Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление органических соединений

    Термический метод [5.6, 5.7, 5.9—5.11, 5.25, 5.26, 5.29, 5.47, 5.52, 5.54, 5.62, 5.71, 5.73]. Метод основан на окислении кислородом воздуха органических соединений при высоких температурах. В зависимости от условий режима окисления, технологического оформления процесса и состава отходов термический метод подразделяется на ряд способов огневое обезвреживание при температуре выше 800°С и давлении ниже 0,2 МПа (сжигание) окисление газообразных органических соединений в присутствии катализаторов при 100—500°С и атмосферном давлении (катализ) окисление органических соединений при 100—300°С, давлении более 0,2 МПа и неполном испарении воды (мокрое сжигание, процесс Циммермана, жидкофазное окисление, высокотемпературная минерализация). [c.497]


    Проанализировать процессы переработки органических соединений при участии кислорода, используя их физико-химические характеристики, принципы выбора температуры, давления, соотношения реагентов, времени реакции и устройства реакционных аппаратов. [c.260]

    Установки с жидкофазным окислением. Жидкофазное окисление применяют для водных растворов, содержащих относительно низкие концентрации окисляемых соединений. Этот процесс основан на значительном увеличении скорости окисления органических соединений с повышением давления. Так, при подаче в водные растворы органических отходов воздуха, повышении давления до 10 Па и нагреве до соответствующей температуры достигается неполное жидкофазное окисление с разрушением большинства органических соединений. [c.144]

    В тех случаях, когда давление технологического лара на установке недостаточно, применяют конденсат, который после пароперегревателя вводят в поток сырья. Место ввода турбу-лизатора определяется главным образом химическим составом сырья, поступающего на нагрев, и его реакционной способностью. Наименьшей термической прочностью, как было показано выше, обладают углеводороды алифатического строения, к которым в первую очередь следует отнести парафины нормального и изостроения, затем длинные алифатические цепочки в молекулах нафтеновых и ароматических органических соединений сложного гибридного строения. [c.98]

    Вопросы, связанные с коррозией оборудования, приобретают особое значение в случае проведения процесса конверсии окиси углерода под давлением. При осуществлении процесса конверсии СО под давлением соответственно возрастают парциальные давления органических соединений серы. Так как в процессе конверсии СО сераорганические соединения превращаются в сероводород, тр при температурах около 400° и выше углеродистая сталь подвергается заметной сероводородной коррозии. Поэтому при проведении конверсии СО под давлением конвертор и теплообменник должны быть выполнены из специальной стали. Наиболее подходящим материалом для изготовления этих аппаратов как [c.130]

    Производства хлорированных под высоким давлением органических соединений  [c.32]

    ИЗ. Производства хлорированных под высоким давлением органических соединений..........................32 [c.105]

    Тетраэтилсвинец добавляют к бензину в смеси с веществами, способными при сгорании образовывать со свинцом или его окислами соединения с большим давлением насыщенных паров и низкой температурой плавления. Такие вещества получили название выносителей, а смесь ТЭС с выносителями —этиловой жидкости. В качестве выносителей применяют галогенсодержащие органические соединения, при высоких температурах разлагающиеся с образованием галогеноводорода [c.24]


    Закономерности, в той или другой степени подобные описанным, наблюдаются и для многих других свойств органических соединений в газообразном пли в жидком состоянии. Сюда относятся, например, мольная рефракция, теплота испарения, логарифм давления насыщенного пара и др. Поскольку каждая из таких величин для алканов, обладающих аналогичным строением, может быть выражена приближенно как линейная функция числа углеродных атомов в молекуле, то и связь между этими свойствами или соответствующими функциями может быть выражена в линейной форме. В. М. Татевский показал линейный характер такой связи, в частности, между теплотой образования алкана ЛЯ 298 логарифмом давления насыщенного пара при 60 °С и определил постоянные соответствующих уравнений для некоторых групп алканов. В табл. VI, 18 приведены постоянные уравнения вида [c.226]

    Процесс гидрокрекинга получил в настоящее время широкое распространение как метод превращения тяжелых дистиллятов сырой нефти в более легкие фракции, которые являются важным сырьем для получения алкенов и аренов. Гидрокрекинг ведут как правило на бифункциональных катализаторах в избытке водорода при температурах до 450 °С и давлениях 15—20 МПа. В этом процессе превращения происходят в два этапа а) разрушение органических соединений серы и азота (это необходимо, так как первые ингибируют гидрирующий компонент, вторые отравляют кислотные центры, ответственные за крекинг) с удалением 5 и N в виде их неорганических соединений б) крекинг углеводородов на поверхности кислотного компонента катализатора с одновременным гидрированием на металлических центрах. [c.89]

    Нужно отметить, что хотя исходные соотношения термодинамики остаются неизменными, их обоснование может быть дано различными способами. Так, термин максимальная работа химической реакции , некогда весьма популярный, трудно согласовать с термодинамическим понятием работа . Определенные уточнения должны быть введены в связи с переходом к международной системе единиц (СИ). Так, запись Д0° = = —RT nKp, которая была приемлемой, когда давление выражали в атмосферах, становится неверной для СИ. Это побудило автора дать современное обоснование расчетных соотношений химической термодинамики органических соединений. [c.7]

    Гудрон туймазинской нефти с содержанием серы 2,8% был подвергнут нами гидрированию при давлении 300 ат. Коксуемость гудрона снизилась с 16 до 5,2%, общее содержание серы— до 1,1%. После коксования этого гудрона общий выход кокса оказался примерно в 3 раза ниже по сравнению с коксованием исходного гудрона. Но общее содержание серы в полученном коксе составило 4%, т. е. практически было таким же, как в коксе из исходного гудрона (4,2%). Этот опыт показал, что путем гидрирования нефтяных остатков нельзя снизить содержание серы в получаемом из них коксе. Кроме того, стало очевидным, что сера в тяжелых остатках практически нацело связана с высокомолекулярными (коксообразующими) органическими соединениями. [c.153]

    Гетерогенные катализаторы, используемые в процессах алкилирования, позволяют упростить технологическую схему процесса. В отличие от гомогенных катализаторов они легко отделяются от исходных и получаемых органических соединений, хорошо регенерируются. Поэтому, несмотря на их меньшую активность по сравнению с жидкофазными катализаторами, необходимость проведения реакции при более высокой температуре и давлении, они привлекают внимание исследователей.  [c.24]

    Гидрирование органических соединений этого типа затруднено отравляющим действием галогена, серы или сульфогруппы. Реакцию можно провести при низких температурах, например 80— 100°С, однако это потребует сравнительно высоких давлений (1500—3000 фунт/дюйм ). Добавление некоторых аминов в гидрируемую смесь повышает выход продуктов. Видимо, амины образуют слабую связь с кислым заместителем субстрата и, таким образом, препятствуют его нежелательным реакциям с катализатором. В качестве катализаторов часто используют бла- [c.129]

    Для удаления натрия нефтяное сырье пропускают через слой боксита при 345—455 °С под давлением порядка 7 МПа. Дальнейшая обработка в таких же условиях в присутствии водорода способствует удалению ванадия [8, 268]. Контактирование сырья каталитического крекинга, нагретого до температуры выше 200 °С, с отбеливающей глиной приводит к адсорбции на ее поверхности органических соединений металлов. Адсорбент после отпарки направляется на регенерацию. В качестве контакта для очистки тяжелого газойля от металлических загрязнений можно применять гранулированный кокс. Процесс осуществляют при 425—455 °С и объемной скорости подачи сырья 0,5—5,0 ч , обеспечивая выход [c.184]


    В газовых реакциях окисления, хлорирования, гидрирования и других движущую силу ДС и скорость процесса и увеличивают, варьируя температуру и давление, смещая тем самым равновесие в сторону целевого продукта. При проведении процессов сорбции увеличивают движущую силу процесса повышением концентрации реагирующих веществ или отводом готового продукта из зоны реакции. Применение различных средств интенсификации производственных процессов нередко ограничивается стойкостью органических соединений, что особенно проявляется в высокотемпературных процессах ввиду разложения исходных веществ и продуктов. [c.163]

    Работа установки происходит следующим образом газ, содержащий аэрозоли и пары органических соединений, под давлением из реактора окисления (на рисунке не показан) направляют в приемную камеру (10) тепломассообменного аппарата (1), оттуда газ через каналы винтовых закручивающих устройств (13) попадает в теплообменные трубы (12) в трубах газ очищается от аэрозолей и подвергается охлаждению, а затем отделению от жидкой фазы в сепарационных устройствах (24) затем отделенный газ через перфорированную трубную решетку (8) направляют в межтрубное пространство ТМА (1), где газ контактирует на тарелках (9) в пенном режиме с захоложенным конденсатом, подаваемым в штуцер (25) из конденсатосборника (5) насосом (6), при необходимости с дополнительной подпиткой сырьем. Общий перепад давления в аппарате (1), создаваемый винтовыми закручивающими устройствами с относительной площадью се- [c.136]

    В СССР метод ЖФО впервые применен в 1957 г. Проведены широкие исследования по использованию этого метода для очистки сточных вод, которые подтвердили целесообразность широкого применения его в промышленной практике. На рис. 6.6 приведена схема установки для обезвреживания сточных вод, содержащих различные органические соединения при постоянном давлении. Результаты окисления сточных вод некоторых производств даны в табл. 6.5. [c.344]

    Фосфорная кислота — более слабы " катализатор в сравнении с серной кислотоиГВ ее присутствии реакция протекает при повышенных температурах практически без образования побочных продуктов и смолы. Кислота после регенерации используется повторно. Процесс алкилирования бензола олефинами проводят при температуре 473 К и давлении 2,8—4,2 МПа. Срок службы катализатора в таких условиях — 3 года. Ядами катализатора являются органические соединения азота, нейтрализующие кислоту, и кислород, вызывающий отложение смолистых веществ на поверхности. Для предотвращения дегидратации и дезактивации катализатора в реакционную смесь добавляют небольшое количество воды (>0,1% масс, в расчете на сырье) или изопропилового спирта. Регенерируют катализатор обработкой три-этилфосфатом, растворенным в бензоле. Для продления срока службы катализатора реакционную смесь (бензол, олефин) предлагается пропускать над слоем аморфного кристаллического алюмосиликата. [c.22]

    Внешняя пластификация может быть физической и механической. При физической пластификации в полимер вводятся пластификаторы — низкомолекулярные твердые или жидкие органические соединения с высокой температурой кипения и низким давлением пара. Пластификаторы экранируют и сольватируют функциональные группы в звеньях полимера и снижают потенциальный барьер внутреннего вращения макромолекул, что приводит к увеличению гибкости цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально количеству молей пластификатора, удерживаемых полимером  [c.379]

    На первый взгляд может показаться, что протекание реакций по механизму молекулярной перегруппировки, т. е. в одну стадию, по крайней мере, для мономолекулярных реакций или реакций первого порядка (истинные мономоле-кулярные реакции всегда являются реакциями первого порядка в области достаточно высоких давлений), является более экономным или выгодным. Действительно, процесс перегруппировки связей, который состоит в разрыве одних и возникновении других связей, в пределах одной молекулы может происходить скомпенсированным путем, т. е. облегчаться за счет выгодных внутренних переходов, разрещен-ных квантовой химией. При этом для реакции может потребоваться меньшая энергия, чем энергия разрыва отдельных связей. Если бы эти.внутренне скомпенсированные переход, ды лежали в природе процесса разложения молекул органических соединений, то молекулярный механизм распада являлся бы единственным реальным путем распада этих веществ. [c.14]

    Анализ, выполненньп с применением предложенных уравнений, показал, что прп плавлении под атмосферным давлением органических соединений (навеска 0,05 г) искривление графика завпсимости температуры плавления от обратной величины доли расплавленного вещества происходит и при отсутствии образования твердых растворов. [c.43]

    Метод высокотемпературной минерализации (жидкофазного окисления) состоит в окислении кислородом воздуха при температуре 150—375 °С и давлении 2—28 МПа органических и элемент-органических соединений, находящихся в водной щелочной среде. Обезвреживание токсичных соединений осуществляется без испа- [c.499]

    Крупный взрыв произошел в Техас-Сити в здании, в котором находилась установка для получения кислорода. Взрыв был вызван воспламенением горючих материалов в закрытом канале, в который попал жидкий кислород. Выяснилось, что операторы спускали жидкий кислород из одной или двух остановленных для отогревания колонн в специально устроенный колодец. В 6 м от этого колодца находился закрытый канал с воздухопроводом диаметром 600 мм (давление 560 кПа, или 5,6 кгс/см ). После взрыва на спускной линии были обнаружены в одном месте поломки, а в другом — поврежденный фланец. Проба, взятая после взрыва со дна канала, содержала 1,7% органических соединений в дисперсной форме (по-види.мому, смесь пороигеообразного изолирующего материала и отходов, которые выметают с иола). Однако основная причина —это контакт между горючим материалом и концентрированным кислородом. Спускная кислородная лнния была выполнена из алюминия. По размерам разрушения вычислили, что в зоне взрыва находилось около 6 кг жидкого масла или другого горючего материала. [c.375]

    Примером возможности получения разных продуктов из одних и тех же исходных веществ могут служить синтезы органических соединений из окиси углерода и водорода. Изменяя условия проведения процесса (температуру от 160 до 500°С, давление от 1 до 300 ат, отнощение количеств окиси углерода и водорода) и выбирая соответствующий катализатор (Fe, Со, Ni, ZnO, Ru с такими добавками, как СггОз, КаО, AI2O3, MgO и т. д.), можно получать метанол, изобутанол, парафиновые углеводороды, олефины, ароматические соединения, органические кислоты и т. п. [c.272]

    Остановимся на особенностях применяемого катализатора. Несмотря на то что катализатор твераый, кинетику процесса можно выразить через концентрации газообразных реагентов (парциальные давления), а не как функцию поверхности катализатора, на которой адсорбируются реагенты и продукты реакции (как в случае классического гетерогенного катализа, например, р реакции Фишера — Тропша). Другими словами, оксосинтез можно рассматривать как своего рода гомогенный процесс. Это объясняется тем, что роль катализатора играют группы карбонила кобальта, образующиеся в ходе реакции, растворимые в органических соединениях. [c.218]

    Переходя к краткой характеристике отдельных методик, остановимся на определении теплот горения органических соединений. Важной частью калориметра в этом случае является калориметрическая бомба, предложенная Берт-ло для определения теплот горения в кислороде под давлением 20—30 атм. В калориметрической бомбе проводятся сожжения органических вещестн, металлов, металлических сульфидов, нитридов, хлоридов проводятся также реакции образования нитридов, сульфидов, силицидов и др. [c.76]

    В качестве мономеров для плазменной полимеризации могут быть использованы очень многие виды органических соединений, давление паров которых в условиях тлеющего разряда достаточно высокое (4-ви-нилпиридин, а-метилстирол, М-винилпирролидон, акрнлонитрил, винил-иденхлорид, кумол, этилбензол, пиридин, 1,1-дихлорэтан и др.). [c.78]

    Наиболее надежным методом определения области протекания реакции является независимое определение скорости массодере-носа. Это можно сделать, определив в условиях процесса скорость реакции, заведомо лимитируемой диффузией, например скорость окисления сульфита или озонирования двойной связи органических соединений. Конечно, и этот метод не свободен от ошибок за счет приравнивания скоростей массопереноса для различных реакций (см. гл. 13), но более надежен, чем косвенные определения. При использовании этого метода надо знать константы фазового равновесия, чтобы оценить истинные константы скорости реакции и правильно пересчитывать процесс на другие условия температур и давлений. [c.75]

    В 1955 г. Д. Тод и Дж. Элгин (D. Todd, J. Elgin) наблюдали растворение значительных количеств высокомолекулярных органических соединений в надкритическом этилене при давлении 100 кг / м и высказали предположение о возможности разделения смесей с использованием газа как растворителя. [c.98]

    Если вся система реакций (1.37), (1.38) обратима и близка к состоянию равновесия, то состав катализатора, вне зависимости от исходного, целиком определяется термодинамическими условиями равновесия. В этом случае, если состав катализатора, например окисла, является функцией давления одного из компонентов, например кислорода, то, в соответствии с условиями гетерогенного равновесия, для всей области температур Т и парциальных давлений Р, за исключением точки равновесия с определенными Т ш Р, катализатор будет представлять собой одну фазу. Если реакция проводится в точке равновесия, то катализатор может быть двухфазным, однако практическое осуществление такого случая невероятно. Иное дело, если протекающие в системе реакции, например реакции контактного окисления органических соединений, практически необратимы, тогда фазовый состав работающего катализатора целиком определяется кинетическими, а не термодинамическими параметрами. При проведении обратимых реакций в условиях, далеких от равновесия (что большей частью бывает на практике), фазоЬый состав катализатора также не определяется термодинамикой. [c.50]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Если крекинг иро водится при низком давлении, то винилхлорид мономер и ДХЭ в основном выделяются из охлажденного парового потока конденсацией или абсорбцией. НС1 ком-примируется и направляется в колонну оксихлорирования. При проведении крекинга при высоком давлении охлажденный паровой поток направляется прямо в дистилляционную подсистему, состоящую из двух колонн колонны восстановления безводного НС1 7 и колонны очистки винилхлорида 8. В колонне 7 безводный НС1 очищается от ацетилена и от винилхлорида, присутствие которых ири реакции оксихлорирования приводит к синтезу высокохлорированных побочных продуктов. В колонне 8 ДХЭ и другие высококипящие примеси отделяются фракционной перегонкой с целью получения мономера винилхлорида высокой степени чистоты. ДХЭ и высо-кокииящие примеси, так же, как и ДХЭ и тяжелые остатки из колонны, подвергаются повторной обработкезсистеме очистки ДХЭ 5. Очищенный ДХЭ возвращается в крекинг-печь 6, а тяжелые остатки (высокохлорированные органические соединения) в дальнейшем не используются и представляют собой отходы производства. [c.268]

    Ниже перечислены наиболее характерные особенности новой технологии а) ужесточение требований к предварительной гидроочистке сырья (остаточное содержание серы 5—10 мг/кг)у б) нормирование концентрации водяных паров в зоне реакции путем отпарки гидроочищенного сырья и, на отдельных стадиях процесса, осушки циркулирующего газа на цеолитах в) подача небольших количеств хлор-органических соединений в зону реакции г) снижвние рабочего давления по сравнению с применявшимся при работе на катализатоое АП-56. [c.130]

    Это предположение не выполняется, с одной стороны, для тугоплавких кристаллов (например. С, АЬ0з,Т1С), которые не имеют измеримого давления пара, с другой —для органических соединений, которые разлагаются при нагревании (например, тростниковый сахар). [c.195]

    В таблицах приводятся температуры (в С), при которых давление насыщенного пара достигает величины, указанной в головке табли1и.1 (в мм рт. ст. или в атм). Каждый раздел тнблиц (простые вещества, неорганические соединеиия, органические соединения) состоит из двух частей в табл. I указаны температуры, при которых достигаются давления насыщенного пара ниже 1 атм. в табл. II темт ратуры, при которых достигаются давления насыщенного пара выше 1 атм. В 9вязи с тем, что в точке плавления кривые давления паров имеют излом, а в критической точке обрываются, в табл. I приводятся Гемпературы плавления (в "С), а в табл. II — критические температуры (в °С) и критические давления (в атм) соответствующих веществ. Все температурные величины даются С точностью, не превышающей 0.1 С. [c.593]

    Пиролитические методы анализа уже получили широкое развитие при анализе стероидов и некоторых других органических соединений [20, 21]. В литературе приводятся примеры использования специальных пиролизеров, вмонтированных в газовую линию хроматографа. Эти приспособления позволяют проводить разложение 10 —15 jua исходного вещества с последующим газохроматографическим анализом продуктов распада. Однако для исследования yiлеводородов (в том числе и нефтяных) не обязательно использовать пиролизеры, находящиеся в линии хроматографа. По ряду соображений, удобнее проводить пиролиз в специальном приборе. Из полученных продуктов распада можно выделить желаемые фракции, которые затем анализируют газовой хроматографией. (Следует предостеречь от попыток проведения пиролиза в закрытых сосудах, так как при повышении давления за счет образующихся в продуктах распада непредельных углеводородов могут возникать новые циклические структуры, не соответствующие структурам, присутствующим в исходных углеводородах.) [c.326]

    При экстрагировании углей бензолом в автоклаве при 250— 270 °С и давлении около 5,4 МПа извлекаются так называемые битумы В, выход которых значительно выше выхода битумов А. Повышение выхода битумов можно объяснить прежде всего процессами термической деструкции. Под действием температуры сапропелитовые и липтобиолитовые компоненты углей превращаются в более простые продукты, уже способные растворяться в бензоле. Очень возможно при подобном нагревании углей в автоклаве образование растворимых веществ и из гуминовых составных частей угля. Поэтому многие углехимики считают, что веществами, входящими в неизменном состоянии в состав твердых горючих ископаемых, могут быть только битумы А. Мягкие условия извлечения (температура около 80 °С) не могут влиять на химическое изменение их природы. Битумы В, экстрагируемые при высоких температурах (до 300°С), являются главным образом продуктами термической деструкции наименее устойчивых органических соединений, о чем свидетельствует значительно больший выход битумов В по сравнению с битумом А. [c.151]

    Ренея содержит разное количество адсорбированного водорода. Так, 1 г N1 Ренея, нагретого до 200° С, содержит водорода 1—2 мл, тогда как нагретого до 100° С —10—14 мл. Дегазация проводилась в вакууме (остаточное давление 3 мм рт. ст.). К1-катализатор, лишенный большей части адсорбированного им водорода, быстрее отш епляет серу пз серусодержащих органических соединений путем прямого взаимодействия с ней, чем катализирует реакцию каталитического гидрирования их молекулярным водородом по связям С—3—С. Данные, приведенные в табл. 101, показывают направление превращений сернистых соединений в таком обезводороженном N1 Ренея. [c.421]

    Для наиболее эффективного удаления из газов двуокиси углерода, сероводорода, сероокиси углерода и сернистых органических соединений в последнее время начинают использовать двухступенчатую промывку газа холодной, а затем горячей щелочью. Такую схему очистки пирогаза от СО а, и сероорганических соединений применяют в агрегате, разработанном б. Гипрогазтонпромом. В этом агрегате при холодной щелочной промывке при 35° С удаляются из газа двуокись углерода и сероводород. Частично при этом снижается и содержание органической серы. Горячая промывка щелочью производится при 85° С под давлением 40 ат, В этих условиях содержание органической серы резко снижается до 1 мг1м . [c.307]

    При низких температурах и повышенндм давлении из СС и могут образовываться сложные органические соединения, главным образом метанол и формаладегид [c.18]


Смотреть страницы где упоминается термин Давление органических соединений: [c.196]    [c.395]    [c.500]    [c.167]    [c.50]    [c.400]    [c.76]    [c.346]    [c.118]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.350 , c.351 ]

Краткий химический справочник Ч.1 (1978) -- [ c.121 , c.123 , c.124 , c.125 , c.126 , c.127 , c.128 , c.129 , c.130 , c.131 , c.132 , c.133 , c.134 , c.135 , c.136 , c.137 , c.138 , c.139 , c.140 , c.141 , c.142 , c.143 , c.144 , c.145 , c.146 , c.147 , c.148 , c.149 , c.150 , c.151 , c.152 , c.153 , c.154 , c.155 , c.156 , c.157 , c.158 , c.159 , c.160 , c.161 , c.162 , c.163 , c.164 , c.165 , c.166 , c.167 , c.168 , c.169 , c.170 , c.171 , c.201 ]

Краткий химический справочник Издание 2 (1978) -- [ c.121 , c.123 , c.201 ]

Справочник химика Издание 2 Том 1 1963 (1963) -- [ c.89 , c.681 , c.694 , c.694 , c.723 , c.723 , c.877 , c.877 , c.888 , c.888 , c.896 ]

Справочник химика Том 1 Издание 2 1962 (1962) -- [ c.89 , c.681 , c.694 , c.694 , c.723 , c.723 , c.877 , c.877 , c.888 , c.888 , c.896 ]

Справочник химика Том 1 Издание 2 1966 (1966) -- [ c.89 , c.681 , c.694 , c.694 , c.723 , c.723 , c.877 , c.877 , c.888 , c.888 , c.896 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.350 , c.351 ]

Краткий химический справочник (1977) -- [ c.119 , c.122 , c.199 ]

Справочник химика Изд.2 Том 1 (1962) -- [ c.89 , c.681 , c.694 , c.694 , c.723 , c.723 , c.877 , c.877 , c.888 , c.888 , c.896 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.350 , c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Давление пара над водными растворами органических соединений

Давление паров над водными растворами органических соединений

Критическое давление органических соединений

Обзор работ но полимеризации органических соединений при давлениях выше 1000 атм

Примеры фторирования органических соединений четырехфтористой сеСинтез четырехфтористой серы из двухлористой серы и фтористого натрия при атмосферном давлении

Температуры кипения некоторых органических соединений при повышенном давлении

Температуры кипения некоторых органических соединений при пониженном давлении



© 2025 chem21.info Реклама на сайте