Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пластификация и температура стеклования

    Пластификация полимеров. Для уменьшения хрупкости полимера в данных условиях работы и для повышения его высокоэластичности часто прибегают к искусственной пластификации его. Пластификация полимера характеризуется, в частности, понижением его температуры стеклования и температуры текучести. Этого можно достичь двумя путями вводя в состав полимера специальные пластификаторы — некоторые низкомолекулярные высококипя-щие жидкости, или изменяя состав самого полимера методами сополимеризации .  [c.589]


    Существенное значение для процессов переработки ПМ имеет также пластификация полимеров. Под пластификацией понимают повышение пластичности полимеров при их переработке и эластичности при эксплуатации. Сущность пластификации состоит в снижении температуры стеклования полимера и расширении интервала АТ = Тт - Тс. Пластификация полимеров может быть достигнута различными методами, в связи с чем различают внутреннюю и внешнюю пластификацию. [c.379]

    Внешняя пластификация может быть физической и механической. При физической пластификации в полимер вводятся пластификаторы — низкомолекулярные твердые или жидкие органические соединения с высокой температурой кипения и низким давлением пара. Пластификаторы экранируют и сольватируют функциональные группы в звеньях полимера и снижают потенциальный барьер внутреннего вращения макромолекул, что приводит к увеличению гибкости цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально количеству молей пластификатора, удерживаемых полимером  [c.379]

    Механическая пластификация осуществляется путем нагревания полимера в деформированном состоянии до температуры выше температуры стеклования и охлаждении под нагрузкой. При этом происходит распределение и ориентация макромолекул в одном (волокна) или двух (пленки) направлениях, сближение и уплотнение макромолекулярных цепей. [c.380]

    При пластикации в присутствии растворителя наблюдается значительное изменение физико-механических свойств полимеров понижаются температуры стеклования и текучести, снижается хрупкость, повышается морозостойкость и т. п. Такое изменение свойств полимеров называется пластификацией, а используемый при этом высококипящий растворитель называется пластификатором. Для каучуков в качестве пластификаторов чаще всего используют бутилолеат, дибутилфталат, диоктилфталат, три-бутилфосфат, трикрезилфосфат и другие сложные эфиры. Применение пластификаторов позволяет вести пластикацию при более низкой температуре, что снижает расход энергии, затрачиваемой на проведение этого процесса. [c.299]

    Пластифицированные смолы получают, вводя в полимерные соединения пластификаторы, увеличивающие их гибкость и снижающие температуру стеклования. Пластификаторы — это низкомолекулярные нелетучие соединения с низкой температурой застывания. Эффект пластификации достигается в результате растворения низкомолекулярного вещества и полимера друг в друге, т. е. в результате проникновения и распределения пластификатора между макромолекулами полимера. Иными словами, пластифицированные материалы — очень концентрированные растворы полимеров. Из-за того, что низкомолекулярное соединение расположено между макромолекулами, изменяется структура вещества связь между цепными макромолекулами ослабляется, они приобретают подвижность и способность изгибаться, а это придает гибкость и эластичность материалу. Чтобы полимер и низкомолекулярное вещество взаимно растворились, должны быть либо оба полярными, либо оба не- [c.27]


    Пластификация понижает температуру стеклования полимера (см. табл. 10) и увеличивает его эластичность. Это придает изделиям ценные эксплуатационные свойства, так как их высокая эластичность сохраняется в большом интервале температур. [c.210]

    Как видно на рисунке пластификатор не только значительно снижает температуру стеклования и течения, но и расширяет температурный интервал высокоэластического состояния. Пере-м ещение температурной области высокоэластического состояния полимеров и ее расширение благодаря пластификации очень ценны и широко используются в промышленности. [c.210]

    При пластификации происходит смещение температуры стеклования полимера в область более низких температур. Это достигается введением в полимер высо-кокипящих растворителей — пластификаторов Ос- [c.173]

    У целлюлозы как аморфно-кристаллического полимера возможны переходы релаксационных (физических) состояний в ее аморфных участках. У сухого целлюлозного волокна аморфная фаза находится в стеклообразном состоянии. Температура стеклования целлюлозы Тс лежит выше температуры деструкции, и перевод аморфной части целлюлозы (как и кристаллической) в высокоэластическое состояние нагреванием невозможен. Однако пластификация волокна, например, глицерином, этиленгликолем, водой, ледяной уксусной кислотой и др. снижает температуру перехода и делает возможным переход целлюлозы из стеклообразного состояния в высокоэластическое. Это позволяет экспериментально определять Т< целлюлозы методом термомеханического анализа на пластифицированных образцах с постепенно уменьшающейся долей пластификатора и последующим фафическим экстраполированием на ее нулевое значение. Найденное таким методом значение Тс составляет около 220°С. [c.244]

    Предложены разные механизмы пластификации. По Журкову [130] температура стеклования полярных полимеров определяется взаимодействием полярных групп соседних цепей и образованием диполь-дипольных физических узлов. Пластификатором для таких полимеров является любая полярная жидкость, молекулы которой, взаимодействуя с полярными группами, экранируют их контакты. В этом случае температуры стеклования снижаются пропорционально числу молей т введенного пластификатора  [c.199]

    Первая попытка теоретического рассмотрения процесса пластификации на молекулярном уровне с учетом сложившихся воззрений [88, 89] и основанных на господствовавших в то время представлениях о структуре аморфного и кристаллического состояния полимеров принадлежит Журкову [90—92], который полагал, что стеклование, или отвердевание , полимеров происходит в результате образования прочных межмолекулярных связей — узлов между макромолекулами. Пластификатор, введенный в полимер, блокируя полярные группы, выключает их из взаимодействия друг с другом. Вследствие этого между цепями полимера образуется меньшее количество узлов, что и приводит к снижению температуры стеклования. Чем больше сорбируется полярных групп, тем значительнее депрессия температуры стеклования (АГс), причем снижение температуры стеклования полимера пропорционально числу молекул пластификатора, не зависимо от формы и размеров молекул, т. е. [c.150]

    Влияние химического строения пластификатора на эффективность пластифицирующего действия прослеживается и при пластификации ацетата целлюлозы — одинаковое количество пластификатора по- раз-ному изменяет температуру стеклования полимера [115] (рис. 4.6). [c.156]

    Выражение (4.17, а) означает, что относительное снижение Тс полимера при пластификации не зависит от типа полимера, химической природы, молекулярной массы и других свойств пластификатора. Однако трудно судить, насколько в действительности эта зависимость является общей. Необходимо учитывать то обстоятельство, что на изменение температуры стеклования полимеров оказывают влияние не только пластификаторы, но и стабилизаторы, являющиеся составной частью полимерной композиции. При содержании в составе ПВХ композиции до 3% (масс.) [0,78% (об.) неорганических стабилизаторов Гс ПВХ почти не изменяется, а при дальнейшем повышении концентрации стабилизаторов Гс возрастает [118] (рис. 4.8,а). Введение до 1% эпоксидных стабилизаторов (рис. 4.8,6) понижает Го на значение, характерное для каждого из них, после чего Гс остается практически постоянной до содержания стабилизаторов около 6%. Наиболее резко (на 21 °С) понижается Гс при введении 1% эпоксидированного соевого масла с содержанием эпоксидного кислорода 4,48% (ЭСМ-4,48). [c.157]

    Пластификация полистирола. Хрупкость, вязкость и температура стеклования полистирола понижаются при введении в него пластификаторов [192—194]. [c.164]

    Окружая макромолекулы, пластификатор экранирует те или иные группы в них. Это сказывается на внутримолекулярном взаимодействии звеньев каждой макромолекулы, на их потенциальных барьерах внутреннего вращения. Если при этом потенциальный барьер вращения уменьшается, то цепи, полимера становятся более гибкими. Это означает, что снижается температура стеклования. В результате пластификации увеличивается [c.37]


    Внутренняя пластификация имеет место тогда, когда ослабление межмолекулярных связей между цепями полимера является следствием изменения структуры самой цепи в результате какой-либо химической реакции. Так, например, температура стеклования, равная для полистирола 80 °С, уменьшается для сополимеров стирола с бутадиеном до —30 --65 °С, в зависимости от содержания звеньев бутадиена в сополимере. Внутренняя пластификация менее технологична, чем внешняя, однако в специальных случаях она оправдана. [c.39]

    Иную картину проявления механических свойств полимера мы будем иметь, вероятно, при межпачечной пластификации. В идеальном случае такой пластификации температура стеклования полимера пе должна вообще снижаться в присутствии пластификатора. Тогда, следовательно, механическая прочность, задаваемая пачками высокоориентированпых цепей полимера, окажется высокой. В то же время эластичность пластифицированного полимера определяется гуковской упругостью пачек, обладающих весьма высокой асимметрией их формы, т. е. будет определяться эластичностью формы таких вторичных структурных образований. Указанная пластификация, но-видимому, наиболее выгодна для получения морозостойких полимерных материалов, обладающих повышенной прочностью к ударным воздействиям, т. е. для таких условий эксплуатационного использования полимерных материалов, когда от материала требуется проявление высоких упругих свойств, задаваемых эластичностью формы структурных элементов материала. [c.323]

    При внутрипачечной пластификации температура стеклования и модуль упругости монотонно снижаются в соответствии с правилами мольных и объемных долей (см. стр. 35 и 37). При межпачечной пластификации вначале наблюдается резкое снижение температуры стеклования и модуля упругости, но затем по мере увеличения концентрации пластификатора оба этих показателя остаются примерно [c.182]

    По мере повышения относительного содержания растворителя происходит дальнейшая пластификация полимера, сопровождаю-шаяся понижением температуры текучести и температуры стеклования его, увеличением скорости релаксационных явлений. Полимер приобретает текучесть и постепенно переходит в состояние раствора в данном растворителе. При дальнейшем прибавлении растворителя понижается концентрация полимера, и может быть получен разбавленный раствор. [c.600]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    При пластификации полимера используется его способность поглощать некоторые жидкости. Поглощение пластификатора связано с набуханием полимера, приводящим к увеличению его объема. Молекулы жидкости, проникая между звеньями цепей полимера, увеличивают расстояния и ослабляют связи между ними. Это приводит к понижению температуры стеклования, уменьшению вязкости и к другим эффектам, обусловленным ослаблением связей между молекулами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий высокоэластичному состоянию, смещается в область более низких температур. На рис. 52 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные [c.221]

    Для внутрипачечной пластификации характерно непрерывное понижение Тс с увеличением количества введенного пластификатора (рис. 206). При межпачечпой пластификации тгаблгодаются значительные понижения температуры стеклования при введении Очень небольших количеств пластификатора, по Т понижается только до определенного предела. Это хорошо видно из рис. 206, на котором приведены данные для системы ннтрат целлюлозы — касторовое масло. [c.446]

    В области малых концентраций пластификатора, т, е. при меж пачечной пластификации, наблюдается противоположное явление понижение температуры стеклования тем больше, чем хуже пла-стифугкатор совмещается с полимером. В данной областт концентраций пластификатор играет роль поверхцостно-активкого вещества, адсорбирующегося на поверхности раздела пачка — воздух. Физическая адсорбция является термодинамически необходимым процессом, сопровождающимся уменьшением свободной поверхностной энергии. Чем больше величина углеводородного радикала е молекуле пластификатора, тем хуже оп растворяется в полимере, тем лучше он адсорбируется. [c.447]

    Первая попытка теоретического рассмотреР[ия.процесса пластификации принадлежит С. Н. Журкову , который связывал этот процесс с механизмом стеклования полимеров (стр. 191). Он полагал, что температура стеклования полярного полимера определяется взаимодействием полярных групп соседних цепей. Пластификатором такого полимера является полярная жидкость. Полярные группы полимера сольватируются полярными группами пластификатора, причем каждая полярная группа цепи прочно связывает 1—2 молекулы пластификатора (глава Х111). Будучи экранированы молекулами пластификатора, полярные группы соседних цепей не могут взаимодействовать между собой свободных поляр- [c.447]

    Экспериментальный материал, частично приведенный ниже (стр. 451), свидетельствует о том, что уравнение (1) не всегда соблюдается, При наличии одних и тех же полярных групп в молекуле пластификатора изменение температуры стеклования полимера зависит от размера и формы молекулы пластификатора, что проявляется еще отчетливее при пластификации неполярных полимеров неполярными пластификаторами. Так, например, при одинаковом числе углеродных атомов в молекуле линейные молекулы (м-гексан) смещают температуру стеклования полиизобутилена сильнее, чем циклические молекулы (цнклогсксан или беп.юл . [c.448]

    Пластификацией называется процесс введения в полимер ннзкомолекуляр-110Й жидкости. Как и все методы, связанные с введением в полимер тех плп иных веществ, пластификация имеет целью изменение свойств полимера в определенном иаправлепии. Пластификация применяется для расщирения области высокоэластического состояния (илп создания его у жесткоценных полимеров) снижением температуры стеклования полимера Тс и для улучшения технологических свойств полимера снижением его температуры текучести Тг. [c.262]

    В неполярных или слабоиолярных полимерах пластификация будет осуществляться всеми молекулами пластификатора, т. е. эффект пластификации будет пропорционален его общему объему, поэтому он не зависит от Т1ша вводимого пластификатора. В этом случае понижение температуры стеклования будет пропорционально объемной доле пластификатора, т. е. [c.264]

    В зависимости от того, проникают ли молекулы пластификатора внутрь пачек полимера или только размещаются между пачками, различают внутрипачечную и межпачечную пластификацию Обычно рассматривают два предельных случая, относящихся к пластификации полярных и неполярных полимеров. Как известно, температура стеклования полярного полимера определяется взаимодействием полярных групп соседних цепных молекул. Если в такой полярный полимер ввести полярный, хорошо совместимый с полимером пластификатор, то взаимодействие цепных молекул полимера за счет сольватации полярных групп полимера молекулами пластификатора ослабляется и полимер застекловывает-ся при более низкой температуре Если молекулы пластификаторов содержат полярные группы, каждая из которых может экранировать одну полярную грушГу в цепи полимера, можно считатьчто понижение температуры стеклования АТс пропорционально я —числу молей введенного пластификатора, т. е. АТс = кп (где к — коэффициент пропорциональности). Данное выражение, однако, не учитывает размеры и формы молекул пластификатора и во многих случаях не подтверждается опытными данными. Зависимость температуры стеклования от формы и размеров молекул пластификатора [c.173]

    ПВБ часто используется в виде пластифицированных композиций, особенно при изготовлении клеящих пленок для безосколочных стекол триплекс. В качестве пластификаторов обычно применяются сложные эфиры триэтиленгликольди-2-этилбутират, триэтиленгликольди-2-этилгексоат, дибутилфталат, дибутилсебацинат, дигексиладипинат и др. [133]. Совместимость ПВБ с пластификатором зависит от степени замещения гидроксильных групп в ПВС бутиральными (рис. 7.4, а), что объясняется ростом сродства к гидрофобному пластификатору, а также от предельного числа вязкости исходного ПВА (рис. 7.4,6), причем в последнем случае имеет место экстремальная зависимость. Добавление к ПВБ пластификатора сопровождается уменьшением температур стеклования и текучести полимера (рис. 7.5), при этом протяженность зоны высокоэластичности (Гт—Тс) практически не меняется, что является характерным для истинной пластификации, когда пластификатор растворяется в полимере [122]. Разрушающее напряжение при растяжении пластифицированного ПВБ не очень высокое, оно составляет 20—30 МПа, но относительное удлинение увеличивается до 260%. [c.140]

    В качестве пластификаторов поливинилбутиральной пленки в мировой практике используется большое число различных высококипящих эфиров полиосновных кислот и многоатомных спиртов, чаще всего дибутилсебацинат, триэтиленгликольди-2-этил-бутират (торговое название флексол ЗдН), дигексиладипинат. В некоторых случаях смесь пластификаторов позволяет более эффек-тивно- снижать температуру стеклования ПВБ по сравнению с индивидуальными соединениями. Например, пластификация ПВБ смесью дибутилсебацината с бутилбензилфталатом (а. с. СССР 891716] позволяет получать триплексы, которые могут эксплуатироваться при температуре до —70°С. Добавление камфоры к пластификатору улучшает цветность триплексных стекол [а. с. СССР 827503]. [c.148]

    Температура стеклования зависит также от молекулярной неоднородности полимера. Увеличение степени молекулярной неоднородности понижает Тс и расширяет интервал Т -.-Ту в результате пластификации (см. 7.4) высокомолекулярных фракций полимера низкомолекулярными. Для ряда полимеров характерно так называемое смолообразное состояние, обусловленное образованием твердого раствора полимергомо-лов и изомеров друг в друге, снижением вследствие этого Ту и склонности к затвердеванию (например, фенолоформальдегидные олигомеры и другие смолы). Такие полимеры легко размягчаются и переходят в вязкотекучее состояние. [c.151]

    Взаимодействие (дисперсионное) пластификатора с полимером учитывается в теории пластификации, предложенной Канигом [98] и также основанной на теории свободного объема. Состояние полимера при температуре стеклования характеризуется не просто постоянным свободным объемом, а некоторыми, зависящими от природы соединения параметрами, и отношением объема пустот к объему колеблющихся молекул, не зависящим от природы вещества. Каниг рассматривает расплав полимера, как жидкость, насыщенную пустотами (дырками), а пластифицированный полимер,— как трехкомпонентный раствор, состоящий из полимера, пластификатора и пустот, для которого рассчитываются термодинамические функции при условии, что смешение компонентов является квазихимической реакцией. [c.152]

    Несмотря на то, что основным требованием к соединениям, используемым в качестве пластификатора, является их совместимость с полимером, уже давно для модификации свойств полимеров использовались вещества,- несовместимые с эфирами целлюлозы. При этом предполагалось [35], что пластификация полимеров несовместимыми с ними пластификаторами реализуется за счет увеличения рыхлости упаковки макромолекул. Позднее Козлов с сотр. [101, 102] предложил механизм, объясняющий действие плохих пластификаторов. Согласно этому механизму несовместимый пластификатор может взаимодействовать только с молекулами, находящимися на поверхности вторичных структурных образований. При этом межструктурная пластификация осуществляется без сколько-нибудь существенного изменения эластических свойств полимера. Незначительные количества пластификатора оказываются достаточными для обеспечения начального акта распада крупных надмолекулярных структур, что приводит к повышению их тепловой подвижности. Температура стеклования по-. лимера при этом не должна снижаться. По мнению Тагер и сотр. [103], подвижность формирующихся структурных образований связана не с внутренним, а с внешним трением и при межструктур-ной пластификации действуют те же законы, что и при граничной [c.153]

    Седлис и Лельчук [120] для оценки пластифицирующего действия ввели константу, связанную с природой и строением пластификатора. Эта константа характеризует снижение температуры стеклования, вызванное одним мольным процентом пластификатора, и называется числом эффективности Э. Число мольных процентов (п), например при пластификации ПВХ, рассчитывается по формуле [c.158]

    Для пластификации полиамида 12 рекомендуется сульфонамиды типа К502ЫНС4Н9 (где К — фенил-[225], нафтил-, 3-пиридол-, 8-ХИН0ЛИЛ-), причем наиболее эффективным по снижению температуры стеклования полиамида является Ы-бутил-р-нафталинсуль-фонамид [226]. [c.167]

    Для снижения хрупкости эпоксидных композиций, компенсации разности в термических коэффициентах расширения, уменьшения сопротивления эпоксидных композиций растрескиванию, придания вибропоглощающих свойств, улучшения реологических характеристик, снижения вязкости применяются в основном ДБФ и ТКФ [248—252]. Как и в случае пластификации фенолоформальдегид-ных смол, зависимость температуры стеклования от содержания пластификатора носит экстремальный характер [250, 251], что необходимо учитывать при отработке пластифицированных эпоксидных композиций. Пластификация полиэфир-стирольных сйстем проводится довольно ограниченно [253, 254]. [c.168]

    При переработке полимерных расплавов предполагается, что при высокой температуре переработки не происходит их заметного разложения. Полимеры, растворы которых трудно перерабатывать из-за высокой вязкости или вследствие разложения при температуре плавления, можно перевести в вязкотекучее состояние пластификацией и перерабатывать при более низкой температуре. В качестве пластификаторов применяют высококипящие жидкости, совмещающиеся с полимерами, например эфиры фосфорной и фталевой кислот (диоктилфталат), различные алифатические дикарбоновые кислоты. Молекулы пластификатора располагаются между полимерами цепочками, что приводит к уменьшению межмолекулярно-го взаимодействия (внешняя пластификация). При этом подвижность полимерных цепочек возрастает, а температура стеклования понижается. Пластифицированные полимеры являются более гибкими и обладают меньшей твердостью по сравнению с непластифи-цированными (см. опыт 3-48). [c.104]

    Различают пластификацию внешнюю и внутреннюю. Сущность внешней пластификации заключается в том, что при диффузии молекул пластификатора в полимер силы межмолекулярного взаимодействия между цепями уменьшаются и частично заменяются взаимодействием звеньев макромолекул с молекулами I пластификатора. Молекулы пластификатора раздвигают полимер-. лые цепи и окружают их, создавая промежуточный слой. Появле-I ние промежуточного слоя в полимере облегчает перемещение целей, в результате чего всегда снижается температура стеклования и увеличивается пластичность (текучесть) полимера, что облегчает его переработку (рис. II. 16). [c.37]

    Наибольший эффект при пластификации жестких эпоксидных смол эластомерами для повышения их ударной прочности [38—43] достигается введением в олигомерные связующие низкомолекулярных каучуков, способных химически взаимодействовать с компонентами связующего. Совместимость каучука с отверждающейся эпоксидной системой зависит от его полярности и природы реакционноспособных групп. В зависимости от скорости взаимодействия такого каучука с эпоксидным олигомером и его отверждения молекулы каучука могут быть диспергированы в структуре полимера или выделиться в виде отдельной фазы, причем в последнем случае наблюдается максимальный усиливающий эффект. На рис, 3.6 приведена зависимость температуры стеклования эпоксиноволачного полимера от содержания каучука. Каучук ПДИ-ЗАК совмещается со смолой [c.63]

    Зависимость механических характеристик п температуры стеклования эпоксидных композиций от содержания добавок не во всех случаях является монотонной и для полярных пластификаторов часто проходит через максимум при небольших концентрациях (см. рис. 6.1.). Для неполярных пластификаторов (например, дибутилфталата) максимумов не набл.юдается. Области максимумов для разных показателей не совпадают. Появление подобных максимумов связано с явлением так называемой антипластификации [10, 61], заключающемся в повышении модуля упругости при сравнительно небольших содержаниях пластификатора. Температура стеклования также иногда проходит через максимум, но при значительно меньших количествах пластификатора. Прочность при пластификации хрупких эпоксидных полимеров, как правило, вначале возрастает. Можно предположить, что антипластификация является результатом возрастания при. малых концентрациях пластификатора плотности упаковки цепей и уменьшения свободного объема системы пр№ дальнейшем же увеличении содержания пластификатора свободный объем возрастает, модуль упругости, твердость и прочность снижаются, а удлинение также возрастает. [c.159]


Смотреть страницы где упоминается термин Пластификация и температура стеклования: [c.452]    [c.85]    [c.380]    [c.174]    [c.446]    [c.140]    [c.447]   
Физикохимия полимеров (1968) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Пластификации

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте