Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ радикальная

    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]


    Вторая стадия — окисление метакролеина в метакриловую кислоту— встречает больше трудностей по сравнению с окислением акролеина. В обоих случаях не применимы радикально-цепные процессы из-за полимеризации ненасыщенных альдегидов. Пытались использовать катализ медью и серебром при жидкофазном процессе, окисление надкислотами и другие методы, но наибольшие усилия сосредоточены на разработке достаточно селективных гетерогенных катализаторов окисления в газовой фазе. Одним из них является оксидный фосфор-молибденовый катализатор с добавками оксидов Те и Sb, ионов NHt, щелочных и щелочноземельных металлов. При 250—350 °С, атмосферном давлении и степени конверсии метакролеина 80—90% достигается селективность по мет-акриловой кислоте 70—80%. [c.422]

    Д. Радикальная или цепная теория катализа. Радикальная теория катализа, развиваемая Н. Н. Семеновым и В. В. Воеводским, основана на том, что поверхность катализатора усеяна свободными положительными и отрицательными валентностями, взаимодейст- [c.236]

    Н. Н. Семенова и В.В. Воеводского (радикальная или цепная теория катализа), Ф. Ф. Волькенштейна и других ученых (электронная теория катализа). [c.144]

    Однако эта простейшая схема не целиком удовлетворяет экспериментальным фактам. А именно она не объясняет, почему при переходе от F + к Fe происходит особенно энергичное разложение большого числа молекул перекиси водорода. Габер и Вейсс [173, 174] предполагают поэтому для этой стадии катализа радикально-цепной механизм  [c.66]

    Кислотный катализ радикальных реакций [c.402]

    Полярность среды в подавляющем большинстве случаев не оказывает существенного влияния на радикальные процессы, и кислотно-основной катализ радикальных реакций является исключительно редким явлением в химии, но все же обычно предпочитают использовать неполярные растворители для максимального подавления возможных конкурентных реакций гетеролитического характера. Степень диссоциации двухатомных молекул на радикалы сильно зависит от температуры. В табл. 1.2 представлены степени диссоциации некоторых молекул при разных температурах. [c.16]

    Таблица 6.1. Доля радикального распада гидропероксидов при катализе соединениями металлов переменной валентности [c.194]

    Чтобы не отрывать основное содержание монографии от тенденций развития и разработки новых технологических процессов, в первой главе в конспективной форме даются аннотированные результаты таких исследований и формулируются основные направления технического прогресса в этой области. Во второй главе кратко излагаются основные фундаментальные положения механизма радикальных и ионных реакций, а также теории катализа, необходимые для интерпретации материала последующих глав. [c.6]


    Как окислительно-восстановительные, так и кислотно-основные реакции можно рассматривать по радикальному механизму, согласно которому образующаяся при хемосорбции прочная связь молекула — решетка катализатора способствует диссоциации реагирующих молекул на радикалы. При гетерогенном катализе свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которы-е десорбируются. [c.27]

    В жидкой среде катализ протекает по гетерогенно-гомогенному механизму значительно чаще, чем в газовой. Это происходит по ряду причин 1) вследствие большей скорости, чем в газовых средах гомогенной некаталитической реакции, интенсивность которой часто бывает соизмерима с гетерогенной реакцией на твердых катализаторах 2) в жидких средах нередко катализатор -выступает лишь как возбудитель цепной радикальной реакции, которая продолжается гомогенно в растворе 3) вследствие влияния растворителя. [c.53]

    Ускоряющее в большинстве случаев действие катализаторов, образование активных промежуточных соединений, снижение величины энергии активации и ряд других моментов неизбежно приводят к выводу о возможности цепных механизмов в гетерогенном катализе. В. В. Воеводский [67] считает, что ...цепные и радикальные механизмы в гетерогенном катализе должны быть не менее, а по-видимому, даже более распространены, чем в гомогенных реакциях . Тот факт, что небольшое количество катализатора способно превратить в конечные продукты огромные массы реагентов, подтверждает эти идеи. Н. Н. Семенов [68], рассматривая механизм гетерогенно-каталитических процессов с точки зрения цепных механизмов, считает, что на поверхности катализатора (металл, полупроводник) имеются свободные валентности V, поверхностно вступающие во взаимодействие с молекулами реагентов и инициирующие образование свободных атомов, например [c.164]

    Не останавливаясь подробно на теоретических проблемах гетерогенного катализа в процессах окисления органических веществ, отметим основные положения катализа [12]. Наиболее часто рассматривают три механизма каталитического ускорения окислительных процессов стадийный, деформационный и радикально-цепной гетерогенно-гомогенный. Деформационный механизм заключается в том, что окисляемое органическое вещество и кислород, взаимодействуя с катализатором, образуют общий активированный комплекс, который при распа- [c.10]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]

    Из электронной теории катализа иа полупроводниках вытекают представления о том, что при уходе молекулы (радикала) с поверхности в объем на поверхности остаются ненасыщенные валентности. Наличие этих поверхностных валентностей и радикалов предопределяет возможность возникновения поверхностных цепных реакций. На этой основе Н. Н. Семеновым и В. В. Воеводским была развита цепная теория гетерогенного катализа, в которой катализатор выступает как полирадикал, обеспечивающий зарождение и развитие реакционных цепей на поверхности. Можно показать, что существует возможность перехода цепей с поверхности в объем в результате десорбции радикалов. Было экспериментально показано, что в подобном случае температура в объеме оказывается выше, чем на поверхности катализатора. Радикальный механизм не может претендовать на универсальность, так как образование и выход в объем радикалов требуют значительных затрат энергии. Кроме того, большинство гетерогенно-каталитических процессов обратимы, а принцип детальной обратимости несовместим с не-стационарностью течения реакций с участием промен уточных активных продуктов — атомов и радикалов. [c.303]


    Так, Например, исследование перестройки поверхностного слоя катализатора во время реакции методом дифракции медленных электронов привело к явно неожиданным результатам, указывающим на высокое упорядочение хемосорбционных процессов. Оказалось, что адсорбция газов иа металлах происходит не хаотически, не по статистическим законам, а с образованием упорядоченной двумерной решетки. О. В. Крылов отсюда делает заключение, что эти эксперименты должны привести к радикальному отходу от классических представлений об адсорбции по Лэнгмюру. Адсорбцию, а следовательно, н катализ следует, очевидно, рассматривать как цепь скачкообразных превращений с перестройкой поверхности за счет использования энергии акта адсорбции или катализа. При каждой такой перестройке, с одной стороны, изменяется конфигурация активного центра на поверхиости, что приводит к изменению каталитической активности, с другой стороны, в момент перестройки атомы поверхности могут обладать повышенной активностью и участвовать в каталитическом акте [27, с. 8]. Эти выводы он подкрепляет рядом своих экспериментов. [c.208]

    Учение о гетерогенном катализе получило дальнейшее развитие в исследованиях Н. И. Кобозева (теория активных ансамблей), Н. Н. Семенова и В. В. Воеводского (радикальная или цепная теория катализа), Ф. Ф. Волькенштейна и других ученых (электронная теория катализа). [c.140]

    Строго разграничивать катализаторы по механизму их действия нельзя. На одном и том же катализаторе процесс может осуществляться как по электронному механизму, так и ио радикальному. Возможны процессы, когда одна стадия реакции будет проходить по ион-радикальному механизму, а вторая — по радикальному. Механизм процесса будет определяться взаимной относительной )еакционной способностью катализатора и реагирующих веществ. Направление процесса зависит от того, какой механизм — радикальный или ион-радикальный — будет энергетически выгоднее с учетом природы катализатора и реагирующих веществ в данных условиях. Поэтому далеко не всегда можно ожидать прямой зависимости между каталитической активностью и электронными характеристиками катализатора. Решение этого вопроса осложняется еще и тем, что сами электронные характеристики не являются постоянными величинами. Они, в первую очередь, определяются соотношением и взаимным влиянием поверхностных и объемных свойств катализаторов, широко меняются в процессе их приготовления и в зависимости от условий реакции. Соотношение и взаимное влияние поверхностных и объемных свойств катализаторов — это второе направление, по которому должно пойти объединение существующих теорий катализа в единую теорию. [c.210]

    РАДИКАЛЬНЫЕ РЕАКЦИИ В ОРГАНИЧЕСКОМ СИНТЕЗЕ Современный органический сингез располагае] ш1фоким арсеналом синтетических методов, в основе которых лежат гомо- и гетеролитические реакции, молекулярные перегруппировки, межфазный, металлокомплексный, кислотноосновной, гомо- и гетерогенный катализ, биосинтез и биотрансформация органических веществ и т.д. [c.26]

    Но это только одна сторона задачи. Не менее важная сторона электронной теории — определение таких характеристик реагирующих веществ, как сродство к электрону, сродство к протону, определение влияния промежуточного взаимодействия на эти характеристики. Без учета этих характеристик невозможно дальнейшее развитие электронного катализа в целом, нельзя рассчитать механизм реакции. Сумма этих результатов, знание энергий ковалентных связей между реагирующими атомами и катализатором для радикального механизма процесса позволят количественно решать проблему подбора катализатора. [c.211]

    Принципиальной разницы между тремя основными типами каталитических процессов ферментативным, гомогенным и гетерогенным катализом, по-видимому, нет. Во всех трех случаях каталитический процесс в зависимости от относительной реакционной способности реагирующих веществ и катализатора может развиваться как по радикальному (ковалентному), так и по ион-радикальному (электронному) механизму. [c.212]

    Реакция разложения ГПК на фенол и ацетон, катализируемая кислотными катализаторами, протекает высокоселективно в среде фенола и ацетона. Однако эта селективность может меняться при изменении состава среды и других факторов. В отсутствие примесей в среде фенола с ацетоном ГПК разлагается под действием серной кислоты на фенол и ацетон практически количественно [9]. Распадом по радикальному механизму, катализируемому кислотами, в условиях, при которых проводят кислотное разложение ГПК, можно пренебречь. При существенном увеличении концентрации кислоты вклад гомолитического распада может стать заметным. О гомолитическом распаде пероксидов при кислотном катализе см. ниже. [c.294]

    Наряду с гетеролитическим разложением гидропероксидов и пероксидов других типов (см., например, [27]) при действии сильных минеральных кислот, Денисовым и Соляниковым был открыт кислотный катализ гомолитического распада пероксидов [28—30]. Этот процесс, катализируемый сильными минеральными кислотами, принципиально отличен от катализа радикального распада гидропероксидов слабыми органическими кислотами [31]. [c.299]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Наконец, следует упомянуть о галогенировании олефинов в условиях межфазного катализа. При этом галоген генерируется и расходуется непосредственно в ионной форме без возникновения побочных радикальных реакций. Этот метод удобно применять в тех случаях, когда использовать элементарный хлор по каким-либо причинам затруднительно или невозможно. К раствору алкена в тетрахлориде углерода при охлаждении льдом и перемещивании с концентрированной соляной кислотой и небольшим количеством ТЭБА добавляют по каплям 30%-ный Н2О2 [869]  [c.390]

    Каталитические реакции можно рассматривать по радикальному механизму, согласно которому при активированной адсорбции происходит расщепление молекулы реагента на радикалы. При гетерогенном катализе по модели Ленгмюра свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются. В случае гетрерогенно-гомогенного катализа образующиеся радикалы переходят в свободный объем, где и продолжается цепная реакция и катализатор являйся возбудителем реак- [c.89]

    Каталитические явления широко распространены в природе и, в частности, играют очень большую роль в процессах жизпедея-тельности организмов. Катализ щироко пспользуется в процессах промыитлениого производства при.менение катализаторов является мощным средством радикального повышения производительности технологических процессов в химической промышлепности. [c.96]

    Большой научный интерес представляют исследования инициированного крекинга, то есть термического распада алканов при температурах, когда сам по себе распад не происходит (практически скорость распада равна нулю) но его вызывают небольшие примеси инициаторов—соединейия, легко распадающиеся на радикалы при низких температурах. Эта форма крекинга возможна лишь в той мере, в кйкой распад имеет радикально-цепной характер. При пониженных температурах крекинг не происходит вследствие очень малой скорости реакции первичного распада алкана на радикалы. Вместе с тем понижение температуры более благоприятно для развития цепей. Поскольку остановка процесса при низких температурах связана с практически ничтожной скоростью реакции зарождения радикалов, то, вводя в зону крекинга небольшие количества соединений, легко распадающихся на радикалы, необходимые для развития термического распада, мы можем повысить до нужных значений концентрацию радикалов и ускорить крекинг принципиально до значений скорости, соответствующих обычным температурам крекинга. Однако понижение температуры всегда приводит к понижению скорости элементарных реакций, которые происходят с заметной скоростью лишь при высоких температурах. Это в первую очередь относится к тем реакциям развития цепей при крекинге, которые связаны с распадом тех или иных сложных радикалов. Скорость распада таких радикалов уменьшается с понижением температуры и, естественно, по- нижается и скорость цепного крекинга в целом. Таким образом, индуцирование термического крекинга алканов при помощи инициаторов в условиях, при которых aw по себе распад не происходит, непосредственно доказывает радикально-цепной механизм крекинга, поскольку не представляется возможным рассматривать индуцированный крекинг как одну из форм молекулярного (или гетерогенно-гомогенного) катализа. [c.62]

    Катализаторы Циглера — Натта — гетерогенные катализаторы, поверхность которых влияет на ориентацию молекул мономера при полимеризации. Так, образование стереорегулярных полимеров при полимеризации олефинов возмох<но только при гетерогенном катализе. Правда, некоторые стереорегулярные полимеры могут образоваться и в отсутствие таких катализаторов — в гомогенных средах, а также при соблюдении определенных условий (при протекании реакций по свободно-радикальному или катионному механизму). [c.398]

    Окисление широко используется для получения карбоновых кислот, альдегидов, кетонов, а-оксидов, хинонов, N-оксидов третичных аминов и ряда других классов органических соединений. Имеется большой набор окислителей, различающихся по окислительному потенциалу, специфичности действия. В качестве окислителей широко используются кислород, перманганат калия, хромовый ангидрид, хромовая смесь, азотная кислота, диоксид свинца, тетраацетат свинца, диоксид селена, пероксид водорода, надкисло-ты, хлорид железа (П1). Окисление кислородом рассмотрено в разделах Радикальное замещение и Гомогенный и гетерогенный катализ . [c.199]

    Окислительно-восстановительный катализ наблюдается в радикальных процессах и связан с одноэлектронными переходами между катализатором и реагентами. В качестве катализаторов используются металлы 4—6 периодов таблицы Менделеева с незаполненными й -обо-лочками (Р1, N1, Со, Мп, Ре и др.), а также некоторые их оксиды и сульфиды. [c.243]

    Основные процессы контактного катализа можно разделить на два больших класса электронные (радикальные) и ионные (кислотно-основные)-. К первому классу относятся процессы, связанные с переходом электронов между катализаторами и реагирующими веществами (окислительно-восстановительные реакции) окисление, восстановление, разложение, гидрогенизация, дегидрогенизация, циклизация и ароматизация углеводородов и др. Типичными катализаторами для них являются металлы и полупроводники, т. е. вещества, обладающие свободными или легковозбуждаемыми электронами (или дырками). [c.471]

    Разработаны и предложены оригинальные схемы роста полимерной цепи в условиях контролируемой радикальной полимеризации виниловых мономеров в условиях металлоорганического катализа. Установлено, что а-метилстирол-хромтрикарбонил позволяет проводить контролируемую радикальную полимеризацию метилметакрилата и некоторых других мономеров в энергетически выгодных режимах, полностью подавляя гель-эффект и целенаправленно регулируя молекулярно-массовые характеристики полимера. Получен гетерогенный катализатор на пенокерамическом носителе ХИПЕК , промотированный продуктами распада ацетилацето-натов Си и Со. [c.17]

    Открытый Денисовым, Соляниковым и Петровым [58] кислотный катализ гомолитического распада гидропероксидов и пероксидов, впоследствии найденный и в системах кислота — элементоорганический пероксид [59], позволил и эти системы использовать для инициирования радикальных процессов. [c.18]


Смотреть страницы где упоминается термин Катализ радикальная: [c.593]    [c.186]    [c.361]    [c.370]    [c.54]    [c.456]    [c.102]    [c.120]    [c.25]    [c.262]    [c.140]    [c.141]   
Кинетика и катализ (1963) -- [ c.233 , c.236 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ радикально-цепная теория

Катализ радикального распада

Катализ радикальных реакций азосоединениями

Кислотный катализ радикальных реакций

Радикально-цепная теория гетерогенного катализа

Радикально-цепные представления в катализе



© 2025 chem21.info Реклама на сайте