Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расплавленный поверхностный слой

    Для горизонтальной разметки автомобильных дорог получили распространение как лакокрасочные, так и термопластичные материалы. Термопластичные материалы, наносимые на дорожное полотно маркировочными машинами из расплава, являются более предпочтительными, так как обладают высокими эксплуатационными характеристиками - износостойкостью, небольшим временем отверждения и возможностью нанесения на поверхностный слой стеклянных микросфер, улучшающих видимость разметки в темное время суток. [c.175]


    Процесс нанесения диффузионных покрытий из алюминия и цинка представляет собой обработку при повышенной температуре в барабане в смеси порошков наносимого металла и инертного материала при этом происходит диффузия осаждаемого металла в поверхностный слой основного металла. Диффузионные покрытия из, хрома, никеля, титана, алюминия и других металлов получают также, погружая металлические изделия в инертной атмосфере в ванну с расплавом хлорида кальция, в котором растворено некоторое количество наносимого металла [1.  [c.231]

    Допущение о постоянстве толщины пристенного слоя затвердевшего полимера. Берри , изучавший литье под давлением образцов с большой площадью поверхности, установил, что течение расплава при заполнении формы можно рассматривать как изотермическое течение в зазоре между двумя пластинами. При этом величина зазора не равна фактическому значению расстояния между пластинами h, а равна h — 2Ax, где Ах — толщина затвердевшего слоя. Правомерность этого предположения подтверждается тем, что жесткий поверхностный слой литьевых образцов из поропластов имеет малую толщину. Эмпирическая оценка толщины застывшего слоя приводит к соотношению Лх где т = Ah/Q. Здесь А — площадь растекания расплава при заполнении формы, а Q — объемная скорость заполнения. При расчете теплопередачи используют соотношение Дх Докажите последнее соотношение. [c.558]

    Сэндвич-литье. Способ формования полимеров, называемый сэндвич-литьем, предусматривает использование двух литьевых машин для заполнения одной формы. Первая машина заполняет расплавом часть формы (обычно 1/10—1/5 часть), и сразу вслед за этим вторая литьевая машина впрыскивает расплав, содержащий порообразователь. При этом первый расплав образует поверхностный слой, покрывающий всю форму. Объясните механизм течения (выделив отдельные стадии процесса), позволяющий осуществить такой способ формования. (Подобный способ формования был использован для литья под давлением изделий, у которых поверхностный слой состоит из свежего полимера, а сердцевина — из вторичного сырья . ) [c.558]

    Поверхностное натяжение. Поверхностный слой расплавленной соли или смеси их отличается по своим свойствам от основной массы расплава. Ионы или молекулы, находящиеся в поверхностном слое расплава, испытывают одностороннее притяжение со стороны ниже лежащих слоев ионов или молекул. Таким образом, расплав как бы окружен тонкой пленкой поверхностных ионов или молекул, оказывающей сильное давление на расплав и сжимающей его. При увеличении поверхности расплава приходится совершать работу, преодолевая ионные или молекулярные силы взаимодействия. [c.250]


    О (у) в расплаве стекла, использованы результаты измерений в точке А- . Остальные экспериментальные измерения температур являлись контрольными. Сравнение экспериментальных данных с результатами вычислений температур поверхностного слоя стекломассы показало, что максимальные отклонения составляют величину порядка 3,5%. Такая ошибка может быть объяснена тем, что в исходных посылках не учитывался перенос теплоты, обусловленный движением расплава, а также ошибкой измерений, при выполнении которых образуют локальные участки поверхности стекломассы без шихты. [c.150]

    Значения э. д. с. этих реакций, рассчитанные по термодинамическим данным, равны 1,167 и, 034 В. Экспериментально найденное значение обратной э. д. с. в алюминиевых электролизерах при плотности тока 10 кА/м лежит в пределах 1,4—1,8 В. Различие между фактической и расчетной э. д. с. отдельные авторы объясняют хемосорбцией кислорода на угольных электродах, который сохраняется и после отключения тока. Расчеты показывают, что независимо от характера диссоциации криолита И глинозема относительное содержание фторсодержащих ионов в расплаве значительно выше, чем кислородсодержащих. Тем не менее первичным анодным процессом является разряд кислородсодержащих ионов, при котором в поверхностном слое образуются промежуточные комплексные углерод-кислородные со- [c.464]

    Во время заливки полости формы происходит постепенное сужение проходных сечений вследствие увеличения толщины остывшего поверхностного слоя. Одновременно по ходу потока увеличивается перепад давления, необходимый для течения расплава. При несогласованности условий литья (температура и давление расплава, геометрия полости формы) затвердение расплава может произойти прежде, чем будет заполнена полость формы. В критической области при литье под давлением полипропилена были установлены зависимости между длиной пути потока, температурой расплава и давлением в устье впуска (рис. 9.23). Из рисунка видно, что с повышением температуры и давления длина пут потока возрастает. [c.224]

    При изготовлении пленок прессованием (например, полиэтиленовые пленки) поверхностный слой может аморфизироваться в результате быстрого охлаждения расплава и, следовательно, отличаться по степени кристалличности и морфологии кристаллических образований от внутренних слоев пленки 2 -2° . Полиэтиленовые пленки 2 , полученные методом пневматического растяжения, и полиэтилентерефталатные пленки характеризуются постоянными значениями коэффициентов газопроницаемости в широком диапазоне толщин. В очень тонких пленках независимо от способа их получения структура полимера существенно изменяется, что соответственно влияет и на изменение коэффициента проницаемости. Так, Вит с сотр. исследуя растворимость газов в ориентированном полиэтилентерефталате, показали, что при толщине пленки в I мкм и менее структура пленки резко изменяется и коэффициент растворимости СОа в таких пленках значительно отличается от [c.239]

    При охлаждении расплава в форме в нем происходят структурные изменения, определяющие физико-механические свойства изделия. Кристаллизующиеся полимеры в некоторой степени восстанавливают кристаллическую структуру, что сопровождается значительной усадкой изделий. Скорость и степень охлаждения материала в поверхностных слоях, соприкасающихся с холодными стенками формы, и внутренних неодинаковы. В результате этого в изделиях создаются усадочные (термические) внутренние напряжения. [c.283]

    В ряде систем протекают химические реакции, сопровождающиеся образованием новых фаз или выделением газов, полиморфные превращения, изоморфные замещения и другие процессы. Из них наиболее существенны процессы уплотнения и рекристаллизации в присутствии жидкой фазы, например вязкого силикатного расплава. Последний играет роль связки, цементирующей твердую фазу и не вступающей с ней в химическое взаимодействие. В отдельных случаях связующий компонент реагирует с поверхностным слоем твердой фазы наполнителя. При этом объем кристаллов наполнителя увеличивается за счет образования новых слоев, и отдельные микрокристаллы новообразований взаимодействуют между собой. Постепенно они срастаются друг с другом в один общий каркас. При анализе этих процессов необходимо учитывать диффузионное взаимодействие с участием жидкой фазы. [c.244]

    При контактировании расплавленной латуни с воздухом или другим кислородсодержащим газом на ней быстро образуется поверхностный слой оксида цинка, В результате этого при производстве латуни и ее последующей разливке значительное количество цинка теряется в виде оксидных съемов, плавающих на поверхности. В процессе удаления съемов с расплава и при обработке флюсами перед разливкой происходят также заметные потери самой латуни, достигающие 5%. Содержание металлов в этих съемах обычно составляет >85 % (в основном сплавы меди и цинка и оксид цинка). [c.389]


    Так как скорость течения в объеме расплава ниже, чем в поверхностном слое, подъемная сила, возникающая как следствие неоднородного распределения температуры, практически полностью уравновешивается силой, вызванной градиентом давления. Это означает, что в объеме расплава складывается ситуация, близкая к гидростатической, где, как известно, температура оказывается функцией только координаты 2, и при ориентированном по оси г температурном градиенте имеют место устойчивые гидродинамические потоки. Это утверждение соответствует результатам экспериментов по распределению примесей в монокристаллах, выращенных в условиях разнонаправленных конвективных потоков. Известно, что направление указанных потоков в методах Бриджмена и Чохральского имеет вид, представленный на рис. 39 а, б. А на рис. 40 а, б приведена соответствующая картина [c.61]

    Все эти определения в применении к граничным слоям полимеров на твердом теле должны рассматриваться с учетом особенностей условий образования граничных слоев. Дело в том, что в гетерогенных полимерных системах, для которых особенно важно знать граничные свойства, поверхностные слои образуются не путем адсорбции из растворов, а либо формированием материала из расплава полимера в присутствии твердой поверхности (литье, экструзия, прессование и т. п.), либо непосредственно из олигомеров в ходе реакции отверждения в присутствии поверхности. Условия для адсорбционного и адгезионного взаимодействия в таком случае существенно отличаются от условий адсорбции из растворов. Это — или предельно концентрированные системы, или однокомпонентные системы, не содержащие растворителя, в которых конформация молекул не соответствует конформациям в разбавленных растворах и в которых сильны межмолекулярные взаимодействия. [c.155]

    Адсорбционное взаимодействие полимерных молекул с поверхностью, которое имеет место в наполненных системах, можно рассматривать как процесс, приводящий к перераспределению межмолекулярных связей в системе и к образованию дополнительных узлов физической структурной сетки вследствие взаимодействия сегментов с поверхностью. Образование дополнительных узлов должно снижать молекулярную подвижность как результат структурирования системы. Можно ожидать, что в зависимости от условий получения наполненного полимера и типа взаимодействия цепей с поверхностью число дополнительных узлов будет различно, а следовательно, и свойства поверхностного слоя полимера также будут отличаться. Первым актом образования поверхностной пленки (лакового покрытия, клеевого соединения и т. п.) является адсорбция молекул полимера поверхностью. В зависимости от характера адсорбции и формы цепей в расплаве или растворе свойства поверхностных слоев будут различными. [c.156]

    Адсорбционное взаимодействие макромолекул полимера с поверхностью в расплаве или образование их в реакционной системе и ограничение их подвижности приводит к изменению условий формирования поверхностного слоя полимера. В результате этого в большинстве случаев возникает более рыхлая упаковка молекул в [c.280]

    Характерно, что толщина поверхностного слоя бп с низкой концентрацией высокоплавкого компонента почти во всех опытах практически постоянна. Если предположить, что поверхностный слой образуется после прекращения циркуляции расплава, то толщину кристаллического слоя б, образующегося при движении расплава, можно выразить разностью 6 = 65 —б где —суммарная толщина кристаллического слоя. [c.168]

    Поверхностные эффекты проявляются на границах раздела расплавов с твердой фазой. Они сопровождаются существенным уменьшением адгезии и, как следствие, изменением характера течения вблизи твердах поверхностей. В частности, можно отметить следующие эффекты при периодическом режиме деформирования нарушение структурных связей, носящее как тиксотронный, так и деструктивный характер переход в высокоэластичное состояние и уменьшение вязкости, связанное с увеличением температуры поверхностных слоев за счет поглощения энергии и увеличения теплообмена со стенкой кавитацию и др. Совокупность воздействия поверхностных эффектов приводит к пристенному скольжению полимерных материалов, существенно влияющему на различные технологические процессы их формования  [c.139]

    Сульфидирование. Этот процесс применяется с целью поньь шепия износостойкости трущейся поверхности изделий и приборов, а также для декоративных целей. Стальные изделия обычно обрабатываются в расплавах серосодержащих солей, в результате чего поверхностные слои обогащаются сульфпда ми. Сульфидная иленка имеет толщину 2—3 мкм. [c.332]

    Как показано в разд. 9.1, механическая энергия превращается в тепло различными способами деформацией отдельных частиц, трением между частицами и диссипативным разогревом в областях расплава. В процессе плавления последний способ становится доминирующим. Интенсивное перемешивание распределяет вновь образовавшийся расплав по всему материалу. Расплав, контактируя с твердыми частицами полимера, охлаждается сам и в то же время нагревает и расплавляет поверхностные слои частиц. Следовательно, частицы полимера, находящиеся в смесителе, постепенно превращаются сначала в термически (и реологически) негомогенную, частично расплавленную массу, а в конце концов — в гомогенный расплав. В смесители типа Бенбери новую порцию материала загружают с небольшим количеством расплавленного и перемешанного [c.297]

    Переработка литьем под давлением предоставляет большие возможности для управления надмолекулярной структурой полимеров, поскольку, варьируя параметры процесса заполнения формы, можно в широком диапазоне изменять характер течения расплава. Кроме того, при литье под давлением достигается интенсивный перенос тепла по крайней мере дтя молекул, расположенных у поверхностей формующей полости. Иными словами, вероятность замораживания молекулярной ориентации, вызванной течением, наиболее высока вблизи поверхностных слоев изделия и наиболее низка в середине издепия, следствием чего является образование слоистых структур. [c.538]

    В свете полученных данных вполне объяснимы результаты, опубликованные Кантцем [38], Кларком [39] и другими авторами, исследовавшими кристаллическую структуру полимеров, перерабатывавшихся литьем под давлением. В поверхностном слое молекулярные цепи, вытянутые в направлении продольного течения, образуют зародыши кристаллизации, на которых растут ламели в плоскости, перпендикулярной направлению потока. В слое, лежащем непосредственно под поверхностным, продолжается образование зародышей кристаллизации, но растущие здесь ламели перпендикулярны поверхности формы и по отношению к направлению течения ориентированы случайным образом. Морфология образующейся при этом структуры определяется, по-видимому, совместным влиянием ориентации за счет сдвигового течения и значительного перепада температуры. Напомним, что как сдвиговое течение, так и растяжение расплава способны привести к значительной ориентации цепей, вызывающей зародышеобразование (см. разд. 3.6). В центре изделия наблюдается сферолитная морфология, характеризующаяся отсут- [c.539]

    В дополнение к упомянутым выше напряжениям в литьевых изделиях накапливаются упругие напряжения, вызванные ориентацией при течении расплава. Используя уравнение состояния расплава, с помош,ью выражения (14.1-9) при заданных значениях Т х, у, t) можно оценить величину ориентации в каждой точке отливки в конце процесса заполнения формы при Т решения этой задачи в первую очередь необходимо расчетным путем установить наличие фонтанного течения, поскольку именно такой характер течения приводит к образованию поверхностных слоев литьевого изделия. Далее следует подобрать уравнение состояния, соответствующее данному характеру течения и большим деформациям, и определить степень их влияния на кинетику кристаллизации и морфологию кристаллизующихся полимеров. В работе Кубата и Ригдала [44] предпринята косвенная попытка решения подобной задачи. Можно надеяться, что в ближайшее десятилетие будет достигнут существенный прогресс в этой области исследований. Конструкция пресс-формы и технологические параметры литья под давлением также являются факторами, влияющими на структурообразование в литьевых изделиях. [c.541]

    Полимерам свойственен эффект — растворение металлов расплавами полимеров. Выяснилось, что расплавы некоторых полимеров могут растворять поверхностные слои металлов. Иногда даже возмож1ю полное растворение металла расплавом полимера. Способностью растворять металлы обладают расплавы полиэтилена, поликапроамида и др. [c.671]

    Наиболее интересной и перспективной представляется теория До-гонадзе и Чизмаджева, основанная на использовании так называемых бинарных коррелятивных функций, которые характеризуют ближний порядок (микроструктуру) и объемные свойства жидкостей. Эти функции определены для многих расплавов рентгенографическим методом. Поэтому, предполагая бинарную функцию заданной, можно выразить через нее распределение концентраций ионов у межфазной границы при наличии внешнего поля. Для расплава бинарная функция имеет осциллирующий затухающий характер. В соответствии с этим распределение заряда двойного слоя в расплаве вблизи электрода также оказывается осциллирующим и затухающим. В первом слое заряд противоположен по знаку заряду электрода и превосходит его по величине, во втором слое заряд оказывается меньшим по величине, чем в первом слое, и противоположным ему по знаку и т. д. В поверхностном слое возникает своеобразный многослойный конденсатор или так называемая знакопеременная структура расплава . Такая структура поверхностного слоя является следствием очень сильной корреляции между катионом и анионом в расплавах. В результате корреляции избыток анионов в первом слое от поверхности при ее положительном заряде приводит к тому, что второй слой оказывается с избытком катионов, третий —снова заряжен отрицательно и т.д. [c.138]

    В Советском Союзе создана большая школа электрохимиков, которая занимает одно из ведущих мест в мировой науке. Предметом исследования ученых явились процессы, протекающие на границе фаз. Эти проблемы занимали исследователей еще в прошлом столетии при изучении коллоидных систем, а также электрохимических процессов, протекающих на границе металл — раствор. Однако наблюдения над явлениями, происходящими на границе фаз, в то время не были объединены в самостоятельную научную дисциплину, имелись только разрозненные сведения по равновесным потенциалам, которые давали возможность установить лишь направление электродных процессов. Нерешенным оставался основной вопрос о механизме этих процессов. Из работ советской электрохимической школы стало ясно, что суждение о механизме электродных реакций невозможно без изучения строения поверхностного слоя, в котором эти реакции протекают. Основоположник этой школы А. Н. Фрумкин впервые установил, что наиболее полное представление о строении двойного слоя на поверхности металла, погруженного в раствор, можно получить, наблюдая электрокапиллярные явления. Позднее С. В. Кар-пачев и др., исследуя характер электрокапиллярной кривой на ртути, галлии и амальгамах в водных растворах, а также на многих легкоплавких металлах в расплавах показали, что таким образом можно вывести суждение о наличии и величине заряда и тем самым получить представление о строении поверхностного слоя при разных условиях. [c.9]

    Процесс растворения углерода в жидком металле при постоянной температуре складывается из двух стадий — перехода атомов углерода в ламинарный поверхностный слой расплава и диффузии углерода из этого слоя в объем жидкого металла [9, с. 190—200]. Однако при взаимодействии с графитом жидких металлов IV группы периодической системы элементов Д.И. Менделеева (Т1, 2г, Hf) вблизи температуры их плавления после начального и весьма интенсивного науглероживания содержание углерода в ламинарном слое достигает величины близкой к равновесной концентрации фазовой границы жидкость — жидкость + МеС. Несколько раньше, чем такая концентрация будет достигнута во всем объеме металла, на поверхности графита начинает образовываться карбидный слой, состав которого со стороны, обращенной к расплаву, можно выразить формулой Л еСо, . Этот слой стоек ло отношению к жидкому металлу. Следовательно, процесс растворения углерода в жидком металле в этом случае состоит из нескольких стадий перехода углерода в ламинарный слой и диффузии из этого слоя в объем жидкого металла накопление углерода в ламинарном слое вследствие разных скоростёй поступления и отвода атомов углерода образования карбидного слоя на графите диффузии углерода в расплав через слой карбида. [c.132]

    П, н.-осн. термодинамич. характеристика поверхностного слоя жидкости на границе с газовой фазой или др. жидкостью. П.н. разл. жидкостей на границе с собств. паром изменяется в широких пределах от единиц для сжиженных низкокипящих газов до неск. тыс. мН/м для расплавл. тугоплавких в-в. П. н. зависит от т-ры. Для мн. однокомпонентных неассоциир. жидкостей (вода, расплавы солей, жидкие металлы) вдали от критич. т-ры хорошо выполняется линейная зависимость  [c.589]

    СОРБЦИЯ (от лат. sorbeo-поглощаю), поглощение твердым телом или жидкостью разл. в-в (жидкостей либо газов) из окружающей среды. Поглощающее тело наз. сорбентом, поглощаемое-сорбатом (сорбтивом). Различают поглощение всем объемом жидкого сорбента (абсорбция), а также твердого тела или расплава (окклюзия) и поверхностным слоем сорбента (адсорбция). С., обусловленная взаимод. хим. типа между пов-стью твердого сорбента и сорбатом, наз. хемосорбцией. При С. паров твердыми в-вами часто происходит капиллярная конденсация. Обычно протекает одновременно неск. сорбц. процессов. [c.389]

    Повыш. прочность с. в. (по срамению с исходным стеклом) объясняют по-разному замораживанием изотропной структуры высокотемпературного расплава стекла или наличием прочного поверхностного слоя (толщина ок. 0,01 мкм), к-рый образуется в процессе формования вследствие больщей деформации и вытяжки по сравненшо с внутр. слоями. [c.428]

    ТРАВЛЁ1ШЕ химическое, удаление части поверхностного слоя монокристалла, заготовки или изделия с помощью топохим. р-ций. Проводится с использованием р-ров, расплавов, газов (газовое Т.) или активир. газов (иапр., плазмохимическое Т.). Собственно химическое Т. иногда сочетают с мех. воздействием, в качестве источника тепла и активатора при газовом Т. в ряде случаев используют лазеры. [c.616]

    По характеру изменения хим. состава обрабатываемого изделия л.-т. о, можно разделить на диффузионное насыщение неметаллами или металлами и диффузионное удаление элементов (чаще всего углерода в слабоокислит. среде или водорода в вакууме). Разновидности Х.-т. о. цементация- насыщение гл. обр. стальных изделий углеродом азотирование - насыщение азотом стали, сплавов на основе Ti и тугоплавких металлов оксидирование-окисление поверхностных слоев алюминиевых и магниевых сплавов цианирование и нитроцементация -одновременное насыщение углеродом и азотом стальных (чудных) изделий соотв. из расплава солей и газовой фазы борирование - насыщение бором изделий из стали, сплавов на основе Ni, Со и тугоплавких меташюв силициро-вание - насыщение кремнием алитирование - насыщение алюминием гл. обр. сталей, реже чугунов и сплавов на основе Ni и Со хром ирование и цинкование-насыщение стали соотв. хромом и цинком меднение-насыщение медью изделий из стали. Из всех видов Х.-т. о. наиб, широко используют насыщение стали углеродом и азотом. Углерод и азот быстро диффундируют в железо, образуя при этом твердые р-ры, карбидные и нитридные фазы, резко отличающиеся по физ.-хим. св-вам от железа. [c.230]

    Следует отметить, что образование мелких желтых капель серы, окаймленных узкой полоской более темного расплава ускорителя, наблюдается для всех бинарных смесей ускоритель— сера. Это явление, характерное для эвтектических смесей, объясняется тем, что поверхность кристаллов серы является подкладкой, уменьшающей работу образования зародьштей жидкой фазы в поверхностном слое кристаллов ускорителя. После плавления смеси, вследствие уменьшения взаимной растворимости компонентов, возможно ее расслоение на две фазы с по- [c.39]

    Больщой класс задач составляют задачи о течениях с гетерогенными реакциями на твердых и межфазных поверхностях, в частности мембранах, процессы растворения и осаждения вещества из раствора или расплава и т. п. Гетерогенные реакции состоят из нескольких этапов. Первым этапом, называемым транспортным, является доставка реагирующего компонента к реагируе-мой поверхности. Второй этап состоит из самого процесса химической реакции па поверхности. Этот этап в свою очередь может состоять из нескольких этапов, включающих дифузию реагирующего вещества через стенку или поверхностный слой, адсорбцию вещества па поверхности, химическую реакцию, десорбцию продуктов реакции и их диффузию из стенки или поверхностного слоя. Третий этап заключается в переносе продуктов реакции в толщу потока. Каждый этап определяется своим характерным временем. Этап, обладающий наибольшим характерным временем, будем называть лимитирующим этапом, а соответствующий ему процесс — контролирующим. В случае, если лимитирующим является первый или третий из перечисленных выше этапов, то соответствующий процесс называется диффузионно контролируемым. Уравнения, описывающие этот этап, [c.92]

    Приведенные данные свидетельствуют о том, что травление кристаллов ИАГ в процессе их роста происходит именно над зеркалом расплава. Механизм травления поверхностн растущего кристалла ИАГ можно объяснить следующим образом. Продукты термической диссоциации оксида алюминия, испаряющиеся с зеркала расплава, конденсируются на растущем кристалле и в зоне высокой температуры взаимодействуют с его поверхностью, обн разуя низкотемпературные эвтектики. В результате этого взаимо- действия состав поверхностного слоя кристалла изменяется от ИАГ в сторону эвтектики ИАГ, АЬОз, которая имеет более низкую температуру плавления по сравнению с температурой плавления граната. Образующийся на поверхности кристалла расплав эвтектического или близкого к нему состава стекает вниз по кристаллу, оставляя характерные бороздки стекания жидкой фазы, т. е. протравливает поверхность ИАГ. [c.222]

    Для переработки пластика АБС наиболее приемлемы шнековые термопластавтоматы, обеспечивающие однородность структуры и кратковременное пребывание расплава в щ линдpe, а также равномерное распределение частиц каучука в поверхностном слое изделия. [c.25]

    Изменение молекулярной подвижности имеет следующие основные следствия. Оно ведет к повышению температур переходов, прежде всего — температуры стеклования, к изменению условий кристаллизации и к изменению релаксационного поведения полимера в поверхностных слоях. В последнем случае это влияние проявляегся двояким образом в ходе формирования полимерного материала из расплава или раствора, при полимеризации и в ходе эксплуатации уже готового полимерного материала. Ограничение молекулярной подвижности в поверхностных слоях при формировании полимера приводит к торможению релаксационных процессов и возникновению неравновесного напряженного состояния по сравнению с состоянием полимера в отсутствие твердой поверхности. В результате в системе возникает неплотная молекулярная упаковка и наполненный полимер может иметь в среднем меньшую плотность в расчете на полимер, чем ненаполненный. [c.181]

    На поверхности изделия образуется сильно ориентированная пленка, состоящая из мелких, довольно однородных ламелярных образований В отдельных случаях при достаточно большой степени ориентации и высоких скоростях охлаждения в поверхностном слое возникают продольно ориентированные фибриллярные кристаллиты с нанизанными на них пачками ламелярных структур (структуры типа шиш-кебаб). При малых скоростях охлаждения и низком давлении впрыска в поверхностных слоях образуется однородная мелкосферо-литная структура Толщина этой наружной оболочки зависит от ряда факторов (температура расплава, температура формы, коэффициент температуропроводности полимера, давление впрыска и т. д.). По данным экспериментальных исследований, она составляет от 0,2 до 0,4 мм  [c.437]

    Другим отрицательным следствием уменьшения вязкости является снижение степени ориентации расплава, поскольку уменьшаются действующие в нем напряжения сдвига. В результате обоих этих процессов (уменьшение числа центров кристаллизации и уменьшение степени ориентации) снижается температура начала кристаллизации. Внешне это проявляется в формировании неоднородной крупнозернистой даже в поверхностном слое структуры, ухудшающей механические характеристики изделий. Так, увеличение температуры расплава полиэтилена ВД со 120 до 165° С сопровождалось падением предела прочности при растяжении со 179 до 140 кгс1см В случае литья полиэтилена НД соответственно имеем при температуре расплава 150° С разрывная прочность равна 370 кгс/см , при температуре 250° С—300 кгЫсм . Аналогичные данные по влиянию температуры литья на механические характеристики термопластов приводятся и в других работах . [c.438]

    Увеличение давления литья оказывает существенное влияние на структуру поверхностного слоя, поскольку увеличение напряжений сдвига в процессе заполнения увеличивает степень ориентации полимерных молекул в поверхностном слое. Конечный эффект аналогичен эффектам, наблюдавшимся при снижении температуры расплава. Структура центральной зоны отливки практически не зависит от давления литья. Некоторое влияние на нее оказывает давление на стадии выдержки под давлением. При этом значительный эффект достигается только при достаточно высоких давлениях (выше 2000 кгс1см ), когда становится заметным повышение температуры кристаллизации за счет объемного сжатия Такие высокие давления обеспечивают, как отмечалось выше, получение изделий с мелкосферолитной структурой и хорошими механическими свойствами. [c.439]


Смотреть страницы где упоминается термин Расплавленный поверхностный слой: [c.176]    [c.89]    [c.677]    [c.356]    [c.206]    [c.222]    [c.244]    [c.62]   
Смотреть главы в:

Гиперзвуковые течения вязкого газа -> Расплавленный поверхностный слой




ПОИСК





Смотрите так же термины и статьи:

Поверхностный слой



© 2025 chem21.info Реклама на сайте