниже рассмотрены свойства соединений кадмия, аналити ческое использование которых описано в последующих главах. Краткая характеристика некоторых комплексных соединений, неприменяемых пока в анализе, дана в Приложениях. [c.23]

    Экстракционное выделение кадмия, отличающееся высокой избирательностью, используется при анализе различных объектов как эффективный способ разделения и концентрирования. Кадмий экстрагируется органическими растворителями в виде простых галогенидных комплексов, внутрикомплексных соединений или тройных комплексов. Краткая характеристика экстракционных методов отделения кадмия приведена в табл. 24. [c.143]

    Большинство предложенных методов предназначено для определения малых количеств примесей в металлическом кадмии, его сульфиде и некоторых других соединениях высокой чистоты и для нахождения различных его форм в чистых веществах. Меньшее число методов описано для анализа технических продуктов — гальванических ванн кадмирования, сырья для стекольной промышленности, пигментов, сплавов и др. Первая группа методов включает определение следующих 36 элементов Ag, А1, Аз, Аи, Ва, В1,Вг, Са, С1, Со, Сг, Си, Ре, Оа, Ое, Hg, I, 1п, К, Ы, Ме, Мп, Мо, ]Ча, N1, РЬ, 8, 8Ь, Зе, 8п, 8г, Те, Т1, Т1, V, 2п для их концентрирования или отделения от основной массы кадмия используют соосаждение с различными коллекторами, экстракцию органическими растворителями, отгонку летучих соединений, ионный обмен, в спектральных методах — и физическое обогащение. Определение этих элементов выполняют преимущественно эмиссионной спектрографией и абсорбционными методами (визуальная колориметрия, фотоколориметрия и спектрофотометрия). В меньшей степени применяют полярографию и еще реже — другие методы анализа. [c.185]

    В настоящее время электрохимические методы применяются для разделения соединений большинства химических элементов и оказались очень удобными вследствие того, что они не требуют введения в анализируемый раствор посторонних веществ. Используя различные способы электрохимического осаждения с применением платиновых или других электродов и ртутного катода, а также внутреннего электролиза (см. гл. VI, 5), можно разделять катионы алюминия, титана, циркония, ванадия, урана от катионов хрома, железа, кобальта, никеля, цинка, меди, серебра, кадмия, германия, молибдена, олова, висмута и других элементов. Можно также отделять примеси от основных компонентов при анализе цветных металлов, их сплавов и руд. [c.357]

    При анализе остатков пищевых продуктов и напитков в большинстве случаев основным является вопрос о том, не содержит ли этот продукт введенных в него ядовитых химических веществ (соединения мышьяка, ртути, фториды и т. п.). Посуда может быть объектом химико-токсикологического исследования при подозрении на отравление через нее. В этих случаях может ставиться вопрос о возможности извлечения из посуды (луженая, эмалированная, кадмированная и др.) в процессе приготовления или содержания в ней пищи химических веществ, которые могли вредно отразиться на состоянии здоровья человека (свинец, сурьма, кадмий и др.). [c.28]

    Периодически природный газ анализировали на содержание других серусодержащих примесей методом гидрирования (водородом) в кварцевой трубке на платине при температуре 900—950° С. Газ на гидрирование направлялся после предварительной очистки от сероводорода и меркаптанов. Образующийся в результате гидрирования сероводород (при наличии других сернистых соединений в газе) поглощали 2%-ным раствором уксуснокислого кадмия и колориметрировали. Полученные анализы показали, что в исходном природном газе сероводород отсутствует и сера находится исключительно в виде меркаптанной. Содержание меркаптанов составляет 1—7 л/гДи . [c.147]

    Для изменения кислотно-основных свойств ГАС с целью облегчения их извлечения из смесей применяются и восстановительные реакции. Восстановление цинком в ледяной уксусной кислоте — обычный способ перевода дисульфидов в меркаптаны, использовавшийся в распространенных схемах систематического группового анализа сернистых соединений нефти по методам У. Фарагера и др. [182], Дж. Болла [84], Р. Д. Обо Лнцева и др. [183]. Образующиеся тиолы легко отделяются в форме мерканти-дов серебра или кадмия. [c.23]

    Из различных примесей в цинковых сплавах (олово, кадмий, висмут, -таллий) можно удовлетворительно определять при помощи полярографа, согласно Зейт [1195], лишь свинец, кадмий и висмут. Зейт считает, что спектральный анализ в соединении с химическим выделением более пригоден при определении всех названных примесей. [c.301]


    Вышеизложенная схема систематического анализа сернистых соединений (по Фарагеру) не лишена существенных недочетов, которые особенно обнаруживаются при анализе сложных смесей сернистых соединений, нередко присутствующих совместно в нефтяных погонах [6]. Так, уже хлористый кадмий, хорошо удаляющий сероводород и не затрагивающий молекулярной серы, меркаптанов, сульфидов и дисульфидов, частично реагирует с тиофеном и тиофаном полумбит натрия, хорошо удаляющий меркаптаны, затрагивает также тиофаны, и т. д. Больше всего эти недостатки методики сказываются на остаточной сере, т. е. на содержании тиофенов и тиофанов, так как все неточности методики, естественно, суммируются на остаточной сере, содержание которой, по анализу, нередко оказывается равным нулю даже при заведомом присутствии тиофанов в исходном продукте. Несмотря на значительное число попыток [c.241]

    В литературе имеется ограниченное число работ по спектральному [1, 2] и более чувствительному химико-спектральному анализу кадмия и его соединений (сульфидов, селени-дов) [3—7] (табл. 1). [c.139]

    Для определения примесей в алкильных соединениях индия, галлия, сурьмы, олова, кадмия и цинка их переводили в окиси, которые и подвергали спектральному анализу. Алкильные соединения цинка энергично взаимодействуют с кислородом воздуха и водой. Гидролиз сопровождается появлением пламени даже при сильном охлаждении и в атмосфере азота, что неудобно при проведении рутинных анализов. Поэтому диэтилцинк разлагали в две стадии сначала спиртом с переводом алкильного соединения в ал-коксид, который в свою очередь разлагали затем азотной кислотой. Обе реакции протекают достаточно спокойно [12]. Остальные из [c.244]

    Кобальт. Для определения кобальта кинетическим методом используются каталитические реакции окисления перекисью водорода. Так, соединения кобальта катализируют хемилюминесцентную реакцию окисления люминола (чувствительность 10 мкг/мл) и реакцию окисления органического красителя индигокармина (чувствительность 10 мкг/мл). Обе реакции малоизбирательны — анализу мешают соединения в первом случае железа, меди, ванадия, во втором — кадмия, свинца, ртути, марганца, серебра и др. Если перекись водорода восстанавливать некоторыми органическими веществами и добавлять активаторы, то можно открыть 10 и даже 10 мкг/мл кобальта. Для ко- [c.76]

    Анализ кадмийорганических соединений разработан очень мало. Имеется, например, рекомендация Краузе [1] определения кадмия в кадмийдиалкилах. [c.210]

    Для определения Mg был применен 8-океихннолин [165], а для определения — пикролоновая кислота [36]. Метод может быть изменен на обратный с целью анализа органических соединений, осаждаемых неорганическими ионами с определением избытка последних. Такой способ применен для анализа мыл путем осаждения избытком сульфата кадмия [47]. Прибавление 2-нафтола, тимола и дифениламина изменяет диффузионный ток и сдвигает потенциал полуволны ионов металлов. Это объясняется образованием пленки на электроде вследствие абсорбции [96]. [c.75]

    Этот метод раздельного определения сероводорода и меркаптанов при их совместном присутствии использован в групповом анализе сернистых соединений по Боллу (Горное бюро США) [27]. По-видимому, тот же результат можно получить пользуясь нейтральным и подкисленным растворами олеата или бутилфталата меди. В силу интенсивной зеленой окраски сам реактив будет служить индикатором. Применение фотоколориметра повысит чувствительность метода [291. Осаждение кадмия сероводородом из подкисленных растворов может быть использовано для непрямого полярографического определения H2S, возможно также в присутствии меркаптанов [30, 31]. Одна из таких методик предложена Гербер [31] для анализа нефтепродуктов. Эти методы достаточно точны и быстры. Для одного определения требуется 30—40 мин. при серийных анализах ЭТО время может быть значительно сокращено. [c.335]

    В 1960 г. была предложена схема анализа, основанная на прямом потенциометрическом титровании (рис. 4) однако полностью исключить из нее химические методы не удалось [5]. Большое ее достоинство — возможность определения группового состава сернистых соединений во фракциях, выкипающих до 380 °С (в том числе в дизельных топливах). Вначале в образце известными методами определяют содержание общей серы, затем качественно устанавливают присутствие сероводорода, элементарной серы и меркаптанов. При их наличии освобождают навеску от сероводорода подкисленным водным раствором хлористого кадмия, затем потенциометрически определяют содержание элементарной серы и меркаптанов. Титрование проводят в атмосфере азота. В другом образце, также не содержащем сероводорода, методом потенциометрической иодатометрии находят содержание сульфидной серы. По этой схеме меркаптановую серу определяют титрованием не А ЛЮя, а аммиакатом серебра ([Ag(NHg).2]NOз), не оказывающим влияние на сульфиды. Точность анализа при работе по этой схеме выше, чем по ранее описанным. [c.88]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    В 1841 г. знаменитый немецкий химик К. Р. Фрезениус в книге Руководство по качественному хш1ическому анализу предложил более совершенную схему систематического качественного химического анализа многих элементов. Для построения своей схемы он выбрал систему, содержавшую наиболее важные, по его мнению, металлы или их соединения, которые он разбил на шесть групп первая группа — калий, натрий, аммоний вторая группа — барит, стронцианит, известь, магнезия третья группа — глинозем и оксид хрома четвертая группа — оксиды цинка, марганца, никеля, кобальта и железа пятая группа — оксиды серебра, ртути, свинца, висмута, меди, кадмия шестая группа — оксиды золота, платины, сурьмы, олова, мышьяковая и мышьяковистая кислоты. [c.35]

    При сероводородном методе анализа можно наблюдать потерю до 70"о марганца и хрома, потерять малые количества марганца, кадмия и ртути. Длительное время велись работы по замене систематического хода анализа другими метода ш. Наибольшего внимания заслуживает дробный метод, предложенный Н. А. Тананаевым. Дробные реакции гюзволяют обнаруживать достаточно надежно элементы в широком интервале концентраций. Предложено много высокоселективных реакций на отдельные элементы. Важное значение имеют соединения, которые дают различные химические элементы с органическими реагентами, например дитизоном, дифенилкарбазидом, диэтилдитиокар-баминатом. Эти соединения легко экстрагируются органическими [c.150]

    Титриметрический анализ. Комплексонометрия — один из широко распространенных методов анализа, основанный на применении комплексонов — органических соединений, содержащих азот и карбоксильные группы. Титрование комплексонами различного состава позволяет определять многие элементы цирконий, железо, висмут, кадмий, медь, цинк, магний, кальций и др. Известны и другие титриметрические методы, в которых используют комплексные соединения. Так, существует метод титрования фторидами— фторометрия, солями ртути (II) — меркуро-метрия и др. [c.24]

    Некоторые гетерополисоединения входят в состав светопрочных лаков, применяются в биохимии и биохимической промышленности (выделение алкалоидов, окраска животных тканей при исследованиях). Гетерополивольфрамовые кислоты используются в качестве катализаторов при окислении некоторых органических соединений. Гетерополи-молибденовая кислота применяется как катализатор реакций гидрирования фенолов и синтеза уксусной кислоты и в ряде других реакций в органической химии. В литературе указывается на возможность использования гетерополисоединений для экстракционных процессов в металлургии, а также при обработке кожи, искусственных тканей. Водный раствор 12-вольфрамобората кадмия ( =3,28 г/см ) может использоваться в минералогическом анализе в качестве тяжелой жидкости. Изучение гетерополисоединений должно способствовать установлению строения и генезиса ряда минералов, относящихся к этому классу соединений. Обзор гетерополисоединений дается в [1, 2, 3, 5]. [c.244]

    При анализе тантала высокой чистоты используют метод распределительной хроматографии в системе 100%-ный ТБФ — 1М ПР + 1МНК0зна колонке пористого фторопласта-4 [107]. Электрохимическое отделение основы проводят при определении Сг и других примесей в металлической меди и ее соединениях [23]. Электрохимическое концентрирование Сг, Мп, РЬ, Ре, В1, Т1, Мо, 8п, V, С(1, Си, N1, Со, Ag на графитовом неподвижном катоде применяют при анализе природных вод [212]. Химико-спектральные методы определения Сг и других примесей используют также при анализе чистого мышьяка [808], гипса и ангидрита [683], серы высокой чистоты [379], кадмия и цинка высокой чистоты [450, 451], арсенида галлия [302], едких щелочей [227], винной кислоты [335]. [c.89]

    Наибольшее распространение получили два метода определения содержания кадмия полярографический (широко применяемый при массовых анализах) и атомно-абсорбционный. Применяются также гравиметрические, элек-трогравиметрические, титриметрические методы, основанные на выделении труднорастворимых соединений кадмия с последующим переводом их в растворимые комплексы, а также комплексонометрические методы (прямое и обратное титрование). Большое значение имеют фотометрические методы. [c.105]

    Количество 5Н-глютатиона устанавливают по разности определе иия указанных 5Н-соединений до и после осаждения его yльфaтo кадмия. Анализ суммы ВОНВЛОССа и 8Н-глютатиона проводят од-ловременно в одной пробе. [c.64]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]

    На сульфатно-аммиачном фоне кадмий дает хорошо выраженную полярограмиу (рис. 19, а). Этот фон используют при анализе теллуридов и селенидов Сс1 и 2п. При совместном их присутствии с 8е и Те, пики Сс1 и 8е с потенциалами соответственно при —0,64 и 1,5 в пригодны для анализа систем при соотношении Сс1 Зе от 1 50 до 5 1. Чувствительность метода 0,4 мкг Сс1/10 мл. Определение Сс1 в присутствии 1000-кратных количеств Те проводят на тартратно-аммиачном фоне, потенциал полупика находится при —0,64 в. Этот фон пригоден для анализа пленок полупроводниковых соединений [414]. [c.105]

    Анализ пыпей и огарков вельцокисей и кеков на соединения кадмия [434] [c.175]

    Для определения 1-10" —Ы0 % кадмия используется полярографический метод с предварительной экстракцией диэтилдитиокарбамата кадмия, который образуется в щелочном виннокислом растворе (pH И), содержащем цианид калия. Тартрат-ион образует комплексное соединение с цирконием, а цианид калия реагирует с ионами меди, тем самым предотвращая образование комплекса диэтилдитиокарбамата меди. Следует избегать большого избытка цианида, так как это вызывает занижение результатов анализа. Кадмиевый комплекс экстрагируют хлороформом , кадмий определяют с помощью чувствительного полярографа . Этот метод предназначен в основном для анализа 2г10, 2г20 и 2гЗО. [c.125]

    Внешнесферные комплексные соединения образуются при присоединении к внутрисферному координационно-насыщенному комплексу электронейтральных или заряженных лигандов. Существуют нейтральные внешнесферные комплексы, относительно мало растворимые в воде (растворимость 10 — 10 моль/л), которые используют в качестве форм осаждения в гравиметрическом анализе. В воде внешнесферные комплексы тем менее растворимы, чем крупнее составляющие их фрагменты. При этом определяемый элемент может входить в состав внешнесферного комплекса или в виде внут-рисферного комплекса или, реже, в виде внешнесферной частицы. Например, внешнесферная координация органических оснований анионными комплексами элементов позволяет проводить гравиметрическое определение ряда металлов серебра, золота, кадмия, ртути, цинка и др. В табл. 11.1 приведены примеры использования внешнесферных комплексных соединений в гравиметрии. [c.155]


Смотреть страницы где упоминается термин Анализ кадмия и его соединений: [c.96]    [c.13]    [c.85]    [c.183]    [c.438]    [c.481]    [c.55]    [c.21]    [c.173]    [c.31]   
Смотреть главы в:

Аналитическая химия кадмия -> Анализ кадмия и его соединений




ПОИСК





Смотрите так же термины и статьи:

Кадмий соединения



© 2024 chem21.info Реклама на сайте