Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия магнитного резонанса других ядер

    Большая часть настоящей главы посвящена спектроскопии ЯМР на протонах (ядрах 41) (ЯМР- Н), иногда называемой спектроскопией протонного магнитного резонанса (ПМР). Однако многое в нашем изложении в равной мере относится и к спектроскопии на других ядрах. [c.539]

    Спектроскопия ядерного магнитного резонанса (ЯМР) основана на взаимодействии электромагнитного излучения с энергией 10 — 10 эВ с помещенным в постоянное магнитное поле веществом, содержащим атомы элементов, ядра которых обладают спином =4 . Такими ядрами являются ядра атомов водорода Н, углерода ЧЗ, фтора Р, фосфора и некоторых других элементов с нечетным массовым числом. Наибольшее распространение получила спектро- [c.283]


    Другие методы основаны на магнитных свойствах неспаренных электронов. Измерение парамагнитной восприимчивости являлось долгое время наиболее ценным методом анализа, пригодным для изучения свободных радикалов, но этот метод далеко превзойден спектральным методом электронного парамагнитного резонанса (ЭПР), применимого для изучения даже корот-козкивущих радикалов в весьма малых концентрацях. Основные принципы, лежащие в основе этого метода, очень близки принципам ЯМР-спектроскопии, хотя ЭПР-спектры наблюдают при гораздо более высоких частотах, уже непосредственно в области радиочастот. Важными моментами являются следующие. Во-первых, интенсивность поглощения пропорциональна концентрации свободного радикала, что позволяет оценивать эту величину. Во-вторых, в спектре поглощения наблюдается сверхтонкая структура, появляющаяся за счет взаимодействия неспаренного электрона со спинами соседних ядер. Если ядро имеет спиновое число /, то мультиплетность линий за счет взаимодействия будет определяться формулой 21 1), причем интенсивность всех линий будет одинаковой. Конечно, интенсивности могут увеличиваться, если электрон взаимодействует с двумя или более идентичными ядрами, как происходит с делокализованным электроном в[метильном радикале (ср. с взаимодействием спинов в ЯМР-спектрах). Для этой частицы в спектре имеется квадруплет с интенсивностями 1 3 3 1. Спектр интересного циклогептатриенил-радикала С7Н7- содержит восемь линий, расположенных на равных расстояниях друг от друга и указывающих на взаимодействие электрона с семью эквивалентными атомами водорода, что свидетельствует о равномерном распределении электрона по кольцу. В общем случае, если взаимодействие (в гауссах) равно С, то степень локализации электрона в поле ядра, осуществляющего это взаимодействие, определяется величиной С/500. Для метильного радикала С равно примерно 23 Гс (2,3-10 Т), и, следовательно, электрон проводит V2o часть своего времени в поле каждого из ядер водорода, что указывает на довольно большую степень электронной делокализации. [c.177]

    В спектроскопии ЯМР наиболее широко применяется магнитный резонанс на ядрах водорода — протонах, что объясняется, в первую очередь, присутствием водорода в подавляющем большинстве химических соединений, а также тем, что протонные сигналы обладают наиболее высокой интенсивностью по сравнению с сигналами от других ядер (исключая ядра трития). Это позволяет наблюдать спектры слабых растворов и в известной мере учитывать межмолекулярные факторы, влияющие на экранирование. Однако интерпретация химических сдвигов Н в связи с электронной структурой молекул наталкивается на целый ряд трудностей. Ввиду того, что диапазон химических сдвигов Н невелик (примерно на порядок раз меньше, чем для ЯМР Р ), основное затруднение вызывают высокие значения относительных вкладов пространственных внутримолекулярных факторов. Теоретический расчет этих эффектов в настоящее время не может обеспечить необходимую точность. Поэтому, как правило, выделение локального экранирования Н и корреляция его с параметрами электронной структуры молекул (в том числе с а-константами Гаммета—Тафта) носит довольно приближенный характер. [c.409]


    Протон представляет собой наиболее важный в практическом отношении тип магнитного ядра, поэтому подавляющая часть работ в области ЯМР посвящена исследованиям протонного магнитного резонанса. Другие методы спектроскопии основаны на использовании свойств электронов, создающих химическую связь, и, следовательно, на свойствах скелета молекулы. А протонный магнитный резонанс имеет дело с кожей молекул, которая обычно содержит атомы водорода. [c.225]

    Спектры ЯМР. Ядерный магнитный резонанс (ЯМР) является одним из новых спектроскопических методов 155]. Вращающееся ядро ведет себя, как малый магнит, который ориентируется в магнитном поле. Эти ориентации соответствуют различным квантовым уровням энергии, между которыми могут быть переходы. Для магнитного поля в 10 Гс абсорбционная частота находится в области радиочастот. Энергетические уровни выражаются магнитными квантовыми числами, и энергетические изменения аналогичны тем, которые определяются в других видах спектроскопии. [c.52]

    Сходные вопросы можно поставить и в связи с другими аспектами биохимии. Например, можно уточнить механизм транспорта таких катионов, как Ма+, К , Mg + и Са , через биологические мембраны путем исследования их взаимодействия с мембранами методом ЯМР. При решении такого рода задач можно воспользоваться как спектроскопией протонного магнитного резонанса, так и наблюдениями резонанса на других ядрах, включая ядра металла, хотя эксперименты последнего типа часто наталкиваются на значительные трудности. [c.376]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Из всех спектроскопических методов, которые широко применяются в комбинации с газовой хроматографией, спектроскопия ядерного магнитного резонанса (ЯМР) имеет наименьшую чувствительность. Об этом приходится сожалеть, так как спектроскопия ЯМР дает большой объем специфической информации, которая часто необходима для определения структуры соединений, разделенных методом газовой хроматографии. Такой информацией может быть химическая природа имеющихся групп, их структурная связь друг с другом, а также их пространственное (стереохимическое) соотношение. Особенно много информации несут в себе спектры резонанса на ядрах водорода (протонах) органических соединений. В этой главе кратко рассмотрены физические основы спектроскопии ЯМР, показано, как с помощью этого метода можно получать структурную информацию, отмечены связанные с этим трудности и описана необходимая аппаратура. [c.292]

    Наиболее распространенным объектом исследования в спектроскопии ЯМР являются протоны. Это связано с их высоким содержанием в различных соединениях и достаточно высокой чувствительностью. Спектры протонного магнитного резонанса биополимеров из-за наличия в последних большого числа атомов водорода обычно оказываются весьма сложными. Тем не менее, проявив известную изобретательность, эти спектры иногда удается расшифровать и получить подробную информацию о том или ином участке биологической макромолекулы. Иногда более удобным оказывается ЯМР на ядрах С, в частности, из-за лучшего спектрального разрешения по сравнению с протонным резонансом, а также благодаря меньшим трудностям при расшифровке спектров. В других случаях для изучения структурно-функциональных особенностей какого-либо центра применяют зонд [c.175]


    Ядра и С представляют наибольший интерес у химиков, поскольку резонанс этих ядер наиболее важен для определения структуры органических молекул. Во многих случаях без труда можно получить ЯМР других ядер, обладающих магнитным моментом, и несколько таких примеров приведены в дальнейшем. Мы не будем обсуждать спектроскопию ЯМР твердых образцов, потому что измерения в этом случае отчасти отличаются от измерений в спектроскопии ЯМР высокого разрешения для жидких образцов и для этого требуется специальное оборудование. [c.202]

    Площадь или интенсивность линии пропорциональна числу ядер, находящихся в данном химическом окружении. Это означает, что раствор, имеющий молярную концентрацию в два раза большую, чем другой раствор, будет давать в спектре пик в два раза большей площади при одинаковых условиях регистрации и что, если ядра находятся в двух функциональных группах молекулы (например, метильных), имеющих идентичное окружение, или магнитно эквивалентных, резонанс также будет характеризоваться в два раза большей площадью. Это свойство отличает ЯМР от всех других типов спектроскопии, т. е. площадь [c.494]

    Химические сдвиги. Применение спектроскопии ЯМР для исследования равновесия очень заманчиво, так как в отсутствие обменных эффектов в спектре имеются только два сигнала один обусловлен резонансом в свободном лиганде, а другой — в координированном лиганде. Метод применяли для исследования ке-то-енольной таутомерии ацетилацетона [19]. Магнитный резонанс на ядрах также использовали для исследования равновесия. С этой целью определяли интегральные интенсивности сигналов ЯМР метильной группы свободного и координированного ацетата [20]  [c.148]

    Данные, приведенные в табл. 7-1, показывают, что исследование определенных ядер в соединениях, выделенных методом газовой хроматографии, практически неосуществимо. Возмонсность такого исследования зависит от двух факторов чувствительности спектроскопии ЯМР для данного изотопа и содержания этого изотопа в используемой смеси изотопов. Оба эти фактора свидетельствуют против спектроскопии ЯМР на ядрах С , использующей содержание изотопа С в естественной смеси изотопов. (Наиболее распространенный изотоп С имеет спиновое квантовое число, равное нулю.) С помощью спектроскопии ЯМР наиболее просто анализировать ядро водорода (Н ), которое широко распространено в органических соединениях. В оставшейся части главы будет об-сунедаться только спектроскопия протонного магнитного резонанса, но важно понять, что обсуждаемые принципы в основном применимы для спектроскопии магнитного резонанса и на других ядрах [4]. Некоторые изотопы, приведенные в табл. 7-1, можно анализировать и в прямом соединении с газовой хроматографией. [c.296]

    Открытие эффектов магнитного резонанса произошло в середине 40-х годов. В 1944 г. советский физик Е. К. Завойский впервые наблюдал поглощение электромагнитных радиоволн парамагнитным веществом, т. е. ему принадлежит заслуга создания метода ЭПР. Большой вклад в развитие этого метода внесли и дальнейшем также Б. М. Козырев, Д. Ингрэм и многие другие советские и зарубежные ученые. Что касается изучения переходов между ядерными зеемановскими уровнями в магнитном поле и разработки метода ядерного, в частности, протонного магнитного резонанса (ПМР) в конденсированных средах, то первыми в 1946 г. это независимо сделали американские физики Ф. Блох и Э. М. Парселл со своими сотрудниками. Конструирование и серийный выпуск промышленностью ПМР-спектрометров относится к середине 50-х, а ЭПР-спектрометров — к середине 60-х годов. Для спектроскопии ЯМР на других отличных от протонов ядрах приборы высокого разрешения стали производиться в 60—70-х годах. Бурное развитие и совершенствование экспериментальных и расчетных методов ЯМР и ЭПР на базе современной техники и ЭВМ за последние десятилетия привело к широкому и плодотворному их внедрению в химические исследования. [c.6]

    Указанные выше факторы позволяют утверждать, что наибольшее практическое значение (для химика-органика) им"еют два вида спектроскопии ЯМР спектроскопия ЯМР Н (или протонный магнитный резонанс, ПМР) и спектроскопия ЯМР при естественном содержании изотопа - С (или углеродный магнитный резонанс). Среди других магнитных изотопов прежде всего следует выделить ядра Р и Ф. Спектры ЯМР этих ядер хорошо изучены и широко используются на практике. В последние годы в связи с Биедрением мультиядерных спектрометров значительно вырос интерес к измерению спектров таких тяжелых ядер, как Ве, 1 В, [c.35]

    Значительно труднее определение структуры сигналов в сректрах второго порядка. Несколько простейших задач рассматриваются йиже в специальном разделе, но в более сложных случаях может оказаться необходимым использование специальной техники и привлечение специалистов, по ЯМР-спектроскопии. Весьма эффективным средством расшифровки сложных спектров являются различные варианты техники двойного резонанса, когда, кроме основной радиочастоты, образец об-лучается второй частотой, поглощаемой только одной разновидностью магнитных ядер данной молекулы. Эти ядра, таким образом, полностью или частично выводятся из спин-спинового взаимодействия с другими магнитными ядрами, и наблюдаемые в спектре измёнения позволяют непосредственно установить, какие именно сигналы отвечают ядрам, находящимся друг с другом в спин-спиновом, взаимодействии. Определение констант спин-спинового взаимодействия по спектрам второго порядка расчетом вручную также возможно лишь в сравнительно простых спиновых скстемах, а в сложных приходится применять электронные вычислительные машины. Однако на первом этапе интерпретации спектра ЯМР для Целей структурного анализа совсем не обяза- [c.103]

    Предлагаемая читателю книга Р. Шрайнера, Р. Фьюзона, Д. Кёртина и Т. Моррилла Идентификация органических соединений издается на русском языке во второй раз. Первое издание книги, написанной Шрайнером и Фьюзоном, было переведено на русский язык и выпущено Издательством иностранной литературы в 1950 г. под названием Систематический качественный анализ органических соединений и долгое время пользовалось признанием химиков-органиков, встречающихся в своей практике с проблемой идентификации неизвестных органических веществ. Однако за тридцать лет со времени выхода в свет этой книги произошли весьма значительные изменения в методическом оснащении органической химии. Помимо классических методов исследования состава смесей и строения индивидуальных веществ, сохраняющих и поныне свое значение, появились такие мощные методы, как масс-спектрометрия органических соединений, методы спектроскопии ядерного магнитного резонанса на протонах, ядрах углерода-13, фтора, фосфора, бора и других. Обычными даже для рядовой органической лаборатории стали приборы для спектрометрии в ультрафиолетовой и инфракрасной областях спектра. [c.5]

    Ядерный магнитный резонанс (ЯМР) является радноспектроскопи-ческпм методом. Он основан на измерении поглощения веществом радиоизлучения определенной частоты вследствие энергетических переходов атомных ядер в сильном магнитном поле с одного магнитного энергетического уровня на другой. Сигнал ЯМР могут вызвать только ядра со спиновым квантовым числом, отличным от нуля. Ядра, не имеющие магнитного момента спина, например С, "О, непригодны для экспериментов по ЯМР. Наиболее удобны для ЯЛ Р-спектроскопии ядра, имеющие полуцелый спин, например н, ГР, з Р, 1 С, ГК. [c.57]

    Очень тонкие спктроскопические измерения показали, что ядерный спин и энергии взаимодействия между магнитным моментом ядра и внешним полем квантованы подобно всем другим атомным свойствам. В отличие от того, что мы наблюдаем для обычных макроскопических магнитов, для ядерных спинов в природе существуют лишь некоторые строго определенные значения спина, с которыми связаны строго определенные уровни энергии. Спектроскопия ядерного магнитного резонанса (ЯМР) изучает переходы между такими уровнями энергии. [c.219]

    Кроме обычной ЯКР-спектроскопии существует ряд других экспериментальных методов исследования, которые позволяют получить сведения о ядерном квадрупольном взаимодействии. К их числу следует отнести ЯМР-спектроскопию, которая дает возможность измерять константу ядерного квадрупольного взаимодействия e Qq в твердых телах (см. разд. II, Б, 2). В благоприятных случаях величину удается определить и для жидких образцов по времени ядерной магнитной релаксации [27, 28]. Гартман и Ган [29] использовали для определения величины ядер с очень низким естественным содержанием двойной ядерный резонанс при этом в исследуемом образце одновременно присутствуют ядра того же элемента с высоким естественным содержанием, от которых получают сильный сигнал (например, в случае ядер К в КСЮз). Иногда удается определить величину и даже знак e Qq по сверхтонкой структуре спектров ЭПР [30]. Метод двойного электронно-ядерного резонанса (Еп(1ог) [30] дает возможность лучше разрешить и точнее измерить сверхтонкое расщепление, а следовательно, и получить более точное значение e Qq. Для свободных молекул величину e Qq можнс определить по вращательным спектрам газообразных веществ [31]. В случае легких атомов и молекул с малым молекулярным весом для определения величины e Qq применяется метод молекулярных или атомных пучков [32]. Следует отметить, что сам эффект ядерного квадрупольного взаимодействия был открыт Шюлером и Шмидтом [33 при исследовании очень малых сдвигов в сверхтонкой структуре оптических спектров. Существует еще несколько методов экспериментального исследования ядерного квадрупольного взаимодействия, которые относятся к области ядерной физики. Широко известным примером такого рода является -(-резонансная, или мес- [c.220]

    Главная задача спектроскопии ЯМР — определение структуры чистых органических соединений. Метод особенно важен для изучения конфигурации основной цепи, изомерии и пространственной геометрии молекулы. Последнее из указанных применений связано с присутствием в органических молекулах магнитно-анизотропных групп, пространственное расположение которых сильно влияет на вид спектра. К таким группам относятся ароматические и трехчленные кольца, карбонильные группы, ацетиленовые инитрильные группы. Возможность сравнительно простого определения пространственного строения определила широкое применение ЯМР-спектроскопии для исследования природных соединений. ЯМР-спектроскопия неоценима при определении цис-транс-шгои жа относительно двойной связи, изомерии производных бензола, состава смеси кето-енолов и других таутомеров. Основные ограничения метода определяются сложностью интерпретации спектра при наличии большого числа магнитных ядер, а также возможностью подбора подходящего растворителя (не поглощающего в области резонанса исследуемого вещества). Первое ограничение в значительной степени преодолевается совершенствованием техники математического анализа спектров и применением специальных методов. К последним относятся двойной ядерный магнитный резонанс, изотопное замещение, использование приборов с более высокой напряженностью магнитного поля, исследование резонанса на ядрах при природном содержании и др. (гл. IV). Второе же ограничение устраняется использованием набора растворителей, в том числе изотопнозамещенных (главным образом, дейтерированных) соединений. [c.47]

    Научный журнал. Публикует оригинальные работы советских авторов по актуальным проблемам всех разделов современной физической науки, в частности, ядерной физики, квантовой электроники, физической кристаллографии, физики плазмы, физики твердого тела, в т. ч. и металлов, квантовой теории поля, физики газов и жидкостей, физики атома и молекулы, нелинейной оптики, спектроскопии, теории полупроводников, магнитного резонанса, статистической физики и кинетики, гравитации и астрофизики, а также по другим наиболее перспективным вопросам физики. Основные разделы ядра, частицы, их взаимодействие атомы, спектры, излучения плазма, газы твердые тела, жидкости. Годовой комплект содер жит в среднем 470—475 оригинальных статей с резюме на русском и английском языках. Печатается на русском языке. Переводится полностью на английский язык и переиздается Американским физическим институтом. Имеет алфавитный и предметный указатели по томам и приложение Письма в ЖЭТФ . Рассчитан на высококвалифицированных научных работников и ин-женеров-физиков, профессорско-преподавательский состав, аспирантов и студентов старших курсов физических факультетов университетов. [c.575]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    Среди других магнитных ядер, представляющих интерес для органической химии, реальных результатов можно ожидать от спектроскопии B i, Ядра B i и обладают электрическим квадрупольным моментом, вызывающим уширение линий в спектре, что затрудняет их детектирование. Однако примеры съемки В в сильном магнитном поле при частоте 60 Мгц [128, 129] и определения химических сдвигов № методом двойного резонанса [130, 131] показывают, что эти трудности преодолимы. Квадрупольное уширение в спектрах резонанса может быть значительно уменьшено при использовании растворителей с малой вязкостью, например ацетона или эфира. Спектры Ni записывались при 3,94 Мгц на приборе для широких линий [132]. В качестве эталона применялся раствор 4,5 М NH4NO3 в 3 н. водной соляной кислоте сдвиги измерялись относительно линии N0 , расположенной на 353 0,5 м. д. в более высоком поле, чем квинтет NH . Сдвиги органических азотсодержащих соединений распадаются на четыре основные группы амины 340, амиды 270, цианиды 100 и нитросоединения О м. д. Внутри каждой группы сдвиг в высокое поле соответствует соединениям с более электроотрицательными заместителями, за исключением [c.102]

    Истинная напряженность магнитного поля, в котором находится ядро, зависит от его окружения и отличается от напряженности, создавашой внешним электромагнитом. Это обусловлено тем, что при движении электронов, окружающих атомное ядро, создаются локальные магнитные поля, напряженность которых составляет (15—20)-10 Т. Когда равнодействующая локальных магнитных полей направлена против внешнего поля, эффективная напряженность поля у каждого ядра будет ниже, чем внешнее магнитное поле. В этом случае говорят о диамагнитном экранировании. Экранирование тем, слабее, чем сильнее притягиваются электроны соседними ядрами В том случае, когда результирующая локальных полей направлена по внешнему полю, резонансный переход происходит при меньшем значении напряженности поля, поэтому говорят о дезэкранировании. В результате резонанс одних и тех же ядер в разных химических группах наблюдается при разных частотах, их полосы смещены одна относительно другой. Это смещение измеряется относительно сигнала некоего стандартного соединения и называется химическим сдвигом. В ПМР-спектроскопии в органических растворителях таким стандартным спектром является сигнал сильно экранированного протона тетраметилсилана, ЗКСНз),, а в водных растворах используют триметилсилилпропансульфонат [c.175]


Смотреть страницы где упоминается термин Спектроскопия магнитного резонанса других ядер: [c.141]    [c.87]    [c.540]    [c.51]    [c.293]    [c.233]    [c.293]    [c.272]   
Смотреть главы в:

Ядерный магнитный резонанс в органической химии -> Спектроскопия магнитного резонанса других ядер




ПОИСК





Смотрите так же термины и статьи:

Магнитная спектроскопия

Резонанс магнитным ядер спектроскопия

Спектроскопия магнитного резонанса

Спектроскопия магнитного резонанса резонанса

ЯМР-спектроскопия других ядер



© 2025 chem21.info Реклама на сайте