Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро двуокись

    Летучие вещества должны быть удалены кальцинированием. Один из видов такого кокса после термообработки нри 1480°С был подвергнут анализу. Оказалось, что в нем 99,26% связанного углерода, 0,35% золы и 0,64% серы [169]. В золе может содержаться небольшое количество кобальта, никеля, олова, ванадия и молибдена [170]. Кроме того, минеральный остаток перегонки различных нефтепродуктов содержит, подобно золе в коксе, железо, алюминий, фосфор, марганец, двуокись кремния, кальций, магний, свинец, титан, натрий, медь, золото и серебро [171, 172]. [c.570]


    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]

    Сульфаты ртути, меди, серебра, двуокись теллура и двуокись селена [c.199]

    Окись серебра Двуокись марганца [c.421]

    Окись ртути, пятиокись ванадия, окись серебра, двуокись титана, окись кобальта [c.15]

    Это контактное вещество, кроме поразительных его катали-тически-окислительных свойств, обладает и сильным адсорбционным свойством. Галогены количественно удерживаются им в виде галогенидов серебра, двуокись серы и серный ангидрид — в виде сульфатов двухвалентного марганца и серебра. Также ко- [c.324]

    Метод предложен Д. И. Менделеевым (1907) и Ф. М. Флавицким. Для ускорения реакций между твердыми веществами их тщательно измельчают. Например, растирая порошки металлического серебра и серы, получают черный порошок сульфида серебра. Если же растереть в ступке основной карбонат меди, он разложится на воду, газообразную двуокись углерода и черную окись меди (сине-зеленый порошок становится черным). Твердый нитрат свинца при растирании с сульфидом натрия чернеет, так как образуется черный сульфид свинца и нитрат натрия. Можно получить синий комплексный роданид кобальта и калия, красный роданид железа, растирая твердые соли кобальта или железа с роданидом калия. [c.137]

    В трубке для сожжения имеются секции с различными веществами,, расположенными в следующем порядке, начиная с ближайшего к образцу конца серебро, платина, смесь окиси меди и хромата свинца, серебро, двуокись свинца, серебро. Серебряная сетка должна улавливать галогены, летучие пары галогенопроизводных и окислы серы. Платина способствует сгоранию систем с конденсированными циклами. Порошкообразные окись меди и хромат свинца действуют как окислители, способствующие сгоранию. Двуокись свинца реагирует с окислами азота и удерживает их в противном случае они дали бы завышенное значение для двуокиси углерода и воды. Вещества, содержащие фосфор, при сгорании образуют золу из окислов фосфора, в которой задерживаются небольшие количества углерода поэтому золу нужно сильно прокаливать, чтобы не получить заниженные значения. [c.62]


    Не растворяются в царской водке хлорид, бромид, иодид и цианид серебра, сульфаты стронция, бария и свинца, фторид кальция, сплавленный хромат свинца, окись алюминия, окись хрома, двуокись олова, двуокись кремния, элементные углерод и кремний, карборунд и многие силикаты. Чтобы перевести в раствор, их разлагают. Из числа веществ, встречающихся в качественном анализе, в органических растворителях (например, в диэтиловом эфире, этиловом спирте, хлороформе, бензоле, сероуглероде, четыреххлористом углероде) растворимы элементные бром и иод. Аморфная сера не растворяется в сероуглероде. Моноклинная сера растворяется в сероуглероде, а ромбическая сера — в сероуглероде и толуоле. Желтый фосфор хорошо растворим в сероуглероде и бензоле, а красный фосфор не растворим в растворе аммиака, эфире, спирте и сероуглероде. [c.274]

    Для образования вулканизатов на основе перфторполимеров могут быть также использованы серебряные соли перфторирован-ных кислот. Будучи термически малостабильными, при нагревании они выделяют металлическое серебро и двуокись углерода, с образованием радикалов по атому углерода. Радикалы рекомбинируются, приводя к образованию прочных углерод-углеродных связей. Известны способы введения в перфторированные сополимеры сульфо-, циано- и других функциональных групп. [c.511]

    Мезоксалевая кислота плавится при 121° как а-кетокислота, она восстанавливает аммиачный раствор соли серебра и распадается при кипячении с водой на двуокись углерода и глиоксиловую кислоту  [c.409]

    Опыт проводится под тягой ) в сухую микропробирку положите 4—5 кристаллов нитрата серебра и нагревайте ее до полного прекращения выделения бурого газа (ЫОз). Составьте уравнение реакции, имея в виду, что образуется кислород, двуокись азота и серебро. Полученное серебро сдайте лаборанту ( ). [c.107]

    Для токообразующих процессов на положительных электродах используются в основном окислы (двуокись марганца, окись ртути) и соли (хлористое серебро, хлористая медь, хлористый свинец). Схема возникновения потенциала на границе таких электродов с раствором сложнее, чем в случае металлических и газовых электродов, но протекающие процессы всегда связаны с возникновением двойного электрического слоя на границе электрод — раствор и с переходом ионов через эту границу. [c.17]

    В качестве катодов применяют твердые окислы и соли, а также жидкие компоненты некоторых электролитов, представляющие собой электролиты-окислители. Двуокись марганца, фтороуглерод (СРх)п, трехокись молибдена МоОз, окись висмута 61263, окись меди СиО, хроматы и фосфаты серебра, меди, различные сульфиды тяжелых металлов используют как твердые активные материалы в смесях с углеродными электропроводным компонентами и полимерным связующим. [c.277]

    И полное сгорание гарантируется тем, что вещества сначала смешивают с перманганатом серебра, а затем для более полного сгорания пропускают через трубку, заполненную окисью меди. После реакции воды с карбидом кальция двуокись углерода, азот и ацетилен разделяют на колонке с силикагелем без применения системы ловушек и определяют при помощи катарометра. [c.253]

    Двуокись углерода-С поглощают рассчитанным количеством едкого натра (2,0 мл 0,5127 н.) и перемешивают затем с раствором 0,185 г нитрата серебра и 20 мл воды. Осадок отфильтровывают, промывают водой, ацетоном и эфиром, затем сушат при температуре 20° (1 мм рт. ст.) в течение 2 час. и растирают в порошок. [c.554]

    Гидроокиси рубидия и цезия — весьма активные в химическом отношении вещества. На воздухе они быстро расплываются и, поглощая двуокись углерода, постепенно переходят в карбонаты при 400—500° С взаимодействуют с кислородом, образуя перекиси [99], и с окисью углерода, образуя формиаты и оксалаты [6, 93]. Расплавленные гидроокиси рубидия и цезия разрушающе действуют на железо, кобальт, никель, платину, изделия из корунда и двуокиси циркония и постепенно растворяют даже серебро и золото. Наиболее устойчивыми в такой среде являются изделия из родия и сплавов родия с платиной. [c.89]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]


    Определение углерода и водорода в соединениях, содержащих кроме углерода, водорода и кислорода также и другие элементы. В соответствии с оригинальным методом Прегля для связывания газообразных продуктов (исключая СО2 и На), образующихся при сожжении из других (помимо С, Н и О) элементов, которые присутствуют в исходном соединении, применяется универсальная набивка . Она состоит из серебра, двуокиси свинца и смеси хромата свинца с окисью меди. Галогены образуют с металлическим серебром галогениды серебра окислы серы задерживаются в виде сульфата свинца или серебра. Азотсодержащие вещества, в частности нитро- и нитрозосоединения, образуют при сожжении окислы азота, которые количественно связываются двуокисью свинца. Недостатки двуокиси свинца состоят в том, что она задерживает наряду с окислами азота также некоторое количество двуокиси углерода и воды и, кроме того, она быстро насыщается, особенно окислами азота. Чрезвычайно надежно работает металлическая медь, нагретая до 500° С [76, 77] двуокись марганца эффективно задерживает окислы азота при комнатной температуре [78]. [c.35]

    К раствору, содержащему 3 г ацетобромглюкозы и 10 г ментола в 25 мл сухого эфира, прибавляют 3 г свежеприготовленного карбоната серебра, промытого спиртом и эфиром и высушенного в вакуум-эксикаторе. Поскольку при взбалтывании двуокись углерода вначале выделяется энергично, рекомендуется реакцию проводить в сосуде со стеклянной пробкой, которую время от времени следует открывать. Через час выделение газа уменьшается. Дальнейшее механическое взбалтывание рекомендуется проводить в течение суток. Смесь фильтруют, фильтрат упаривают. К образовавшемуся бесцветному сиропу добавляют 25 мл воды и через смесь пропускают водяной пар для отгонки непрореагировавшего ментола. После охлаждения и отсасывания оставшийся продукт сушат в вакууме и для очистки перекристаллизовывают из 50%-ного этанола. Выход 2 г, т. пл. 130°. [c.55]

    При окислении окиси этилена в зависимости от условий реакции и природы окислителя получаются либо гликолевая кислота, либо (при глубоком окислении) двуокись углерода и вода. Многие окислители в водных растворах и даже воздух в присутствии губчатой платины окисляют окись этилена . При окислении окиси этилена в водном растворе нитратом серебра образуется гликолевая кислота  [c.77]

    Применяют следующие окислители галогены, азотную кислоту, перманганат калия, бихромат калия, двуокись свинца, перекись водорода, персульфат аммония, хлорную кислоту, азотистую кислоту, окись серебра, перйодаты. Применяют и восстановители свободные металлы (цинк, алюминий, железо, ртуть), сернистую кислоту, сероводород, соли двухвалентного олова, перекись водорода, соли двухвалентного хрома, гидразин, гидроксиламин, аскорбиновую кислоту, борогидрид натрия, амальгаммы металлов. [c.106]

    Многие исследователи отмечали поразительное свойство серебра, адсорбировать значительное количество кислорода в интервале температур от —193 до -f 300 °С. Таким образом, взаимодействие серебра с кислородом принадлежит к низкотемпературным процессам окисления, и вопрос о форме кислорода, атомарной или молекулярной, приобретает определенный интерес. Следует также учесть, что хорошо известные слородные соединения — окись и двуокись серебра (AgaO и AgO) при этих температурах термодинамически нестойки и поэтому должны относительно легко разрушаться. [c.271]

    Считается, что хемосорбция молекул на полупроводниках и металлах вызывает заряжение поверхности Этилен и ОКИСЬ этилена являются донорами электронов и заряжаются на поверхности серебра положительно, а кислород, двуокись углерода и металлоидные добавки (С1, 1, 5, 5е, Р) как акцепторы электронов заряжаются отрицательно . [c.221]

    В результате исследований подтвердилась гипотеза о параллельности процессов окисления этилена в окнсь этилена, двуокись углерода и воду, а также предположение о протекании на серебре [c.283]

    Для положительных электродов на практике с успехом используют окислы серебра, двуокись свинца, двуокись марганца, окислы никеля и ртути. Они обладают достаточно высоким положительным потенциалом и более или менее удовлетворяют остальным требованиям. Все они, однако, имеют относительно высокие эквивалентные веса и ограниченные степени использования материала в ХИЭЭ. Коэффициент использования серебра и ртути в ХИЭЭ выше, чем у остальных материалов, но их применение ограничивается высокой стоимостью. [c.469]

    Метка 0 вводилась либо в перекись водорода или персульфат, либо в воду и окисляемое вещество. Изотопный анализ веществ проводился следующим образом перекись водорода, персульфат, перекиси кальция, стронция, бария и серебра, двуокись марганца разлагались с выделением кислорода, который непосредственно анализировался в масс-спектрометре или предварительно нагревался с обезгаженным углем и анализировался в виде СОа- Для масс-спектрометрического анализа воды она предварительно обменивалась с двуокисью углерода [1]. Кислород сульфата анализировался в виде СОд, выделяющегося при нагревании РЬ804 с углем. [c.105]

    Газообразный хлор легко обнаруживается по запаху, желтой окраске и способности выделять иод из иодидов, обесцвечивать лакмус, индиго и большинство органических окрашенных реагентов. Хлориды в отсутствии бромидов и иодидов образуют белые опалес-цирующие или творожистые осадки в присутствии нитрата серебра. Двуокись марганца, перманганат калия и другие аналогичные окислители выделяют хлор из свободной соляной кислоты. В присутствии концентрированной серной кислоты и аммиака хлориды образуют белый дым. [c.123]

    Для положительных электродов X. п. т. обычно используют окислы серебра, двуокись свинца, двуокнсь марганца, окислы никеля, ртути, меди. Они обладают высоким положительным потенциалом (за исключением окпсла меди) и более или менее удовлетворяют остальным требованиям. Все они, однако, имеют высокие эквивалентные веса и ограниченные степени использования в X. и. т. Наплучшпе характеристики у катодов из окислов серебра и ртути, однако широкое применение этих материалов ограничивается их пысокой стоимостью. [c.325]

    Как ариламины, так и фенолы можно окислить до хинонов. В промышленном процессе получения я-бензохинона в качестве окислителя используется двуокись марганца и серная кислота [14]. В другом, более старом промышленном процессе, для окисления анилина или фенола до хинона применяется бихромат натрия и серная кислота. В лаборатории в качестве окислителя как аминов, так и фенолов широко используется нитрозодисульфонат калия 0К(80зК)2 (соль Фреми) дающий, стабильный радикал нитрозилдисульфонат. Для ряда фенолов [15 этот окислитель дает выходы от 50 до 99%, в то время как для аминов [16] выходы обычно составляют 49—96%. Для очень реакционноспособных хинонов, таких, как о-бензохинон и стильбенхинон, предпочтительно использование в качестве окислителя окиси серебра [17]. Кроме того, в лабораторной практике в качестве окислителей применяют перекись водорода и уксусную кислоту [18] и феррицианид калия [19]. [c.203]

    Кинетика окисления этилена на серебряном катализаторе исследовалась в изотермическом режиме (при 218 °С) в безгра-диентном реакторе в широком интервале концентраций этилена, кислорода, окиси этилена, воды и двуокиси углеро-дд87, 88, 08, 110, 111 j pjj выводе кинетических уравнений было учтено стационарное течение процесса, использованы представления теории адсорбции Лангмюра и сделано несколько предположений относительно механизма процесса, близкого к иредлол< ен-ному ранее . Считается, что адсорбированный молекулярный кислород быстро распадается иа атомы, покрывающие большую часть поверхности катализатора. Затем атомарный кислород взаимодействует с этиленом, образуя одновременно окись этилена, двуокись углерода и воду. Эти продукты адсорбируются на поверхности катализатора и уменьшают каталитический эффект серебра. [c.285]

    Получение окиси серебра с использованием едкого натра, свободного от карбоната 1164]. В 50 мл дисттгллированной воды, свободной от СО2, растворяют 30 г нитрата серебра. Двуокись уг.1шрода можно удалить лгибо кипячением, либо пропуская в воду ток азота можно применить оба метода одновременно. После растворения добавляют 55 мл 4 н. раствора едкого натра, свободного от СО2, энергично встряхивают суспензию и фильтруют через стеклянную воронку с пористым дном (фильтр № 3) в атмосфере азота. Слой окиси серебра на фильтре промывают сначала 750 мл дистиллированной воды, свободной от СОо, а затем 300 мл метилового спирта. Окись серебра, смоченную спиртом, сразу же употребляют для приготовления стандартного раствора. Опыт показывает, что окись серебра, смоченная метиловым спиртом, реагирует с иодистым тетрабутиламмонием более энергично, чем сухая [540]. [c.153]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Для работы требуется Аппарат Киппа для получения сероводорода с осушительными склянками (с СаС12). — Прибор (сл1. рис. 55). — Пробка с газоот-ввдной трубкой, согнутой под прямым углом. — Штатив с пробирками. — Стакан амк. 100 мл. — Цилиндры со стеклами 2 шт. — Цилиндр мерный емк. 50 мл. — Пипетка емк. 10 мл. — Кристаллизатор большой. — Воронка. — Шпатель стеклянный. — Палочки стеклянные, 2 шт. — Ложечка для сжигания. — Двуокись марганца. — Хлорид меди. — Бромид калия. — Окись ртути. — Перекись натрия. — Перекись бария. — Железо (опилки). — Хлорид кобальта. — Сера кусковая. — Серная кислота, 2 н. раствор. — Бихромат калия, 1 н. раствор. — Иодид калия, 0,5 н. раствор. — Сульфид натрия, 1 н. раствор. — Сульфат натрия, 0,5 и. раствор. — Хлорид натрия, 0,5 н. раствор. — Нитрат серебра, ]%-ный )аствор. — Хлорид бария, 0,5 н. раствор. — Раствор фуксина, 1%-ный.— г итрат свинца, 0,5 н. раствор. — Хромит натрия, 0,1 н. раствор. — Едкий натр, 2 и. раствор. — Перманганат калия, 0,05 и. и 2 М растворы. — Аммиак, 5%-ный раствор. — Растворы лакмуса, фенолфталеина и метилового оранжевого. — Перекись водорода, 3%-ный раствор. — Ацетон. — Эфир.—Снег (лед).—Спирт этиловый. — Ткань окрашенная. — Бумага фильтровальная. — Лучины. — Песок. [c.164]

    Резина листовая техническая по ГОСТ 7338 81 Хлор (сухой газ) сероводород двуокись углерода кислоты любой концентрации соляная, борная, сернистая, винная, мышьяковая кислоты ограниченной концентрации серная 50 %-ная, фосфорная 85 %-ная, фтористоводородная 50 %-ная, ацетон ненасыщенные растворы солей алюминия азотнокислого, сернокислого, хромистокислого, бария сернокислого, железа сернокислого (закисного и окисного), калия двухромовокислого, сернокислого и сернистокислого, бисульфата калия, кальция сернистокислого, хлористого, хлорноватокислого, меди сернокислой, хлористой, цианистой, натрия кислого сернистокислого, цианистого, никеля уксуснокислого, серебра азотнокислого растворы солей любой концентрации анилина солянокислого, магния хлористого и сернокислого, натрия азотнокислого, сернистого, углекислого и хлористого, олова хлористого растворы хлористого цинка 50%-ной концентрации До 0,6 От -30 до +65 [c.382]

    Вместе с тем получается и двуокись селена. Выше 500° оксиселенит разлагается на окислы. Окисление селенида серебра идет через образование селенита, который, начиная с 550°, разлагается  [c.122]

    За рубежом чаще всего применяется сульфатизация. Так, на заводе Монреаль Ист в Канаде (рис. 39) шлам сульфатизируют крепкой серной кислотой, сульфатизированный продукт обжигают в конвейерной печи. Двуокись селена (степень возгонки - 90%) улавливается в скрубберной системе. Присутствующий в обжиговых газах (за счет действия S0 2) Se улавливается в электрофильтре. Огарок для удаления меди выщелачивают горячей водой. Вместе с медью в раствор переходит часть серебра и до 20% теллура. Их удаляют цементацией медным порошком. Из остатка от водного выщелачивания 10%-ным раствором NaOH извлекают основную массу ТеОг (- 50%), которую затем осаждают подкислением. Остаток после щелочного выщелачивания подсушивают и переплавляют — получается золото-серебряный анодный сплав. При этом получается содовый шлак с 10—20% Se и 5—10% Те. Часть селена возгоняется при плавке и улавливается в скрубберах и электрофильтре. [c.137]

    Колбу, содержащую 0,5 г магниевой стружки и 50 мл абсолютного эфира, охлаждают жидким азотом, а затем с помощью вакуумной перегонки вводят в нее 2,28 г (16,1 л1моля) йодистого метила-С . Колбу изолируют от всей системы н кипятят смесь с обратным холодильником в течение одного "часа (примечание 2). Затем колбу охлаждают до — 20° и вводят в нее сухую чистую двуокись углерода (примечание 3) до тех пор, пока давление в приборе не достигнет приблизительно 300 мм рт. ст. Смесь перемешивают еще в течение 10 мин. и соединяют колбу с атмосферой. Комплекс разлагают 15 мл 6 н. раствора серной кислоты при температуре от —20 до —50°. К полученной смеси добавляют 35 мл воды и 5 г сульфата серебра (примечание 4), отгоняют эфир, а затем перегоняют с паром полученную уксус-ную-2-С кислоту, используя для этого 300 мл воды. Дистиллат затем титруют потенциометрически 1 н. раствором едкого натра до pH 8, используя стеклянный электрод. Раствор концентрируют до небольщого объема, фильтруют и упаривают досуха. Выход соли, высушенной в вакууме (при давлении lO мм рт. ст.), составляет 70—75% (примечание 5). [c.17]

    Для мягкого окисления а-токоферола используют молекулярный кислород, хлорное золото, сернокислый церий, азотнокислое серебро [42, 49], активированную двуокись марганца (выход 27%) [50], соли трехвалентного железа, в частности хлорное железо [42, 43, 51—54) при окислении РеС1з в метиловом спирте выход индивидуального а-токоферол хинона (XII) составляет 88% [52]. Окисление а-токоферола осуществляют и электрохимическим методом [42]. [c.257]

    Предполагается суш,ествование нескольких соединений серебра с кислородом, в которых серебро проявляет валентность от 1 доЗ. Лучше всего изучены получаемые химическим и электрохимическим путем окись, двуокись и трехокись серебра (АёаО, AgO п А 2 0д). Кислородные соединения серебра неустойчивы, однако существует склонность серебра к значительной адсорбции и растворению кислорода при сравнительно невысоких температурах. В некоторых условиях серебро ведет себя как переходный металл с незаполненным -подуровнем, приобретая способность к хемо-сорбцин углеводородов, например этилена. Это происходит в присутствии кислорода, который связывает з-электроны серебра и создает возможность перехода части с/-электронов на уровни 3 и р. [c.262]

    Взаимодействие поверхности серебряного катализатора с компонентами реакционной газовой смеси является наиболее существенной стадией каталитического процесса окисления этилена. При этом важно знать, в какой форме находится кислород на поверхности серебра, т. е. в виде каких частиц из следующих известных Оа, О2, От, О, О", О , Оз или 0.1. От этого зависят такие свойства поверхностных соединений серебра и кислорода, как состав, строение, термическая стойкость и особенно прочность связей металл — кислород, определяющая реакционную способность этих соединений. Поэтому стадия образования нестойких поверхностных кислородных соединений серебра, которые сравнительно легко разрушаются,образуя активные промежуточные продукты (например, перекись этилена), способные повести процесс превращения дальше — в те или иные конечные продукты (окись этилена, двуокись углерода, вода и т. п.), — является чрезвычайно важной при каталитическом окислении. Иными словами, форма кислорода может в.лиять на вид кинетических уравнений процесса каталитического окисления этилека. [c.270]

    Приведенная схема не отражает взаимодействия катализатора с другими компонентами реакционной газовой смеси, кроме кислорода и этилена, а также различные гомогенные превращения в газовой фазе, так как для этого нет достаточных данных. Из этой схемы следует лишь, что каталитическое окисление идет по перекисному механизму с образованием активных промежуточных продуктов — супероксида серебра и органического перекис ного радикала [С2Н402-1. Повышение температуры должно оказывать отрицательное влияние — вызывать превращение радикала [С2Н4О ] в двуокись углерода и воду, а не в окись этилена. Но в то же время, ввиду тенденции катализатора к образованию плотноупакованной поверхности, повышение температуры должно способствовать образованию промежуточного супероксида серебра. [c.292]

    Так как трифторметилгипофторит получается не фторированием трехфтористым кобальтом, а в результате каталитического процесса, то можно было ожидать, что этот гипофторит будет образовываться и при взаимодействии двухфтористого серебра с метиловым спиртом. Однако эта реакция при 170" в желаемом направлении не идет. В этих условиях образуются только фтористый L водород, фторокись углерода и двуокись углерода. Повидимому, для образования гипофторита необходимо присутствие свободного фтора. Было найдено, что фторокись углерода реагирует с фтором в присутствии катализатора, давая гипофторит. Хотя фторокись углерода является лучшим исходным веществом для получения гипофторита, так как требует сравнительно немного фтора, основное количество гипофторита для данной работы было получено из метилового спирта. Выходы спирта и соответственно моноокиси углерода равны 50 и 70% от теоретически возможных, считая на поглощенное углеродсодержащее соединение. [c.154]


Смотреть страницы где упоминается термин Серебро двуокись: [c.118]    [c.309]    [c.8]    [c.128]    [c.282]    [c.290]   
Окись этилена (1967) -- [ c.262 , c.271 , c.289 ]




ПОИСК







© 2025 chem21.info Реклама на сайте