Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотный катализ радикальных реакций

    Кислотный катализ радикальных реакций [c.402]

    Полярность среды в подавляющем большинстве случаев не оказывает существенного влияния на радикальные процессы, и кислотно-основной катализ радикальных реакций является исключительно редким явлением в химии, но все же обычно предпочитают использовать неполярные растворители для максимального подавления возможных конкурентных реакций гетеролитического характера. Степень диссоциации двухатомных молекул на радикалы сильно зависит от температуры. В табл. 1.2 представлены степени диссоциации некоторых молекул при разных температурах. [c.16]


    Реакция разложения ГПК на фенол и ацетон, катализируемая кислотными катализаторами, протекает высокоселективно в среде фенола и ацетона. Однако эта селективность может меняться при изменении состава среды и других факторов. В отсутствие примесей в среде фенола с ацетоном ГПК разлагается под действием серной кислоты на фенол и ацетон практически количественно [9]. Распадом по радикальному механизму, катализируемому кислотами, в условиях, при которых проводят кислотное разложение ГПК, можно пренебречь. При существенном увеличении концентрации кислоты вклад гомолитического распада может стать заметным. О гомолитическом распаде пероксидов при кислотном катализе см. ниже. [c.294]

    Если круг реакций, катализируемых галогенидами металлов, можно считать хотя бы в основных чертах выясненным, то этого нельзя сказать про механизм их действия. Одни авторы приписывают в этом случае решающую роль образованию карбониевых ионов, другие, учитывая промотирующее действие соединений водорода, трактуют этот катализ как особый случай протолитического кислотного катализа. Для отдельных реакций предлагались атомно-радикальные схемы и схемы с участием ионов галогенов, образующихся посредством электролитической диссоциации. При попытках уточнения механизма экспериментальным путем встретились большие, пока не преодоленные трудности неясно даже, действуют ли катализаторы этого типа непосредственно или же сл - жат исходным материалом для образования подлинных катализаторов иного состава и строения. [c.201]

    Скорость реакции зависит от соотношения нуклеофильных и электрофильных свойств 1,3-диполя и диполярофила (принцип дополнительности ) и от пространственного строения компонентов, определяющего строение аддуктов. Реакция 1,-3 диполярного циклоприсоединения стереоспецифична, она нечувствительна к инициаторам и ингибиторам радикальных реакций и малочувствительна к кислотно-основному катализу и эффекту растворителя. [c.572]

    Таким образом, при кислотном катализе в лимитирующей стадии радикальных реакций перенос атома водорода (некатализированная реакция) заменяется переносом электрона (катализированная реакция). [c.404]

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    Как окислительно-восстановительные, так и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула — решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которы-е десорбируются. [c.27]

    Однако меньшую изученность ионной полимеризации все же нельзя считать основной причиной отсутствия единого подхода к этой проблеме. Более того, ограниченность сведений о данной области сама по себе отчасти является следствием более важных к тому причин. Дело в том, что обобщенный подход к реакциям ионной полимеризации чрезвычайно труден. И трудности здесь обусловлены прежде всего недостаточной еще разработанностью теории катализа, в частности теории кислотно-основного катализа, которая далека от того состояния, какое характерно для цепной теории в целом. Теория катализа не дает еще для решения вопросов о механизме ионной полимеризации того, что дает цепная теория для разъяснения механизма радикальной полимеризации. Кроме того, в отличие от радикальных инициаторов, функция ионных возбудителей не ограничивается участием в одном только акте инициирования. Компоненты ионных возбудителей (анионы при катионной полимеризации и катионы — нри анионной) активно влияют и на остальные элементарные стадии процесса, что накладывает существенный отпечаток на всю его кинетику. [c.89]

    Процессы гомогенного катализа классифицируются по типам взаимодействия, фазовому состоянию системы и механизму катализа. По типу взаимодействия между реагирующими веществами и катализатором процессы делят на окислительно-восстановительное и кислотно-основное взаимодействие. По фазовому состоянию гомогенные каталитические процессы делят на жидкофазные (в растворах) и газофазные. По механизму катализа различают ионные, радикальные и молекулярные каталитические реакции. [c.239]

    Окислительно-восстановительные и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула — рещетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются. В случае гетерогенно-гомогенного катализа образующиеся радикалы переходят в свободный объем, где и продолжается цепная реакция [3, 5, 13]. [c.25]

    К а р б о н и п-п о и и ы й м е х а к и з м ката л н т и-ческих превращений углеводородов. Непосредственно связаны с электронными представлениями о природе катализа современные, широко распространенные взгляды на механизм кислотно-щелочного катализа. В связи со значительной химической активностью ионов ионные реакции в растворах широко распространены и для жидкой среды являются наиболее обычным типом химических превращений. Их конкуренция с радикально-цепными реакциями в растворах определяется условиями среды, в частности величиной pH. Работы Института химической физики [175] указывают на возможность ионного механизма и гетерогенного катализа на поверхности твердого тела в толще полимолекулярной пленки идет процесс диссоциации молекул на ионы. Это явление, по-видимому, имеет место и в мономолекулярных пленках и лежит в основе действия различных гетерогенных катализаторов кислотно-основного типа. Мы остановимся здесь на трактовке механизма каталитических превращений углеводородов на катализаторах кислотного характера с допущением промежуточного образования иона карбония. [c.219]

    Хотя уравнение Брёнстеда довольно точно выполняется для большинства реакций, включающих общий основный и кислотный катализ, известны значительные отклонения от него, если структура нуклеофила меняется радикальным образом. Так, некоторые кислородсодержащие анионы, как, например, анионы оксимов, оказались значительно более реакционноспособными, чем это можно было ожидать из уравнения Брёнстеда хорошо известны примеры такого повышения реакционной способности и для других центров (см. ниже [36]). [c.187]

    Различия в характере и типе лигандных взаимодействий с участием ионов (атомов) переходных и непереходных металлов делают первые типичными активными центрами для окислительно-восстановительных и радикальных реакций, а вторые и примыкающие к ним кислородные анионы решетки — активными центрами кислотно-основного катализа. Этим объясняется особое место переходных металлов и их соединений в редокс-ном катализе и ионов трех- и четырехвалентных непереходных металлов и их соединений в кислотно-основном катализе. Работы ряда советских и иностранных авторов показали богатство каталитических возможностей,, скрытых в координационно-лигандных схемах, даже при грубой электростатической модели теории кристаллического поля. Дополнительные большие возможности вносит более изощренная квантовомеханическая модель опирающаяся на специфику различных орбиталей. Эти работы позволяют надеяться в дальнейшем значительно приблизиться к пониманию природы хемоадсорбционных связей и реакционной способности хемоадсорбированных молекул. Но теоретические работы пока не дают достаточнооднозначных количественных указаний, а результаты экспериментальных работ не позволяют с полной определенностью произвести выбор между различными механизмами. Поэтому мы не будем останавливаться на этих вопросах, ограничившись указанием на работу [85]. [c.57]


    На первой стадии происходила дегидратация, сопровождающаяся конденсацией ОН-групп. По температуре это совпадало с началом улетучивания органических продуктов пиролиза к моменту, когда система теряла около 28% воды. Этот процесс в последующем сопровождался разрывом эфирных связей фосфата с формированием полифосфатов и карбонизованного кокса. Для этих процессов было предложено три механизма свободно-радикальный, с участием карбоние-вого иона и циклический, сопровождающийся г<ыс-элиминированием [24, 25]. Свободно-радикальный механизм был исключен из рассмотрения из-за отсутствия влияния ингибиторов свободно-радикальных реакций на начальную скорость пиролиза [25]. Ион-карбониевый механизм был подтвержден посредством кислотного катализа и его кинетических особенностей [24,25]. Этот механизм, по всей видимости, должен проявляться в том случае, когда у р-углеродного атома отсутствует водород, как в случае ПДФ, что является необходимым условием для реализации реакции элиминирования посредством образования циклического переходного состояния. Молекула олефина образуется из термодинамически наиболее выгодного карбониевого иона. Водородная миграция или перестройка структуры могут способствовать образованию наиболее стабильного реакционного карбониевого иона. После того как осуществляется реакция по ионному механизму эфирного пиролиза с раскрытием цикла, происходит вторая стадия термодеструкции эфиров, описываемая по механизму г<мс-элиминирования (6.3). [c.165]

    Автора ЭТОЙ публикации связывала крепкая многолетняя дружба с Робертом Аветисовичем Карахановым. Нас сблизила тематика на> чных исследований - химия и технология 1,3-диоксациклоалканов и их гетероаналогов. Возглавляемая им группа в Институте органической химии им. Н. Д. Зелинского уделяла основное внимание термокаталитическим процессам превращения вышеупомянутого класса органических соединений. На кафедрах и в 4-х крупных лабораториях, созданных Минхимпромом СССР в Уфимском нефтяном институте, мы занимались проблемами синтеза, особенно промышленного, и исследовали жидкофазные реакции этих соединений в условиях кислотного катализа и радикально-ценных нреврашений. У нас быстро возникли [c.25]

    Эта реакция протекает по механизму 1,3-диполярного циклоприсоединения и сводится к взаимодействию соединений, представляющих 1,3-диполь с системой кратных связей — диполярофилом (Р. Хьюзген, 1961 г.). 1,3-Диполярное циклоприсоединение осуществляется так, что каждый компонент одновременно выступает в роли донора и акцептора, отдавая и присоединяя электроны причем обе молекулы жестко ориентированы в двух взаимно параллельных плоскостях, что облегчает межмолекулярный перенос электронов. В образовавшемся изоксазолидине сохраняются сг-связи исходных продуктов, а новые о-связи образуются за счет я-связей (или р-электронов). Реакция 1,3-диполярного циклоприсоединения стереоспецифична, она не чувствительна к инициаторам и ингибиторам радикальных реакций и мало чувствительна к кислотно-основному катализу и эффекту растворителя. [c.574]

    Реакция замещения электроотрицательных атомов иногда проходит аномально часто входящий атом занимает место, соседнее с местом уходящего атома, т. е. происходит аллильная перегруппировка [С. S. О., VI, 252, 272] такое же явление наблюдается и при замещении в ароматическом ряду [ hem. Rev., 62, 81 (1962)]. Замещение может проходить и внутримо-лекулярно (перегруппировка Смайлса) [С. S. О., VI, 356]. В зависимости от природы реагентов этот тип замещения может быть чувствителен к основному или кислотному катализу (см. выше), часто определяющую роль играет растворитель (см. выше). И наконец, в некоторых случаях реакция ускоряется при катализе металлами, такими, как медь, которые способствуют протеканию реакции по ион-радикальному механизму. [c.17]

    Работы последних десятилетий показали, что граница между гетерогенным и гомогенным катализом, казавшаяся долгое время принципиальной и непроходимой, в действительности расплывчата и часто условна. Это справедливо даже для газовых реакций благодаря существованию гомогенно-гетерогенных процессов и особенно характерно для каталитических реакций в жидкой фазе. В гомогенном и гетерогенном катализе встречаются сходные элементарные механизмы, сходные активные формы и сходные закономерности подбора. Особенно поучительно в этом отношении выявившееся в последнее время далеко идущее сходство между окислительно-восстановительным катализом переходными металлами и их твердыми неорганическими соединениями, с одной стороны, и катализом комплексными растворенными соединениями, с другой. Еще раньше такие корреляции были установлены между гомогенным и гетерогенным кислотным катализом. В обоих случаях причиной сходства является близость природы химических связей катализатора с реагентами, нашедшая квантовохимическое объяснение в сходстве кристаллического поля с полем лигандов и в образовании на поверхности л-комплексов, карбониевых и карба-ниевых комплексов и других неклассических образований. Далеко идущее сближение наблюдается и благодаря открытию роли нейтральных и заряженных радикальных активных центров и промежуточных форм в гетерогенном катализе. Конечно, своя специфика у гетерогенного и гомогенного катализа имеется, ее надо учитывать и использовать, но значение этой специфики явно переоценивалось. Исходя из этого, мы уделили в сборнике определенное место гомогенному катализу (статьи И. И. Моисеева, [c.5]

    Основные процессы контактного катализа можно разделить на два больших класса электронные (радикальные) и ионные (кислотно-основные)-. К первому классу относятся процессы, связанные с переходом электронов между катализаторами и реагирующими веществами (окислительно-восстановительные реакции) окисление, восстановление, разложение, гидрогенизация, дегидрогенизация, циклизация и ароматизация углеводородов и др. Типичными катализаторами для них являются металлы и полупроводники, т. е. вещества, обладающие свободными или легковозбуждаемыми электронами (или дырками). [c.471]

    В одних случаях для конструирования достаточно имеющихся данных по окислительно-восстановительной и кислотно активности разных твердых тел, по их акценторно-донорным свойствам, по их способности образовывать радикалы и ионизовать молекулы и т. д. При этом часто применим принцип подобия активатора и активной формы . Действительно, радикальные центры катализатора с неспаренным электроном или свободной орбитой при реакции с нормальной молекулой легко порождают радикал свободные положительные ионы, реагируя с нейтральными молекулами, порождают новые положительные ионы и т. д. Этот же прин-щш применим и к некоторым вариантам морфологического катализа. Существуют п другие механизмы активации, ири которых принции подобия не соблюдается. [c.33]

    Цеолиты обладают высок ой каталитической активностью в различных реакциях [178]. Многие из этих реакций протекают по кар-бониево-ионному механизму, который обычно предполагает участие кислотного катализатора, поэтому проблеме существования кислотных центров в цеолитах, а также вопросам механизма формирования этих центров и определения природы кислотности уделялось всегда большое внимание. Хотя многие каталитические реакции, протекающие на цеолитах, катализируются также и в присутствии аморфных алюмосиликатов, на раннем этапе изучения катализа на цеолитах предполагалось [179], что каталитическая активность цеолитов обусловлена наличием электростатических полей. В пользу этой гипотезы говорит очень существенный довод — наличие пропорциональной зависимости между увеличением каталитической активности в ряде реакций и ростом напряженности электростатического поля [179— 181]. Кроме того, известно, что на цеолитах, у которых напряженность электростатических полей невелика, в частности на цеолитах со щелочными катионами, ряд реакций протекает не по карбониево-ионному, а по радикальному механизму. Однако впоследствии было показано, что даже в тех случаях, когда реакция протекает по кар-бониево-ионному механизму на цеолитах с сильным электростатическим полем, роль этого поля сводится к тому, что оно способствует образованию кислотных центров. [c.272]

    Как видно, все названные здесь теории между собою далеко неравнозначны и неравноценны. Основное назначение мультиплетной теории состоит в объяснении механизма каталитического акта, происходящего на поверхности твердого катализатора. Теория активного комплекса и цепная теории — это весьма общие теории кинетики они призваны раскрыть механизм самых разнообразных — гомогенных и гетерогенных, радикальных и ионных — реакций. Теория кислотно-основного катализа вытекает из общей теории кислот и оснований, которую нельзя считать разделом кинетики она вскрывает движущие силы около половины всех химических реакций и только отсюда уже приходит к объяснению их механизма. Теория аггравации лишь недавно появилась в качестве раздела одной из каталитических теорий. Поэтому, строго говоря, указанные пять теорий нельзя ставить в один общий ряд. [c.296]

    К кислотно-основному катализу относят также реакции изомеризации (которые, однако, могут протекать иногда и по радикальному механизму). Согласно Я. К. Сыркину, изомеризация у фенилпропилена в присутствии гидроксильных ионов проходит через образование шестичленного переходного состояния  [c.76]

    Волькенштейн [5] впервые показал, что локализация носителя заряда на пустом адсорбционном ПС (в его терминологии — нейтральная форма хемосорбции) приводит к упрочнению связи и воз никновению реакционноспособной заряженной ионно-радикальной формы хемосорбции. Тем самым была показана возможность управ ления окислительно-восстановительным катализом за счет возбуждения электронной подсистемы полупроводника. Однако, как мы это неоднократно показывали [3], очень многие окислительно-восстановительные реакции протекают не по радикальному механизму. За рамками электронной теории оказались реакции кислотно-основного катализа. В донорно-акцепторном механизме рассматривается [3] более общий случай — деформация адсорбционного комплекса в поле захваченного носителя заряда. Так, например, захват дырки делокализация электрона) на донорном ПС приводит к росту затягивания неподеленной пары электронов молекулы В на центр С, в результате чего деформируются внутримолекулярные связи молекулы В, растет ее реакционная способность. Энергия активации гетеролитической диссоциации молекулы уменьшается [2]. Ситуация, рассматриваемая Волькенштейном [5], соответствует переходу донорно-акцепторного комплекса (б<1) к комплексу с полным переносом заряда (6- 1). При построении модели нейтральной формы адсорбции отдается предпочтение или валентным формам связи [5], или координационным связям [3]. [c.56]

    Вопрос о роли ионов с аномальной валентностью в катализе получил реальную почву после обнаружения на поверхности твердых тел различных радикалов с помощью спектральных методов (пионером применения которых был де Бур) и метода электронного парамагнитного резонанса. Богатый материал по этому вопросу содержится в прекрасных работах Теренина и его учёников в СССР [38] и Лефтина с Хобсоном в США [39]. Радикальную природу имеют активные центры некоторых окислов переходных элементов — типичных ка тализаторов окислительно-восстановительных и цепных реакций. Так, Казанский и Туркевич показали, что окись хромаг,, нанесенная на кислотные окислы непереходных металлов (8102, А1аОз), обязана своей активностью в полимеризации олефинов ионам Сг +, внедренным в поверхность решетки носителя [40, 41] Это же справедливо для Мо + в нанесенных окисно-молибденовых катализаторах [43]. [c.27]

    Нами рассмотрен иной механизм, объясняющий заряжение поверхности. В этом механизме реакционная способность частиц не связывается с радикальными формами хемосорбции. Например, цри образовании координационной связи затягивание неподе-ленной пары электронов приводит к изменению кристаллических полей вокруг близлежащих дефектов. Благодаря изменению сечений захвата дефекта и его положения в зоне, последний превращается в ловушку дырок. Локализация дырки приведет, в свою очередь, к еще большему затягиванию неподеленной пары и к еще большей протонизации молекулы, причем последняя превращается в сильный бренстёдовский центр. Изменяя концентрацию дырок в слое пространственного заряда, можно управлять не только реакциями окислительно-восстановительного катализа, но и кислотно-основного. Помимо электронных факторов, на каталитическую активность будут влиять химические факторы природа центра и его окружение, число поверхностных химических групп, связанных с ним и т. д. [c.132]


Смотреть страницы где упоминается термин Кислотный катализ радикальных реакций: [c.262]    [c.386]    [c.318]    [c.238]    [c.386]    [c.238]    [c.115]    [c.426]   
Смотреть главы в:

Стабильные радикалы электронное строение, реакционная способность и применение -> Кислотный катализ радикальных реакций




ПОИСК





Смотрите так же термины и статьи:

Катализ кислотный

Катализ радикальная

Катализ реакции

Радикальные реакции



© 2025 chem21.info Реклама на сайте