Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функциональные монофункциональные

    Молекулярную массу полимера можно также изменять добавлением монофункционального мономера в процессе синтеза. При взаимодействии его с растущей полимерной цепью на концах макромолекул не будет функциональных групп [3, с. 72]. [c.163]

    От функциональности мономера существенно зависит строение полученного полимера. Взаимодействие бифункциональных мономеров дает полимер линейного строения. Реакции, в которых участвует хотя бы один мономер с функциональностью более двух, приводит к образованию полимера разветвленного или пространственного строения. Если в реакции хотя бы одно низкомолекулярное соединение монофункционально, то с мономером любой функциональности оно не образует полимера вследствие блокировки его реакционноспособных точек. [c.319]


    Этот своеобразный компенсационный эффект открывает, казалось бы, довольно простой путь к созданию высокоактивных катализаторов достаточно синтетическим путем объединить в одну молекулу хотя бы две функциональные группы, потенциально способные одновременно [по механизмам типа (3.5) или (3.6)] участвовать в образовании переходного состояния. Включение их в одну молекулу уже в исходном состоянии реакции может в значительной степени снизить энтропийные потери, необходимые при построении переходного состояния. В то же время энтальпийный выигрыш бифункционального катализа (3—6 ккал/моль, т. е. 12,6—25,2 кДж/моль) мог бы обеспечить ускорение реакции в 10 —10 раз по сравнению с монофункциональным катализатором. [c.97]

    Наиболее удобным методом соблюдения эквивалентности функциональных групп является использование бифункциональных соединений, содержащих разные функциональные группы (типа а—А—в, например, окси- или аминокислот) или стехиометрических комплексов исходных веществ (например, солей диаминов и ди-ка рбоновых кислот). Тогда стехиометрический состав поддерживается автоматически. Причина отклонения от эквивалентности может также заключаться в присутствии монофункциональных соединений, которые обрывают цепь, так как при присоединении монофункционального соединения на одном конце растущей цепи оказывается нереакционноспособный радикал  [c.58]

    Их влияние на молекулярную массу продуктов поликонденсации аналогично влиянию избытка одного из компонентов в исходной смеси. Монофункциональные соединения могут образовываться в реакционной системе в результате побочных реакций. Часто небольшие количества монофункциональных соединений специально вводятся в реакционную смесь для регулирования молекулярной массы полимеров и придания стабильности продукту (на концах цепи будут функциональные группы одного типа). В таком случае их называют стабилизаторами молекулярной массы. [c.58]

    Катиониты или аниониты, в структуре которых содержатся ионогенные группы только одного типа, называются монофункциональными. Из многообразных представителей катионообменных смол с разнотипными функциональными группами (полифункциональные катиониты) следует указать на некоторые наиболее распространенные сочетания ионогенных групп сульфогруппы и оксифенильные группы сульфогруппы и карбоксильные группы фосфиново-кислые и оксифенильные группы карбоксильные и оксифенильные группы. Полифункциональные аниониты чаще всего характеризуются наличием аминогрупп с различной степенью замещения. [c.52]


    Катионит КУ-2. Монофункциональный сильнокислотный катионит полимеризационного типа, содержащий функциональную группу — ЗОзН, которая хорошо диссоциирует. Катионит работает в широком интервале pH. Его получают сульфохлорированием гранулированного сополимера стирола и дивинилбензола с последующим омылением полученного продукта. Химическое строение катионита  [c.290]

    Катиониты КБ-4, КБ-4П-2. Это типичные представители монофункциональных карбоксильных катионитов полимеризационного типа. Они имеют одну функциональную карбоксильную группу, которая диссоциирует только в щелочной среде. [c.292]

    Анионит АВ-27. Монофункциональный анионит полимеризационного типа, его получают на основе анионита АН-18. При этом образуются следующие функциональные группы  [c.296]

    Влияние примесей монофункциональных соединений на молекулярную массу продукта поликонденсации непосредственно связано с константой равновесия. При введении монофункционального соединения, блокирующего одну из функциональных групп, концентрация этих групп уменьшается и соответственно уменьшается знаменатель в выражении константы равновесия  [c.150]

    Правило неэквивалентности функциональных групп особенно важно учитывать при гетерополиконденсации, так как, если в реакцию вступают два вещества с разноименными группами, избыток одного из компонентов играет роль примеси монофункционального соединения. Например, если при получении полигексаметиленадипамида адипиновая кислота и гексаметилендиамин взяты в эквивалентных количествах, то реакция протекает аналогично гомополиконденсации nNH,—(СНо)е—NHo + НООС—(СН,),—СООН —> [c.151]

    Способы синтеза блок-сополимеров основаны на использовании концевых функциональных групп олигомеров или живых олигомеров, полученных ионной полимеризацией, а также на инициировании полимеризации мономера В олигомерными радикалами, построенными из звеньев А. Олигомеры, содержащие определенные функциональные группы, можно синтезировать методами поликонденсации при избытке одного из компонентов или в присутствии монофункционального соединения, ограничивающего молекулярную массу полимера (см. с. 150), а также методом цепной полимеризации в присутствии некоторых инициаторов и регуляторов. [c.201]

    Реакции концевых групп полимера являются макромолекулярными реакциями. В них участвует вся макромолекула, выступая как монофункциональное соединение с большим и сложным радикалом, причем реакционная способность функциональной группы не зависит от размера радикала. Если на концах каждой макромолекулы полимера содержится только по одной функциональной группе, то число функциональных групп обратно пропорционально значению молекулярной массы полимера. На этом основаны химические методы определения среднечисловой молекулярной массы полимеров. [c.223]

    В последнее время возникла потребность в быстросохнущих лакокрасочных материалах естественной сушки. Большой скорости высыхания достигают подбором жирных кислот с высоким содержанием сопряженного изомера (45%), отличающихся высокой активностью при окислительной полимеризации, или жирных кислот с большим содержанием ненасыщенных двойных связей. Ускорить высыхание можно также снижением жирности смол до 25—40%. Получение таких тощих смол возможно только при использовании монофункционального модификатора (например, бензойной кислоты и ее гомологов), при введении которого снижается функциональность реакционной смеси. По- [c.45]

    Активные группы в ионитах — это функциональные группы кислотного или основного характера, которые присоединены к высокомолекулярному каркасу или матрице, причем иониты с однотипными функциональными группами называют монофункциональными, а с обменными группами различной природы — полифункциональными. [c.124]

    Достаточно просто определить, что все это органические вещества, но если в левой колонке представлены классы монофункциональных органических соединений (а органическая химия и определяется как химия углеводородов и их функциональных производных), то в правой колонке мы видим типично природное соединение, которое является полифункциональным органическим соединением. [c.4]

    Для всех монофункциональных соединений коэффициент был принят равным 1 и для растворителей с двумя функциональными группами, способными самостоятельно образовать водородную связь, равным 0,5 (считая, что энергия диполя локализована в двух местах). В тех случаях, когда в молекуле ассоциированного соединения имеется функциональная группа, не способная самостоятельно образовать водородную связь, но образующая ее в сочетании с другими молекулами, значение принято при допущении, что такая группа в распределении дипольного момента оказывает влияние наполовину меньше, чем группа, способная образовать водородную связь самостоятельно. [c.258]


    Функциональность мономеров является одним из основных понятий в области поликонденсации [2-4, 7, 9, 12, 13, 31, 36, 37, 64, 65, 71, 72, 82-87]. Обычно под ней понимают общее число функциональных групп в исходном веществе. Со времени Карозерса [85] считалось, что лишь бифункциональные вещества способны к образованию поликонденсацией макромолекул линейного строения, монофункциональные вещества не способны образовывать полимеры, а поликонденсация три- и более функциональных веществ приводит к образованию разветвленных и сшитых полимеров. Развитие теории и практики поликонденсационных процессов внесло существенные коррективы в эти представления. Особенно это нашло отражение в публикациях Коршака [31, 37, 38, 71, 72], в которых были обобщены и сформулированы представления о функциональности в процессах поликонденсации, установлена ограниченность правила функциональности Карозерса. [c.18]

    Одной из причин остановки роста макромолекул в процессе поликонденсации является и обрыв за счет взаимодействия ее концевых групп с монофункциональными веществами аналогичной химической природы, находящимися в реакционной смеси. Монофункциональные вещества могут или специально вводиться в реакцию с целью регулирования молекулярной массы образующегося полимера, или попадать в сферу реакции в виде примесей к основным реагентам, растворителю, или образовываться в ходе процесса за счет побочных превращений функциональных групп как мономеров, так и растущих полимерных цепей. [c.88]

    Низкомолекулярные пептиды, в частности пептидные гормоны, как правило, наделены несколькими функциями. В этом отношении они отличаются от белков, которые, за редким исключением, монофункциональны, физиологическое действие отдельного природного пептида часто проявляется в совершенно различных системах организма и по своему характеру настолько разнообразно, что в такой сложной картине подчас трудно увидеть стимулирующее начало одного соединения и обнаружить между многими активностями пептида какую-либо связь. Несмотря на сложность функционального спектра, механизмы всех физиологических действий пептида совершенны по своей избирательности, чувствительности и эффективности. Поэтому при изучении конкретной функции возникает представление о молекулярной структуре пептида как о специально предрасположенной для выполнения только единичного рассматриваемого действия. Природным олигопептидам присуща согласованность двух на первый взгляд взаимоисключающих качеств - полифункциональности и строгой специфичности. Подход к установлению количественной зависимости между строением и биологической активностью олигопептидов, детально рассматриваемый в следующем юме монографии "Проблема белка", включает решение двух структурных задач, названных автором данной монографии [28] прямой и обратной. Прямая задача заключается в выявлении всех низкоэнергетических конформационных состояний природного олигопептида, которые потенциально, как будет показано, являются физиологически активными. Эта задача требует знания только аминокислотной последовательности молекулы и решается на основе теории и расчетного метода, использованных уже в анализе структурной организации многих олигопептидов. Обратная структурная задача по своей постановке противоположна первой. Ее назначение заключается в априорном предсказании химических модификаций природной последовательности, приводящих к таким искусственным аналогам, каждый из которых имеет пространственное строение, отвечающее конформации, актуальной лишь для одной функции исходного соединения. Конечная цель решения обратной задачи, таким образом, состоит в прогнозировании монофункциональных аналогов, которые бы только в своей совокупности воспроизводили полный набор низкоэнергетических конформаций природного пептида и весь спектр его биологического действия (подробно см. гл. 17). [c.371]

    При изучении вицинального взаимодействия между двумя функциональными группами одного и того же соединения вычисленная кривая дисперсии вращения бифункционального соединения (АБ) должна быть построена следующим образом. Если ДВд и ДВб — величины вращения соответствующих монофункциональных соединений, то [c.359]

    В рядах монофункциональных алифатических соединений дипольные моменты сохраняют практически постоянную величину в пределах гомологического ряда. Это свидетельствует о том, что дипольный момент целиком сосредоточен в функциональной группе, например  [c.349]

    Если в углеводородном радикале имеется единственный заместитель из приведенного ряда, то форма К—СНз— (где А — функциональный заместитель) — всегда гораздо менее кислая, чем таутомерная форма К—СН —АН, в которой протон перекочевал к кислороду или азоту группы А. Равновесие же в таких монофункциональных соединениях настолько сильно смещено в сторону форм К—СНа—А, что с наличием форм В СН=АН можно не считаться. Если же в р-положение к А вводится второй заместитель из того же ряда, то в полученной системе типа [c.422]

    В работе [70] была исследована зависимость свойств диенуре-тановых эластомеров, полученных на основе полибутадиендиола (ОБД), от содержания монофункционального компонента (2-пеи-танола) при изменении среднемассовой функциональности Рго от [c.442]

    Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. Оборванные цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и молекулярно-массовое распределение сегментов. При этом свободные [c.543]

    Строение продукта химической реакции может быть однозначно определено, если в исходных веществах содержатся реакционноспособные группы, избирателыю взаимодействующие в условиях реакции. Если в органическом соединении имеется одна группа, способная принимать участие в данной реакции, то такое соединение именуется монофункциональным, при двух реакционноспособных группах — бифункцио-1 альным, при трех или более реакционноспособных группах — три- или слигофункцпональным. Функциональность может быть точно установлена только применительно к данной реакции. [c.928]

    Из мо11офункциональных соединений получаются лишь низкомолекулярные продукты реакции. При взаимодействии бифункционального соединения с монофункциональным тоже получаются низкомолекулярные продукты реакции. Только при взаимодействии бифункциональных соединений образуются такие молекулы, которые содержат функциональные (в отношении данной реакции) группы и поэтому способны к дальнейшему взаимодействию. Вследствие этого конденсация бифункциональных молекул приводит к образованию линейных макромолекул. [c.928]

    В табл, 34 приведены примеры реакций бифункциональных соединений, приводящих к образованию линейных макромолекул. Из этой таблицы ясно, что функциональность можно установить только применительно к данной реакции. Так, первичная аминогруппа монофункциональна при образовании амида, но би- и даже трифункциональна в реакции с галоидными соединениями, Этиленоксидная группа реагирует монофункционально с карбоксильными группами, а соответственно замеигенные двойные связи монофункциональны по отношению к меркаптанам, но при полимеризации как двойные связи, так и этиленоксид-ные группы, а также другие способные к полимеризации кольцевые системы реагируют бифункционально. [c.928]

    Мономеры должны отвечать нескольким требованиям. Главное из них — содержать не менее двух функциональных групп, способных взаимодействовать по крайней мере с двумя другими мономерами. В качестве таких групп могут выступать —ОН,—СООН,— —СНО,—NH2 и др. Число этих групп определяет функциональность мономера. Так, уксусная кислота СН3СООН и этиловый спирт С2Н5ОН — монофункциональные соединения. При их взаимодействии образуется, как известно, сложный эфир — соединение низкомолекулярное, не имеющее реакционноспособных групп, а следовательно, не способное к дальнейшей конденсации  [c.385]

    Пьеротти с сотрудниками были определены предельные коэффициенты активности соединений для нескольких сотен полярных систем, выбранных таким образом, чтобы можно было систематически рассмотреть влия1ние изменений в гомологических рядах растворенных веществ и растворителей на величины у°. При этом избыточная пардиальная молярная свободная энергия ( Пп-уг ) рассматривалась как сумма индивидуальных вкладов, вызванных попарными взаимодействиями характеристических Г рупп молекул растворенного вещества и растворителя. Так, для монофункционального растворенного вещества Я—х в монофункциональном растворителе Я —х, где Я, Я — алкильные радикалы, а х, х — функциональные группы (полярные или группы, которые удобно рассматривать как структурные единицы —фенильная, наф- [c.19]

    Средняя степень поликонденсации = СоС = - -k oi линейно растет во времени. Предельное значение степени поликонденсации зависит от соотношения концентраций функциональных групп Г = A, i. = (1 -ь г) (1 г)-1 и, например, для г = 0,99 = 100. Низкая степень поликонденсации получается в присутствии монофункциональных соединений, присоединение которых к концу растущей цепи прекращает рост, о используют для регулирования молекулярной массы полимеров. Другой фактор, ограничивающий рост цепи, — равновесный характер конденсации и деструкции под действием выделяющегося низкомолекулярного продукта А (например, воды). В результате этого Р зависит от константы поликонденсационного равновесия К и молярной доли вещества А — /пд  [c.283]

    НИН Известно, что молекулы, в которых центры сосредоточения положительного и отрицательного зарядов не совпадают, обладают дипольным моментом. Чем больше заряды и чем больше расстояние между ними, тем выше дипольный момент. В монофункциональных органических соединениях типа R—X величина дипольного мо> мег1та определяется природой функциональной группы X. Сопоставим величины дипольных моментов некоторых соединений бензольного ряда.СвНа—X  [c.220]

    Поликонденсация — это многостадийный процесс, каждая стадия которого является элементарной реакцией взаимодействия функциональных групп. Постоянство константы равновесися К на всех стадиях поликонденсации, т. е. независимость ее от молекулярной массы соединения, в состав которого входит реагирующая функциональная группа, подтверждено многочисленными экспериментальными данными. Флори показал, что кинетика полиэтерификации аналогична кинетике этерификации монофункциональных соединений. Константа равновесия реакции образования полиэтилентерефталата равна 4,9 (при 280°С) и не зависит от молекулярной массы полимера. Константа равновесия реакции амидирования равна 305 (при 260°С). Принцип независимости свойств, связей и групп в макромолекулах одного полимергомологиче-ского ряда от молекулярной массы полимера лежит в основе современной химии высокомолекулярных соединений. (Исключение представляют лишь полимеры с системой сопряженных связей, см. с. 408.) [c.144]

    Ряд других монофункциональных органических молекул также присоединяется к олефинам с образованием продуктов свободно-радикального алкилирования. Известны случаи реакции с кетонами [75], циклическими простыми эфирами [76, 77] и спиртами [78]. В этих реакциях обычно один из двух главных реагентов применяют в большом избытке. Данные реакции присоединения происходят всегда сначала по -поло-жению к функциональной группе, так как атом водорода легче всего отрывается из этого подоження,.  [c.480]

    Большинство рассмотренных нами до сих пор соединений были монофункциональными, т. е. содержащими только одну функциональную группу. Однако дальше мы будем встречаться со все большим числом соединений, содержащих более чем одну функциональную группу. Цель данного приложения -показать, как следует строить названия некоторых типов полифункциопаль-иых соединений. [c.462]

    Обычно систематическое название монофункционального соединения содержит суффикс, определяющий функциональную группу. Например, суффикс ен в 2 бутепе указывает на наличие двойной углерод-уг.теродной связи в молекуле. Суффикс ол в 2-пропаноле говорит о наличии гидроксильной группы в молекуле. Но как поступить в том случае, если соединение содержит несколько функциональных групп" В этом случае только одна из функциональных групп указывается суффиксом, а остальные —приставками. [c.462]

    Простейшие функциональные соединения содержат лишь одну функциональную группу (монофункциональные соединения). В по-лифункциональных соединениях одна и та же функциональная группа присутствует несколько раз. Смешанные функциональные соединения содержат функциональные группы более чем одного вида (гетерофункциональные соединения) .  [c.142]

    В качестве ионизирующихся групп катиониты могут иметь аромати -ческие сульфогруппы, фосфатные, карбоксильные группы или ароматический гидроксил. Если в катионите присутствуют только однотипные ионизирующиеся группы, то говорят о монофункциональных катионитах. По большей части в настоящее время производят сильнокислые катиониты с сульфо-группами в качестве функциональных или слабокислые катиониты с карбоксильными группами. Если в катионите присутствуют ионизирующиеся группы нескольких типов (полифункциональные катиониты), то это не всегда сказывается благоприятно на процессе разделения прн хроматографии. В настоящее время наиболее широко применяют монофункциональные иониты. Монофункциональные аниониты содержат либо группировки четвертичных аммониевых оснований (сильноосновные), либо первичные или замещенные аминогруппы (слабоосновные). [c.546]

    У сульфокатионитов при облучении происходит перераспределение функциональных групп (табл.. 110). В зависимости от интервала доз ионит может быть по-лифункциональным, т. е. имеет сильно-, средне- и слабокислотные группы, монофункциональным — содержащим только сильнокислотные или только низкокислотные (фенольно-гидроксильные группы). [c.154]

    Карозерса относительно механизма роста молекулярных цепей в процессе полимеризации [4]. Он полагал, что синтез громадных молекул может осуществляться только с помощью реакции конденсации с соединением по типу голова к хвосту небольших молекул, каждая из которых бифункциональна, т. е. имеет по одной реакционноспособной группе с каждого конца. Под функциональностью мономера Карозерс понимал такое расположение групп (например, ОН, ЫНа, СООН и т. д.), которое может приводить к постадий-ному прохождению реакции. По числу таких групп в мономере (одна, две, три или больше) он может являться монофункциональным, бифункциональным и т. д. Карозерс обнаружил, что при использовании бифункциональных соединений вследствие внутримолекулярных взаимодействий могут образовываться пяти- или шестичленные циклические соединения, причем такая форма взаимодействия является преобладающей. Однако если при внутримолекулярном взаимодействии возможно образование колец, содержащих более шести членов, то преимущественно происходит образование линейных молекул. [c.15]


Смотреть страницы где упоминается термин Функциональные монофункциональные: [c.436]    [c.442]    [c.73]    [c.111]    [c.125]    [c.379]    [c.12]    [c.375]   
Курс современной органической химии (1999) -- [ c.410 ]




ПОИСК







© 2025 chem21.info Реклама на сайте