Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение и свойства кремнийорганических соединений

    Изменение свОйс тв крупнопористого силикагеля по отношению к адсорбции пара воды при изменении степени гидратации его поверхности происходит так же, как изменение свойств кремнезема, полученного сжиганием кремнийорганических соединений. [c.44]

    Полимерные кремнийорганические соединения. В 1936 г. К. А. Андрианов разработал метод синтеза высокомолекулярных кремнийорганических соединений, положенный в основу промышленного способа получения ряда продуктов, обладающих ценными свойствами. После этого получено огромное количество кремнийорганических олигомеров и полимеров, нашедших разнообразное применение (см. разд. 31.1.2). [c.596]


    В последнее время намечается определенная тенденция к применению кремнийорганических соединений при получении основы высокотемпературного масла улучшенных свойств. Компаундирование минеральных и синтетических смазочных масел с кремний-органическими соединениями заметно улучшает вязкостно-температурные, термоокислительные, низкотемпературные и другие эксплуатационные свойства. [c.165]

    Получение и свойства кремнийорганических соединений [c.592]

    Книга представляет собой монографию, посвященную кремнийорганическим соединениям, специально переработанную и дополненную автором для русского издания. В ней рассматривается номенклатура кремний-органических соединений, их свойства, методы получения разнообразных классов соединений, а также полимеров на их основе (силиконовые масла, пасты, лаки, каучуки и т. д.). Специальная глава посвящена методам анализа кремнийорганических соединений. Приведена обширная библиография. [c.2]

    Наибольшее распространение получили минеральные масла — продукты переработки нефти. Находят применение и синтетические смазочные масла, полученные из кремнийорганических соединений. Они сохраняют смазывающие свойства при высоких температурах, мало изменяя свою вязкость — основной показатель качества смазки. [c.74]

    Одним из характерных свойств кремнийорганических соединений, с которым необходимо считаться при определении физических констант, является склонность к образованию стекловидных масс. Последние представляют собой продукты гидролитического расщепления и конденсации, которая в конце концов приводит к получению полимеров, отвечающих формуле (3102) (НзО) . [c.32]

    Например, исключительно большое значение приобретает проблема создания негорючих неметаллических материалов, и именно элементоорганическим полимерам принадлежит здесь ведущая роль. Уже сейчас научные достижения в области синтеза и изучения свойств полимеров с неорганическими цепями молекул позволили получить полимеры, в которых содержание органических групп не превышает 15%. На основе таких полимеров уже можно разрабатывать технологию получения полностью негорючих стекло- и асбопластиков с содержанием органических групп менее 5%. Негорючие полимеры, а также армированные и другие пластики на их основе можно синтезировать исходя из простейших кремнийорганических соединений с использованием силикатов натрия (для построения макромолекул полимеров) и неорганических наполнителей. Это один из интереснейших путей подхода к созданию синтетических негорючих неметаллических материалов. [c.19]


    В настоящей работе рассматриваются закономерности процессов образования связи кремний—азот в органоаминосиланах и органосилазанах, а также свойства эТих соединений в сравнении со свойствами оргаиосилоксанов. Знание этих закономерностей позволило решить ряд теоретических вопросов, касающихся зависимости свойств кремнийорганических соединений от строения основной цепи молекулы, разработать способы их получения и определить возможные области применения соединений, содержащих связи кремний—азот. [c.129]

    Книга состоит их трех основных частей. В первой вводной части мы постарались ознакомить читателя с основными характерными особенностями химии кремнийорганических соединений, объяснить ее отличие от классической органической химии, привести основные сведения о номенклатуре кремнийорганических соединений. В следующей части приведены методы получения кремнийорганических соединений и описаны производственные процессы. Последняя часть книги посвящена кремнийорганическим полимерам, их свойствам, способам получения, применению их в технике. [c.13]

    Принципиальный поворот в этой области был совершен советскими исследователями, в работах которых впервые была указана возможность применения кремнийорганических соединений для получения полимеров со специфическими и замечательными свойствами. [c.16]

    Впервые производство синтетического каучука было осуществлено в СССР по методу С. В. Лебедева. Для получения синтетического каучука в качестве мономеров используют 1,3-бутадиен, изопрен, хлоропрен, стирол, кремнийорганические соединения. Используя разные мономеры, меняя условия полимеризации, получают синтетический каучук, не уступающий, а по некоторым свойствам превосходящий природный. [c.279]

    Получение кремнийорганических соединений с различными металлами в цепи, обрамленной органическими радикалами и элементоорганическими группами, создает большие перспективы. Перед химией открываются возможности, применяя этот принцип построения полимеров, создавать органические минералы — вещества, в какой-то степени совмещающие свойства природных минералов и органических соединений. Так, в ситаллах, благодаря управляемой объемной кристаллизации стекла — неорганического полимера, образуется такая структура, которая обусловливает исключительную прочность и жаростойкость. Удивительными свойствами, например, обладает сополимер карбидов гафния и титана, плавящийся лишь при температуре 4215° С. При этой температуре даже самый тугоплавкий металл вольфрам течет, как вода. [c.119]

    Полученные результаты позволяют расширить области применения кремнийорганических соединений, разнообразить ассортимент исходных продуктов, применяемых для их синтеза, и значительно улучшить свойства полисилоксанов. [c.86]

    Кристаллизацию кремнийорганических соединений проводят несколько раз до тех пор, пока выделенные кристаллы не станут вполне однородными или не будут по своим физическим свойствам соответствовать чистому веществу. Чистые кристаллы должны иметь такую же температуру плавления, как и кристаллы, полученные упариванием маточного раствора. Совершенно точное представление о составе твердой и жидкой фаз при кристаллизации дает исследование кривых кристаллизации двух веществ в данном растворителе. [c.135]

    До 1961 г. в тематике лаборатории превалировали работы но синтезу и изучению свойств индивидуальных кремнийорганических соединений, а с 1961 г. — по изучению материалов, получаемых на основе систем полимер—силикат—окисел. В связи с этим лаборатория получила новое наименование — Лаборатория кремнийорганических материалов. Научные направления вновь созданной лаборатории включали исследования по химии кремнийорганических соединений и получению органосиликатных материалов. [c.278]

    Из рассмотрения кристаллографических сечений различных кристаллических модификаций кремнезема [1, 2] следует, что при прочих равных условиях различие в упаковке кремнийкислородных тетраэдров должно существенно сказаться на степени гидратации поверхности. При механическом дроблении кристаллического кварца структура его поверхности может быть значительно искажена. В литературе имеются указания о наличии на поверхности кварца тонкого слоя аморфного кремнезема [3]. В связи с этим картина расположения свободных углов кремнийкислородных тетраэдров на поверхности раскола реального кристалла может существенно отличаться от полученной из кристаллографических данных. Тетраэдры могут быть связаны с объемной структурой не только тремя углами, но, возможно, также четырьмя, двумя и даже одним. В случае силикагелей различие в упаковке и ориентации тетраэдров 5104 на поверхности может быть вызвано условиями их Приготовления и дальнейшей обработки. При длительном контакте образца с водой все выступающие на поверхности углы кремнийкислородных тетраэдров заняты гидроксилами, т. е. поверхность в этом смысле будет полностью гидратирована. Однако число таких углов, а следовательно, степень гидратации единицы поверхности различных образцов кремнезема может быть различной. Для проверки этих положГений. мы [4—8 провели систематические исследования адсорбционных и энергетических свойств, а также степени гидратации единицы поверхности кремнезема. В этих работах использовались различные образцы силикагеля, непористый кремнезем, полученный сжиганием кремнийорганических соединений (БС-1), и кристаллический а-кварц , их основные адсорбционные характеристики приведены в табл. 1. [c.107]


    Органические соединения элементов I группы 164 2. Органические соединения элементов II группы 165 3. Органические соединения элементов III группы 167 4. Органические соединения элементов IV и V групп 168 5. Кремнийорганические соединения 69 6. Сравнительная характеристика свойств углерода и кремния 170 7. Классификация и номенклатура 172 8. Способы получения 174 9. Физические свойства мономерных кремнийорганических соединений 176 10. Химические свойства кремнийорганических мономеров 177 11. Высокомолекулярные кремнийорганические соединения (полиорганосилоксаны, или силиконы) 178 12. Гидрофобизирующие свойства кремнийорганических соединений 180 13. Гидрофобизация строительных материалов и сооружений. Применение кремнийорганических соединений в производстве стройматериалов 181 [c.426]

    ПОЛУЧЕНИЕ И СВОЙСТВА КРЕМНИЙОРГАНИЧЕСКИХ СОЕДИНЕНИЙ А. Получение органосиланов [c.469]

    Условия и результаты опытов по присоединению трихлорсилана к моно- и диаллилпроизводным кремния, а также некоторые свойства полученных хлорпроизводных кремнийорганических соединений приведены в табл. 3—7. [c.306]

    Наша задача заключалась в разработке методов получения гелеобразных кремнийорганических соединений. В результате получались студни органокремнеземистого адсорбента с заданными свойствами. Эти студни образованы, подобно силикагелям, силоксановой пространственной полимерной сеткой 81—О—81 , но в отличие от них у каждого атома кремния как на поверхности, так и в объеме одна связь занята органической группой. Адсорбционные свойства таких полимерных адсорбентов определяются развитой пористой структурой и природой органической группы на поверхности. [c.78]

    Свойства УУКМ изменяются в широком диапазоне. Прочность карбонизованного УУКМ пропорциональна плотности. Графитация карбонизованного УУКМ повышает его прочность. Прочность УУКМ на основе высокопрочных УВ выше прочности КМ на основе высокомодульных УВ, полученных при различных температурах обработки. К уникальным свойствам УУКМ относится высокая температуростойкость в инертных и восстановительных средах. По способности сохранять форму и физико-механические свойства в этих средах УУКМ превосходит известные конструкционные материалы. Некоторые УУКМ, особенно полученные карбонизацией углепластика на основе органических полимеров, характеризуются увеличением прочности с повышением температуры эксплуатации от 20 до 2700 С. При температурах выше 3000°С УУКМ работоспособны в течение короткого времени, так как начинается интенсивная сублимация графита. Чем совершенней кристаллическая структура графита, тем при более высокой температуре и с меньшей скоростью происходят термодеструктивные процессы. Свойства УУКМ изменяются на воздутсе при длительном воздействии относительно невысоких температур. Так, при 400 - 650°С в воздушной среде происходит окисление УУКМ и, как следствие, быстрое снижение прочности в результате нарастания пористости. Окисление матрицы опережает окисление УВ, если последние имеют более совершенную структуру углерода. Скорость окисления УУКМ снижается с повышением температуры их получения и уменьшением числа дефектов. Эффективно предотвращает окисление УУКМ пропитка их кремнийорганическими соединениями из-за образования карбида и оксида кремния. [c.92]

    Поликонденсация протекает при высоких температурах 4—8 ч. Молекулярная масса полимеров в значительной степени определяется чистотой мономеров. При поликонденсации силандиолов Р251(0Н)2—бифункциональных кремнийорганических соединений— образуются линейные полимеры с каучукоподобными свойствами. Они используются как заменители каучука при получении термостойких резин. При поликонденсацин силантриолов Н81(ОН)з— трифункциональных соединений — образуются пространственные кремнийорганические полимеры, структура которых представлена схемой на стр. 483 они применяются в производстве термостойких пластически х масс. [c.482]

    ТИ применяют в технике в качестве гидравлических и амортизационных масел, масел для диффузионных вакуумных насосов, для получения морозе- и теплостойких консистентных смазок в качестве пропиточного материала для конденсаторов и т. д. Их свойства объясняют прочностью связей кремния с кислородом, составом и строением молекул. Для сравнения укажем энергия связи 51 — О равна 443,08 кДж/моль, тогда как для 51 — С она составляет 326,04 кДж/моль. Это различие считается большим. Представителями кремнийорганических соединений являются жидкие линейные и циклические метил- и этилсилоксаны. Исследование их структуры впервые было проведено А. Ф. Скрышевским совместно с Ю. В. Пасечником и В. П. Клочковым. [c.214]

    Техника предъявляет к резиновым изделиям самые разнообразные требования. В одном случае необходима большая прочность, в другом—высокая эластичность, в третьем—термическая устойчивость. Все эти требования невозможно удовлетворить одним каким-нибудь типом каучука. В связи с этим промышленность выпускает десятки сортов синтетического каучука, полученных на основе самых различных химических соединений. Выше указывались ценные свойства хлоропреновых каучуков и бутилкау-чука. Каучуки на основе кремнийорганических соединений отличаются сохранением эластических свойств как при низких, гак и при высоких температурах каучуки на основе фторорганических соединений сочетают высокую термостойкость с почти абсолютной химической устойчивостью каучуки, полученные сополиме-ризацией дивинила с акрилонитрилом, хорошо выдерживают действие бензина и других нефтепродуктов. Наиболее массовым типом каучука, широко применяемым для изготовления шин, является каучук, получаемый сополимеризацией дивинила со стиролом (стр. 486). Эти каучуки отличаются хорошей прочностью и поэтому изготавливаются в громадных количествах. Однако по эластичности и некоторым другим свойствам они все же уступают натуральному каучуку, вследствие чего до последнего времени он являлся незаменимым для целого ряда изделий. Эти ценные свойства натурального каучука были связаны со строением полимерной цепи, которое отличалось строго регулярным расположением в пространстве отдельных звеньев. Такую структуру долго не удавалось воспроизвести в синтетических каучуках. Лишь в 50-х годах в СССР и в других странах было найдено, что проведение полимеризации в присутствии комплексных металлорганических катализаторов приводит к образованию полимеров регулярной структуры. [c.104]

    Кафедра химической технологии вяжущих материалов, зав. кафедрой докт. техн. наук, проф. А. А. Пащенко, одна из наиболее молодых кафедр на факультете. За два года со дня ее выделения из кафедры силикатов проведена большая организационная работа по обеспечению учебного процесса, развернуты серьезные научно-исследовательские работы по изучению процессов гидрофобизации различных материалов и изделий кремнийорганическими соединениями, по исследованию деструктивных процессов в тонких пленках, по глубокому изучению системы цементный камень — стекловолокно с целью создания на ее основе новых материалов, обладающих высокими физикомеханическими свойствами. Проф. А. А. Пащенко, используя данные всестороннего изучения различных типов вяжущих веществ, впервые предложил классификацию вяжущих материалов как неорганического, так и органического происхождения, что позволило осуществлять научно обоснованный подбор вяжущих веществ с учетом получения заданных свойств обрабатываемого материала. Кафедра тесно связана со многими научными учреждениями страны и ведет большую хоздоговорную тематику с рядом предприятий. [c.123]

    Для получения покрытий на основе ХСПЭ применяются и другие азотсодержащие кремнийорганические соединения [38], которые обусловливают эффективное сшивание ХСПЭ при комнатной температуре. Получающиеся при этом светлые покрытия легко пигментируются, обладают хорошими физико-механическими свойствами, химической и атмосферостойкостью, хотя по адгезионным свойствам и уступают продуктам конденсации диаминов, эпоксисоединений и фенолоформальдегидных смол. Высокую адгезию покрытий на основе ХСПЭ, отвержденных циклосилиламином [39], следует отнести за счет низкой степени сшивания покрытий. В них вводят лишь 0,5 масс. ч. отвердителя, хотя для эффективного сшивания необходимо 10—15 масс. ч. отвердителя на 100 масс. ч. ХСПЭ. [c.172]

    К —органический радикал, один из атомов углерода в коп непосредственно связан с атомом кремния и одновремен атомом кислорода. По строению эти вещества напоминают 1 ны, но между кремнием и кислородом не существует дво связи. Именно это обстоятельство и делает силиконы способ к полимеризации. В 1900 г. Фр. Киппинг, применив синтез ньяра, получил ряд кремнийорганических соединений. Однак начала второй мировой войны исследования в области Х1 силиконов носили лишь академический характер. Перевор этой области относится к 1937 г., когда советский уче К- А. Андрианов (1904) разработал способ получения сил новых смол путем гидролиза органических производных алкс силанов. В 1939 г. К. А. Андрианов и одновременно М. М. К (1908) синтезировали кремнийорганические полимеры п гидролиза и конденсации эфиров ортокремниевой кислоты р казали, что полученные вещества обладают ценными в пра -ческом отношении свойствами.  [c.238]

    Таким образом, при получении жестких пенопластов на основе сложных полиэфиров лучшим из исследованных ПАВ оказалось неионогенное поверхностно-активное вещество ОП-10. Кремнийорганические соединения в любом случае (высоковязких пли нпзковязких полиэфиров) ухудшали свойства готового пеноматериала. [c.140]

    Волокнистая разновидность этого минерала называется хризотил-асбестом [77 79, с. 197]. Длина волокон природного хризотил-асбеста достигает нескольких сантиметров, диаметр их очень мал. Эти столбчатые кристаллы плотно упаковываются, но нод действием механических сил разделяются на мелкие волоконца. При помощи специальных приемов диспергирования можно добиться получения волокон диаметром от 200 до 500 A. В настоящее время имеются убедительные доказательства того, что волокна хризотил-асбеста являются полыми имеют внутренний капилляр диаметром около 150 Л. Другие разновидности асбеста принадлежат к минералам группы амфиболов. В качестве наполнителей наиболее часто используются хризотил- и антофиллит-асбесты. Присутствие на поверхности волокон асбеста гидроксильных групп обеспечивает их высокую усиливающую способность [80, 81]. Например, введение асбеста в состав клеевой композиции на основе кремнийорганической и фенолоформальдегидной смол (1 1) приводит к повышению прочности склеивания [80]. Причину такого влияния асбеста на прочностные свойства клеевого соединения следует искать в химическом взаимодействии наполнителя (асбеста) с полимером за счет участия в реакции остаточных функциональных групп смолы (алкокси-, ацетокси-грунпы). В частности, между прокаленным асбестом, на поверх-ностп которого содержится некоторое количество ОН-групп, и кремнийорганическим мономером может протекать следующая реакция  [c.336]

    Свойства основных отечественных полимерных материалов представлены на стр. 148—154. В таблице на стр. 148 приведены физикомеханические показатели пластмасс, изготовленных на основе фенолформальдегидных смол, содержащих различные наполнители, введение которых позволяет значительно улучшить водо-, теплостойкость, диэлектрические показатели и другие свойства материалов. Свойства стеклопластиков, высокопрочных конструкционных материалов представлены на стр. 149. Стеклопластики, полученные на основе полиамидов или поликарбонатов, используют для изготовления лопаток компрессоров, конструкционных деталей. Они позволяют значительно уменьшить вес аппаратов. Стекловолокнистый анизотропный материал (СВАМ) используют в качестве высокопрочного конструкционного материала. Свойства легких газонаполненных полимерных материалов представлены на стр. 150. Легкость, высокие механические и электроизоляционные свойства обусловливают их применение в качестве тепло- и звукоизоляционных материалов в строительстве, су-до- и самолетостроении, а также при изготовлении различных бытовых приборов. На стр. 151 приводятся свойства наиболее распространенных синтетических волокон, которые находят широкое применение в технике и при изготовлении предметов широкого потребления. Физико-механичекие свойства резин и свойства материалов на основе кремнийорганических соединений сведены в таблицах на стр. 152—154. [c.146]

    Стремительное развитие химии и технологии кремнийорганических соединений и возросший интерес к этой наиболее молодой области органической химии побудили нас написать эту монографию. Мы попытались использовать в ней огромную массу печатных работ и патентов, опубликованных за время почти пятидесятилетней систематической экспериментальной работы в этой области, дать критический озбор наиболее важных лабораторных исследований, привести способы получения кремнийорганических полимеров и мономеров, описать их свойства и применение. [c.12]

    Новые значения совпадают с экспериментально полученными энергиями диссоциации связей в общем они больше, однако относительные свойства кремния и углерода остаются без изменения. Исключение составляют энергии связи 51—С и С—С. По Полингу, они почти одинаковые, а по новым данным, связь 51—С несколько слабее. Это лучиге согласуется с фактами и с результатами пиролиза алкилсиланов, показывающими, что сначала разрывается связь 51—С, а затем только связь С—С. Новые данные также подтверждаются полученными значениями теплот горения кремнийорганических соединений [2070]. Разложение низших алкилсиланов наступает при более низких температурах, чем у соответствующих углеводородных аналогов. [c.190]

    Исключительная адгезия этих пленок к материалам различных видов и их интересные свойства вскоре пробудили внимание исследователей и обусловили широкое распространение этого способа применения кремнийорганических соединений. Было исследовано, каким образом полимерная пленка связывается с гидрофильной поверхностью, какова сила сцепления и наиболее благоприятное соотношение мономеров, т. е. среднее соотношение К/51. Проведено сравнение пленок, полученных из мономеров и полимеров с разными гидролизующимися группами и приготовленных яанесением стабильных полимеров. Так как [c.285]

    Что касается кристаллического состояния наполнителя, то аморфные наполнители (синтетические силикаты) придают вулка-низату самую высокую прочность, в то время как при добавлении кристаллической формы А12О3 получают продукт с наибольшим удлинением. Существенным фактором является чистота наполнителя. С наполнителями, полученными химическим способом, получаются лучшие результаты, чем с наполнителями из природных материалов. Загрязнения особенно сказываются на снижении термостойкости и повышении водо поглощения, в результате чего снижаются электроизоляционные свойства эластомеров. Вследствие гидрофобности полимера смачиваемость обусловлена глав ным образом способностью наполнителя к увлажнению. Наполни тели с поверхностью, защищенной органическими радикалами очень хорошо диспергируются при добавлении 20% объемн наполнителя образуется продукт с пределом прочности около 135 кг см. Однако эти наполнители, поскольку они гидрофобизированы не кремнийорганическими соединениями, непригодны для добавления к продуктам, предназначенным для применения при высоких температурах выше 180° органические радикалы быстро отщепляются в результате окисления, материал снова [c.366]

    Для шлихтования волокон из полиэтилентерефталата, предотвращающего разделение нитей и повреждение их от трения, предложены специальные составы [1352, 1353]. Так, например, рекомендована [1353] смесь казеина, пептизирующего его вещества, воска или парафина, диспергированного в водной среде, диснергатора, мочевины и веществ, предохраняющих казеин от гниения. Химические способы улучшения свойств тканей из полиэтилентерефталата описаны Элленисом [1357], Гольдбергом [1358] и другими исследователями [1359]. Так, Гольдберг [13581 рекомендовал производить матирование полиэтилентерефталата, обрабатывая последний щелочами. Для водостойкой отделки различных текстильных материалов, в том числе материалов и из полиэтилентерефталата, могут быть использованы кремнийорганические соединения [13591. Переработка штапельного волокна из полиэтилентерефталата по камвольному способу описана Карлиньш [ 1360].Разработанотакже получение равномерных прядильных смесей дакрона с природными и искусственными волокнами [1361]. В ряде статей приведены данные об аппаратуре и контрольно-измерительных приборах полиэтилентере-фтал атных заводов [1354—13561. [c.41]

    Полиорганосилоксаны обладают ценными физико-химическими свойствами и нашли большое техническое применение. Способ их получения заключается в гидролизе мономерных кремнийорганических соединений, содержащих способные к гидролизу группы наибольшее значение имеют хлор- и алкоксиметилсиланы. При гидролизе водой в присутствии щелочных или кислых катализаторов сначала образуются силанолы, которые затем поликонденсируются с образованием полисилоксановых полимеров  [c.318]

    В 1936 г. советский ученый К. А. Андрианов разработал метод синтеза высокомолекулярных кремнийорганических соединений, положенный в основу промышленного способа получения ряда продуктов, обладаюших ценными свойствами. [c.503]

    Полимеры с реакционноспособными кремнийсодержащими группами. Другим направлением исследований кремнийсодержащих полимеров является синтез и изучение свойств сополимеров различных непредельных кремнийорганических соединений со стиролом и метилметакрилатом [11]. Изучена активность випильных соединений кремния в реакциях радикальной сополимеризации и влияние силильных групп на реакционную способность кратной связи. Выявлены некоторые закономерности образования сополимеров в зависимости от условий реакции, определены константы активности при сополимеризации метилметакриалата и непредельных органосиланов, а также вычислены факторы активности и полярность последних, Полученные данные свидетельствуют о том, что кремпий-олефины обладают повышенной способностью к полимеризации по сравнению с их органическими аналогами. Замена электро-нодонорных метильных радикалов у атома кремния на электроноакцепторные заместители (С1) или группы, способные к р — -сопряжению (СвНа), приводит к некоторому увеличению реакционной способности кратной связи кремнийолефина. [c.284]

    Приводятся данные по исследованию низкомолекулярных и полимерных кремнийорганических соединений, а также материалов на их основе. Показано, что кремнийорганические соединения со связью 81—Н обладают повышенной реакционной способностью и позволяют получать простыми методами вещества с разнообразными и чрезвычайно ценными свойствами. Изучено поведение полиметилфенилсилоксанов при нагревании в инертной среде. Синтезированы полимеры с реакционноспособными кремнийсодержащими группами. Получен новый класс композиционных материалов, названных органосиликатными. Органосиликатные материалы образуются в результате механо-химического воздействия на суспензию измельченных, термически активированных силикатов и окислов в полимерном растворе при сравнительно низких температурах. Приводятся области применения органосиликатных материалов в различных отраслях народного хозяйства. Библ. — 40 назв. [c.316]

    Фосфорорганические и кремнийорганические соединения находят широкое применение в современной технике. Можно ожидать, что соединения, содержаш ие одновременно фосфор и кремний, будут обладать интересными свойствами и также найдут практическое применение. В на-стояш ее время уже описано использование фосфоркремиийорганических соединений в качестве антиоксидантов [1], пеногасящих композиций [2], добавок к цементным растворам [3], а также для получения полимеров с ценными техническими свойствами [4, 5]. [c.212]

    Латекс сополимера бутадиена с акрилонитрилом и метакриловой кислотой в соотношении 57 40 3 благодаря наличию в молекуле сополимера полярных карбоксильных и акрилонитрильных групп эффективен при склеивании поливинилхлорида, алюминия и др. Смесь этого сополимера с дисперсией ПВА, полученная в присутствии 1 % неионогенных ПАВ, является хорошим клеем для склеивания крафт-бумаги с алюминиевой фольгой и полиэфирной пленкой, причем по адгезионным свойствам этот клей превосходит клей ПВА. Повышение водостойкости соединений металлов друг с другом или с пористыми материалами на клее из карбоксилированного каучука обеспечивает введение в латекс кремнийорганических соединений с эпокси- или меркаптогруппами. [c.98]


Смотреть страницы где упоминается термин Получение и свойства кремнийорганических соединений: [c.357]    [c.268]    [c.109]   
Смотреть главы в:

Основы органической химии 2 Издание 2 -> Получение и свойства кремнийорганических соединений

Основы органической химии Ч 2 -> Получение и свойства кремнийорганических соединений




ПОИСК





Смотрите так же термины и статьи:

Кремнийорганические соединени

Кремнийорганические соединения

Кремнийорганические соединения получение

Получение пз соединений

получение и свойства



© 2025 chem21.info Реклама на сайте