Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксидов азота определение в воздухе

    Эффективность автоматизированных систем обработки эколого-ана-литической информации заметно повьппается при использовании автоматических станций контроля загрязнений воды и воздуха. Локальные автоматизированные системы контроля загрязнений воздуха созданы в Москве, Санкт-Петербурге, Челябинске, Нижнем Новгороде, Стерлита-макс, Уфе и других городах. Проводятся опытные испытания станций автоматизированного контроля качества воды в местах сброса сточных вод и водозаборах. Созданы приборы для непрерьшного определения оксидов азота, серы и углерода, озона, аммиака, хлора и летучих углеводородов. На автоматизированных станциях контроля загрязнений воды измеряют температуру, pH, электропроводность, содержание кислорода, ионов хлора, фтора, меди, нитратов и т.п. [c.27]


    При определении натрия атомно-абсорбционным методом изучено влияние условий измерения и различных параметров на величину абсорбции и наклон градуировочных графиков [935]. Применяли спектрофотометр фирмы Перкин-Элмер (модель 303), пламена ацетилен—воздух и ацетилен—оксид азота(1). Предложена новая модель многоэлементного пламенного спектрометра с детектором-види-коном, оснащенным ЭВМ, Предусмотрены программы, позволяющие исключить наложения спектров мешающих элементов, корректировать фон, проводить коррекцию с помощью внутреннего стандарта, измерять аналитический сигнал по отношению к усредненному фону. Прибор используют для одновременного определения натрия, калия, лития и кальция [755]. [c.116]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]

    Для идентификации диоксида азота в смеси газов используют метод [23], основанный на поглощении этого чрезвычайно токсичного газа раствором иодида калия с последующим колориметрическим определением иона нитрита по реакции образования красителя с реактивом Грисса [5]. Предел обнаружения NO2 по этой реакции составляет 0,3 мкг, а идентификации помимо других сильных окислителей мещают нитросоединения, легко отщепляющие нитрит-ион. Этот прием можно использовать в комбинации с другими качественными реакциями при определении в воздухе рабочей зоны компонентов сложной смеси агрессивных неорганических газов ( I2, НС1, IO2, NO2 и О3) [22] и смеси оксидов азота в воздухе рабочей зоны [23]. [c.181]


    Описан метод определения натрия, позволяюш,ий учесть мешающее влияние различных факторов на интенсивность линий натрия и контрольную пробу [12381. Для этой цели применяют трехканальный спектрофотометр и два распылителя — обычный и V-образный. Натрий определяют по эмиссии в пламени воздух—оксид азота 1) — ацетилен. Для подавления ионизации используют соли калия, раствор инжектируют через обычный распылитель током оксида азота(1). Воздух вводят через V-образный распылитель. Через ветви этого распылителя вводят растворы анализируемой и контрольной проб. Концентрацию натрия определяют с помощью программ по фототокам растворов, содержащих натрий и контрольную иробу. [c.116]

    Скорость ЭТОЙ реакции зависит от ряда факторов. В нейтральных растворах реакция происходит очень медленно, о высокая концентрация водородных ионов способствует процессу окисления. Поэтому не следует оставлять на долгое время на воздухе подкисленные растворы иодида калия, которые предполагается использовать для иодометрических определений. Скорость окисления возрастает также под влиянием прямых солнечных лучей. Некоторые вещества, например соли меди, оксиды азота, каталитически ускоряют реакцию между иодидом калия и кислородом. [c.414]

    Превращение диоксида азота в нитробензол в процессе хемосорбционного извлечения NO2 из воздуха было использовано при определении оксидов азота в воздухе рабочей зоны, отработавших газах дизельных двигателей и пороховых газах [52]. Надежная идентификация компонентов пороховых газов (СО, СО2, NO, NO2, SO2, нитриты, нитраты) позволила увеличить срок возможной оценки давности выстрела (эксперимент проводился с патронными гильзами) в криминалистике с недели до месяца. Хроматограмма, иллюстрирующая применение хемосорбционного улавливания и РГХ для определения диоксида азота в пороховых газах, приведена на рис. III.8. [c.111]

    ИНДИКАТОРНЫЕ ТРУБКИ, предназначены для определения в воздухе разл. примесей, преим. токсичных - СО, SOj, оксидов азота, I2, этанола и др. Представляют собой герметизированные прозрачные (как правило, стеклянные) трубки диаметром ок. 4 или 7 мм, длиной 100 мм и более с наполнителем (дробленый силикагель, стеклянная или фарфоровая крошка и др.), обычно обработанным р-рами хнм. реагентов. Если реагенты взаимод. друг с другом, их р-ры запаивают в разные ампулы, к-рые разбивают при использовании И. т. Для связывания мешающих определению в-в применяют хим. поглотители, помещаемые непосредственно в И. т. или в спец. фильтрующие приставки к ним. [c.227]

    Оксидов азота определение в воздухе. Примеси оксидов азота в воздухе определяют при помощи электрода (95-46), чувствительного к оксидам азота. [c.86]

    Оксидов азота определение в дымовых газах. Первоисточником загрязняющих воздух оксидов азота являются дымовые газы, образующиеся при сжигании органического топлива. Содержание в них оксидов азота колеблется от 2-10 до 0,14%. Оксиды азота определяют после перевода в нитраты с использованием нитратного электрода 93-07 и электрода сравнения 90-02. [c.86]

    Атомно-абсорбционное определение ионов щелочноземельных металлов [162] выполняют на спектрофотометре Сатурн , используя аналитические линии 285,21 нм (Mg), 422,67 нм (Са), 460,73 нм (Sr) и 553,55 нм (Ва). Концентрат в виде 5%-ного раствора вводят в пламя ацетилен - воздух (определение Mg и Са) и оксид азота (NjO)-воздух (определение Sr и Ва). [c.168]

    За несколько дней до взрыва на установке получения бутадиена была прекращена подача сырья (вследствие возникших неполадок). Сырье, содержащее до 50% бутадиена, подавалось из резервуара насосом, который был запроектирован недостаточной производительности. Чтобы обеспечить нужную подачу сырья, в резервуаре создавали избыточное давление инертным газом, который получали сжиганием избытка топливного газа в кислороде воздуха. В получаемом инертном газе был непрореагировавший кислород и следы оксидов азота, образовавшегося в печи. В определенных условиях бутадиен реагирует с кислородом, образуя взрывоопасные пероксиды бутадиена, а с оксидами азота — бутадиен-азотистые соединения, разлагающиеся при нагревании. [c.32]

    Рассмотренные выше загрязнения, прежде всего оксиды углерода, серы, азота и углеводороды, называются первичными. При определенных условиях совместно с такими загрязнениями, как сажа п другие частицы, они образуют смог. К таким условиям относятся следующие инверсия воздушных слоев, при которой теплый слой воздуха окружен сверху и снизу более холодными слоями, что препятствует естественной циркуляции воздуха, а значит, и выносу загрязнений определенные местные географические условия и высокая концентрация загрязнений, например в больших городах. Кроме смога, состоящего из первичных загрязнений, образуется еще вторичный, или фотохимический, смог. Дело в том, что под действием ультрафиолетовой составляющей солнечного излучения происходит разложение оксидов азота и кислорода и тем самым инициируется цепная радикальная реакция продуктов этого разложения с присутствующими в атмосфере углеводородами. Эта реакция приводит к опасным вторичным загрязнениям ат- [c.334]


    Молекулярный анализ — это обнаружение и определение химических соединений. Типичным примером является анализ смеси газов. Например, определение в воздухе основных компонентов (азот, кислород, диоксид углерода, инертные газы, озон) и таких примесей, как оксиды азота или серы. Среди методов молекулярного анализа ныне главенствующее место занимают хроматографические. [c.7]

    Часть оксидов азота при этом выделяется из раствора в воздух и теряется для определения. [c.406]

    В настоящее время получили распространение автоматические анализаторы выбросов на такие виды вредных веществ, как оксиды азота, серы, углерода. Так, компьютеризированные газоанализаторы фирмы IMR обеспечивают непрерывные измерения концентраций вредных веществ (О2, СО, СО2, SO2, NO, NO2, H2S) непосредственно в месте сгорания топлива с одновременным определением скорости потока топочных газов, степени запыленности и коэффициента избытка воздуха. Диапазоны измерений О2 — 20,9%, СО - 0-2000 ppm, СО2 - 0-25%, SO2 - 0-4000 ppm, NO — 0-2000 ppm, NO2 — 100 ppm, H2S — 0-200 ppm. Вывод информации осуществляется через интерфейс RS-232 на ЭВМ. [c.334]

    Показано, что в пламени воздух—пропан—бутан чувствительность определения натрия повышается в 10 раз при подогреве распылительной камеры до 200 С [167]. Сопоставлены пределы обнаружения натрия методом эмиссионной и абсорбционной спектрометрии при использовании одной и той же аппаратуры [678]. Приведены пределы обнаружения натрия при испарении его солей с зонда [412, 413]. В пламени оксид азота(1)—ацетилен предел обнаружения натрия составляет 1-10 мкг/мл по Зх-критерию и 10 г при определении его эмиссионным методом. При использовании графитовой печи НОА-72 предел обнаружения натрия составил 10 г [660]. Применение графитовой кюветы и лазера на красителе родамин 6Ж снижает предел обнаружения натрия до 3-10 ат/см [933]. [c.120]

    В солях цезия определяют п-10 % натрия в пламени пропан-бутан—воздух [172, 400]. Отмечается, что при определении натрия в бихромате цезия в пламени ацетилен—воздух цезий является спектроскопическим буфером [826]. Нуль прибора устанавливают по раствору бихромата цезия, содержащему 2500 мг/л соли. При применении низкотемпературного пламени водород—воздух снижается фон по сравнению с пламенами ацетилен—воздух и ацетилен—оксид азота(1) [1107]. Предлагается при анализе КС1 сп. ч. раствор КС1 наносить на микрозонд, определение проводить в пламени ацетилен— воздух [414]. Этим методом определяли из навески 100—200 мкг КС1 [c.172]

    В настоящее время оценка загрязненности атмосферного воздуха достигается путем аналитического контроля содержания вредных ингредиентов (углеводородов, оксида углерода, сероводорода и сернистого ангидрида, оксидов азота, аммиака и др.) в воздухе по унифицированным методикам с целью определения и расчета вредных выбросов из основных источников. [c.17]

    При определении степени токсичности отработавших газов помимо их собственной токсичности следует. учитывать и вторичную, появившуюся в результате фотохимических реакций, происходящих уже в атмосфере между компонентами отработавших газов и воздухом. В этом плане наиболее потенциально опасными являются оксиды азота и олефины. Образование смога в крупных городах обусловлено реакциями именно этих соединений. [c.153]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    ХЕМИЛЮМИНЕСЦЕНТНЫЙ АНАЛИЗ, метод количеств, и качеств, определения ионов и хим. соед. по интенсивности или спектру хемилюминесценции. В X. а. использ. окисление в-в, дающих яркую хемилюминесценцию,— люмтаола, люцигенина и др. окислители — НзОа, Ог и др. Интенсивность хемилюминесценции измеряют фотоэлектрически (на хемилюминесцентном фотометре, спектрофотометре) и фотографически. В X. а. конц. в-в, влияющих на скорость р-ций, определяют по изменению интенсивности хемилюминесценции во времени. Так, разработаны методы определения ионов иек-рых металлов — Ре(П), Мп(П), Со(П), Си(П) и др. (по пх каталитич. действию предел обнаружения — неск. нг/мл), орг. в-в — оксихинолина, нафтолов, фенантролина, спиртов, производных анилина, глюкозы, аминокислот и др. (по каталитич. и ингибирующему действию предел обнаружения — неск. мкг/мл и больше, в нек-рых случаях — неск. нг/мл), а также озона, оксидов азота и серы, сероводорода в воздухе (пределы обнаружения 10- %). [c.642]

    Сущность метода. Для определений такого типа в приборе должен быть специальный кран, поворотом которого можно быстро вводить в горелку попеременно то воздух, то оксид азота. Сначала получают ярко-желтое воздушно-ацетиленовое пламя, потом поворотом крана заменяют воздух на оксид азота — пламя должно стать розово-красным. Если этого не произойдет, регулируют приток горючего так, чтобы в пламени образовался красный конус. [c.24]

    Этот метод был применен при определении оксидов азота в воздухе, отработавших газах дизельных двигателей и пороховых газах [245]. При анализе отработавших газов их отбирают в вакуумированный до остаточного давления 12 кПа (около 80 мм рт.ст.) стеклянный цилиндрический контейнер емкостью 300 мл, который затем герметизируют заглушками из силиконовой резины. В лаборатории в контейнер газовым шприцем медленно вводят 25 мл абсорбционного раствора, содержащего 2,8 мл концентрированной серной кислоты в 1 л дважды перегнанной дистиллированной воды. В течение 10 мин контейнер встряхивают на механическом вибраторе, отбирают пипеткой 1 мл абсорбционного раствора и переносят его в коническую колбу на 50 мл. В колбу добавляют 5 мл бензола и медленно приливают 5 мл концентрированной серной кислоты. После этого колбу закрывают притертой пробкой и встряхивают на вибраторе в течение 5 мин, чтобы раствор охладился до комнатной температуры. Бензольный слой, в котором растворен нитробензол, образовавшийся в результате реакции, быстро отбирают стеклянной пипеткой, отделяя его от кислотного слоя, и сушат в бюксе над прокаленным СаСЛг. Затем 1 мкл раствора нитробензола вводят в испаритель хроматографа Газохром 1106 с ЭЗД (никель-63). Анализ проводят на стеклянной колонке (1,5 м х 4 мм) с силани-зированным хроматоном N с 15% апиезона Г, тёрмостатируемой при 120°С [2451. [c.367]

    Интересно использование нитратного электрода для анализа смеси нитратов и нитритов. Потенциал определяют дважды до и после окисления N02 раствором КМПО4 [120]. Метод применен для определения оксидов азота в сигаретном дыме. Нитратный электрод широко применяют для определения оксидов азота в воздухе, загрязненном выхлопными газами [121]. [c.136]

    Оксид азота может быть определен в присутствии диоксида. Дитц [46] описал метод обработки молекулярных сит 5А, позволяющий устранить образование хвостов при разделении на них оксидов азота. Колонку из нержавеющей стали длиной 1,8 м и наружным диаметром 6 м,м наполняли ситом 5А и нагревали до 300°С в вакууме в течение 20 ч для удаления воды, затем заполняли газообразным гелием и при 300°С медленно пропускали газообразный оксид азота в течение 1 ч. Затем колонку охлаждали, не прерывая ток оксида азота, продували газообразным гелием для удаления N0, после чего пропускали через колонку кислород для превращения сорбированного оксида азота в диоксид. Диоксид азота, не элюировавшийся из колонки, не мешал определению оксида азота.-"Возможно, что при применении более чувствительного детектора в сочетании с описанной обработкой колонки, а также при использовании колонки для предварительного концентрирования удастся определять оксид азота в воздухе в концентрациях порядка 10 %. Во всяком случае, описанный метод обработки колонки является перспективным. Применение более чувствительного детектора позволит определять еще меньшие концентрации оксида азота. [c.121]

    Перед испытанием готовят эталонные растворы органических соединений ванадия, молибдена, кобальта и никеля в топливе и вольфрама в воде в интервале концентраций этих металлов 1 Ю" - 10 % (масс.). Пробу топлива тщательно перемешивают и сжигают в количестве 7-8 мл/мин в пламенах воздух - ацетилен или оксид азота (N2 О)-ацетилен в режиме, указанном в табл. 18 (для спектрофотометра 1Ь-453). Для определения вольфрама сжигают водный раствор сухого остатка испьггуемого топлива. Перед растворением водой остаток обрабатывают раствором гидроксида натрия. [c.146]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Для определения порознь оксида азота (I ) и оксида азота (IV) в дымовых газах, в диапазоне их суммарной концентрации, в пересчете N02, от 0,02 г/м до 0,1 г/м , что диктуется практической необходимостью, были разработаны специальные индикаторные трубки. Их действие основано на эффекге цветной реакции. Специально разработанная индикаторная масса, в которой в качестве твердого носителя используется силикагель определенной фракции, реагируя с N02, превращалась в окрашенное комплексное соединение с определенным оттенком в зависимости от концентрации N02. Помещенный в индикаторную трубку газ N0 мгновенно, за счет кислорода воздуха, количественно превращгшея в N 2 и затем срабатывал тот же эффект цветной реакции. [c.160]

    Понятие о твердой фазе. Термодинамическое определение фазы (см. гл. II, 9) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия, т. е. обеспечены условия свободного массопереноса и теплообмена как в объеме каждой фазы, так и в системе в целом. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примером физически однородной (однофазной), но химически неоднородной системы являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т. п. Химическая неоднородность в однофазной системе наблюдается только при полном отсутствии химического взаимодействия между компонентами. Если такое взаимодействие при образовании фазы возможно, то оно приводит к возникновению и физически и химически однородной однофазной системы. Например, смесь газообразного оксида азота и кислорода физически однородна. Если бы эти газы пе взаимодействовали друг с другом, то их смесь была бы однофазной, но химически неоднородной (как воздух). Поскольку в системе возмол<но химическое взаимодействие, приводящее к образованию нового вещества (дыокспд азота НОг), то состояние термодинамического равновесия наступит тогда, когда система станет и физически и химически однородной. В-третьих, термодинамическое определение фазы предусматривает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе н от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важ[ю лишь соотношение между поверхностью и объемом. Например, фазой нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.302]

    Рекомендуется использовать пламя ацетилен—воздух, в котором интенсивность линий натрия не изменяется в присутствии элементов с низким потенциалом ионизации [324]. Зона максимального свечения натрия в этом пламени не зависит от введения раствора сульфата натрия в качестве буферного с концентрацией 2,5 мг/мл. Оптимальная зона для натрия отличается от зон для других щелочных элементов. Это объясняют изменением степени атомизации натрия и образованием гидроксидов в пламени. В работеиспользован спектрофотометр на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Применение низкотемпературного пламени водород— воздух приводит к уменьшению ионизационных помех и ослаблению фона по сравнению с высокотемпературным пламенем ацетилен— воздух и ацетилен—оксид азота(1) [1107]. В качестве буфера предложены соли лития. Рассматривается [419] аммиачно-кислородное пламя с температурой 1720° (1993 К). Отмечается, что кальций (до 500 мкг/мл) не мешает определению натрия интенсивность линии натрия возрастает в присутствии калия, что предлагается учитывать расчетным способом. Использование резонансных линий натрия (и других щелочных элементов) приводит в искривлению градуировочного графика за счет самоноглощения. При определении натрия в пла- [c.114]

    Указано, что натрий (медь, серебро) можно рассматривать как полностью атомизированный стандартный элемент [583]. Методом интегральной абсорбции вычислено, что натрий полностью атомизи-рован в обогащенных пламенах ацетилен—оксид азота(1) (Т = = 2950 К), водород—оксид азота(1) Т = 2900 К), ацетилен—воздух Т = 2450 К) и водород—воздух Т = 2000 К). Такое же заключение сделано для натрия при его определении в пламени ацетилен-оксид азота(1) с отношением окислителя к горючему, равным 1,95—2,8. Вычисления показали, что при более низком отношении образуется карбид натрия, при более высоком — моногидроксид и монооксид. Образование молекул Nag исключено. [c.118]

    Концентрация углеводородов порядка 10 % относительно безвредна для млекопитающих а это именно те пределы, которые характеризуют содержание углеводородов в атмосфере 335] Однако было показано что этилен в концентрации 10 % а другие углеводороды даже в меньшей концентрации характеризуются подавляющим действием на различные виды растений Еще более серьезную проблему представляет собой так называемый фотохимическии смог, который возникает при определенных метеорологических условиях вследствие реакции оксидов азота с различными примесями в воздухе, включая углеводороды Эти реакции приводят к образованию таких соединений как альдегиды пероксиацилнитраты, алкил-нитраты [c.143]

    Одним из наиболее распространенных неорганических полимерных носителей реагентов являются силикагели. Их модифицируют различными реагентами и часто наполняют ими тест-трубки для анализа воздуха. Например, для определения метанола и этанола в воздухе, химического потребления кислорода в воде используют оксид хрома(У1) в среде серной и фосфорной кислот для определения ЗОг в воздухе — бромкрезо-ловый зеленый для определения хлора — флуоресцеин и бромид калия для определения оксидов азота — иодид калия и крахмал для определения остаточного (5 10 %) х юра в воде — о-толидин. Силикагели с нековалентно иммобилизованным ксиленоловым оран- [c.215]

    Наиболее широко хемилюминесцентные методики применяются при определении диоксида азота (10 -10 мол. %), а при использовании термических конверторов — оксида азота до (10 мол. %). Известны методики определения арсина и фосфина (2-10 -2-Ю мол. %), а для определения этих примесей в воздухе рабочей зоны используются модификации газоанализатора Платан . Метод применяется также для определения диоксида серы в воздухе (10 мол. %), фосфора в инертных газах (10 мол. %). Примером методики тушения может служить методика определения кислорода в различных газах, на основе которой создан газоанализатор ФФ5101 с диапазоном измерения (4-10" -10 МО л. %). [c.921]

    Метод гфименяется для определения в воздухе примесей сероуглерода — до Ю мол. %, диоксида серы — до 2-10" мол. %, диоксида азота — до 10 мол. %, оксида азота — до 5-10 мол. %, оксида углерода — до 2-10 мол. %, озона — до 5-10 мол. %, аммиака — до Ю мол. %, сероводорода—до 7-10 мол. %, циановодорода—до З-Ю" мол. %, хлора—до 2 -10 мол. %. [c.925]

    Применяется метод и для определения неорганических соединений серы (SO2, H2S, S2, OS) в воздухе, технологических и гфиродных газах с пределом оиределения до 10 -10" мол. %. При анализе газов и газовых смесей, содержащих оксиды азота (N2O, N0, NO2, N2O4), применяются многоколоночные системы, разные колонки которых заполняются различными сорбентами. [c.926]

    Теплота С1орания твердого топлива определяется сжиганием навесьси в калориметрической бомбе (2 ) в токе кислорода, кДж/кг. Полученное значение (2б) выше истинной теплоты сгорания, так как содержащаяся в топливе сера окисляется в бомбе до 80з, а не до 80г, как в случае горения на воздухе. При сжигании топлива в бомбе образуется некоторое количество оксидов азота, поэтому при определении истинной (высшей) теплоты сгорания твердого топлива (Qg) вносят поправку на образование серной и азотной кислот. [c.414]

    Следовательно, поведение удобрений в процессе высуши вания зависит от их состава. Поскольку промышленностью вы пускается большое число смешанных удобрений различного со става, ни одну из методик высушивания в сушильном шкафу нельзя считать универсальной. Условия, необходимые для точ ного определения потери массы при высушивании образца, зави сят от состава анализируемого удобрения. Гер дести и Дэви [162] а также Шэнон [318] показали, что смеси, состоящие из супер фосфата, неорганических нитратов и органических компонентов легко разрушаются при температурах ниже 85—100 °С вследствие окисления органических веществ азотной кислотой, которая об разуется при нагревании из нитратов, первичного фосфата каль ция и воды. Такая смесь после нагревания при 85—100 °С в тече ние 2 ч теряет 6—7 % диоксида углерода, оксидов азота и консти туционной воды. При температуре ниже 85 °С наблюдается незна читальная потеря массы. Высушивание в токе воздуха, нагретого до 60 °С, и длительное высушивание в вакуум-эксикаторе (48 ч 25—30 °(3, 8-10 Па) дают сравнимые результаты [163, 173]. Ана лизируемый образец помещают в пористый стеклянный тигель через который может проходить нагретый до 60 °С воздух. Ниже представлены результаты высушивания двух смешанных удобрений (в сушильном шкафу при 100 °С в токе воздуха, нагретого до 60 °С, и в вакуум-эксикаторе (потеря массы в %)  [c.122]

    Люфт и Герен [160] описывают газовый анализатор с рабочей и сравнительной кюветами для определения паров воды в различных газах, имеющих малое поглощение в области 5,5—7,5 мкм. Для других систем в кювете поддерживается заданное давление определяемого компонента, а само определение основано на измерении нарушений баланса в пневматическом детекторе диафраг-менного типа вследствие неодинакового поглощения ИК-излучения в известном и анализируемом веществе. Использование водяных паров в качестве стандарта для сравнения невозможно из-за их неконтролируемой конденсации. Вместо воды для этой цели можно использовать аммиак, поскольку в этой области его поглощение и поглощение воды почти одинаковы. При содержании от О до 2% (объемн.) концентрацию паров воды можно определить с правильностью 2% в таких газах, как азот, кислород, воздух, оксиды углерода и водород. В обзоре по аналитическим приборам для автоматического определения воды Карасек [124] отмечает ИК-анализатор, позволяющий определять до 500 млн" воды. Для определения воды и других соединений по поглощению в ИК-области спектра в ряде патентов описаны приборы, работающие непрерывно или с отбором проб. [c.390]

    По способу атомизации методы атомно-абсорбциоппой спектрометрии делятся па пламенные и непламенные. Общая схема пламенного анализа состоит из распыления, атомизации (возбуждения) и измерения атомного поглощения элемента. В качестве основного горючего газа для пламенного анализа служит ацетилен, который в сочетании с воздухом и оксидом азота (I) обеспечивает определение большинства элементов с относительным пределом обнаружения 10" —10 мкг/г, воспроизводимостью 0,005— 0,002 [1]. Представление о возможностях метода дает табл. 1 [2]. [c.108]


Смотреть страницы где упоминается термин Оксидов азота определение в воздухе: [c.220]    [c.642]    [c.44]    [c.6]    [c.306]    [c.81]    [c.86]    [c.220]   
Смотреть главы в:

Справочное руководство по применению ионоселективных электродов -> Оксидов азота определение в воздухе




ПОИСК





Смотрите так же термины и статьи:

Азот азота оксид

Азот, определение

Азот, определение азота

Азота оксиды

Воздух, определение азота



© 2025 chem21.info Реклама на сайте