Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь, влияние на реакции

    Разрыхление связи в каталитических реакциях, предшествующее ее разрыву, за счет подачи электронов на разрыхляющие орбитали связи позволяет предполагать такой же механизм разрыва связи и в ряде случаев, не относимых обычно к каталитическим, например влияние растворителя на скорость реакции, водородная связь или реакции замещения, протекающие по ассоциативному механизму. В последнем случае можно предполагать, что вступающий заместитель первоначально образует связь по разрыхляющей орбитали, а затем (после ухода замещаемого фрагмента) — по связывающей. [c.52]


    Другими факторами, оказывающими влияние в том же направлении, являются склонность трехокиси серы к образованию комплексов с сульфоновыми кислотами и резко выраженная тенденция всех реагирующих частиц к сольватации или к сильно выраженному процессу образования водородных связей. При применении в качестве сульфирующего агента серной кислоты образование воды настолько замедляет реакцию, что скорость ее можно удобно изучать только в начальных стадиях. При применении SO3 ввиду высокой скорости реакции изучение ее уже становится проблемой. [c.527]

    В принципе можно рассчитать из известных значений дх, как показано на с. 23. Для грубой оценки можно считать, что относительные константы экстракции для различных катионов и неполярных растворителей очень близки между собой. Это справедливо лишь в редких случаях только как первое приближение и является слишком большим упрощением в других случаях. Часто реагент или одна из ионных пар, участвующих в истинной реакции, присутствуют в концентрации, близкой к насыщению. Тогда следует ожидать отклонений от идеального поведения. Более того, полярность и способность растворителя к образованию водородных связей по-разному влияет на различные анионы. Известны константы селективности /Сх— для конкурентной экстракции хлорида по отношению к бромиду, иодиду и перхлорату из воды в 11 растворителях [121] и для хлорида относительно цианида в 8 растворителях [122]. Как ожидалось, /Сс1—>ск изменяется незначительно, причем максимальный интервал изменения от 0,9 (вода/г ыс-1,2-дихлорэтан) до 3,1 (вода/бензонитрил). Специфичное влияние растворителя более ярко выражено для серий анионов, сильно различающихся по липофильности [121]. Следует особо отметить, что гидроксилсодержащие растворители выравнивают различия  [c.34]

    Образование водородных связей существенно влияет на кинетику цепных реакций окисления углеводородов в жидкой фазе. Для термических реакций углеводородов и нефтепродуктов образование водородных связей значения, разумеется, не имеет. Влияние на кинетику термических реакций может оказывать образование я-комплексов радикалов с ароматическими углеводородами. Для некоторых радикалов найдено, что константа скорости реакции я-кои плекса радикала [c.117]

    Реакции нуклеофильного замещения проводят в растворах, поэтому выбору растворителя придается большое значение. Влияние растворителя на протекание и механизм реакций нуклеофильного замещения в значительной степени зависит от его сольватирующей способности и особенно от способности к специфической сольватации, приводящей к образованию водородных связей и донорно-акцепторных комплексов. [c.95]


    Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий. Однако, поскольку всегда образуется моногидрат иона водорода — ион гидроксония Н3О+, рекомендуется все же указывать его формулу, а не изолированного иона водорода. Тем более, что с образованием и разрушением иона гидроксония связана исключительно высокая подвижность иона водорода в водных средах, а значит, и его влияние на разнообразные химические реакции. Как нам известно из главы 4, для воды характерен некоторый дальний порядок в жидком состоянии за счет наличия между ее молекулами водородных связей. Ион гидроксония из-за своего более поляризованного, чем в молекуле воды, атома водорода участвует в образовании водородной связи, присоединяясь к одной из молекул воды  [c.235]

    Возникновение водородных связей оказывает большое влияние и на скорость химической реакции чем больше этих связей в исходных веществах и чем они прочнее, тем труднее протекает химическое взаимодействие между ними. [c.103]

    Влияние среды, в которой протекает реакция. При химических реакциях в растворе большое в.лияние на течение реакции и на ее скорость оказывает природа растворителя. Последний не может рассматриваться как индифферентная среда во многих случаях растворитель играет роль активного участника реакции. Часто растворитель оказывает каталитическое воздействие на протекающий в растворе химический процесс (см. ниже). Очень большое значение имеют и водородные связи, возможные между молекулами растворителя и растворенного вещества. Влияние этих связей на скорость реакции в растворе в различных случаях неодинаково. [c.133]

    Важнейшим фактором, связывающим влияние растворителя со скоростью реакции, является сольватация реагирующих веществ или активированного комплекса или образование водородной связи. [c.101]

    Противоположное влияние иа скорость реакции должна оказывать сольватация исходных веществ. При этом потенциальная энергия исходных веществ понижается на величину теплоты сольватации ДЯ, а энергия активации повышается. Сольватация или образование водородной связи могут влиять и па избирательность гидрирования. [c.101]

    Своеобразные свойства воды объясняются ее особой молекулярной структурой. Простая формула — Н2О — не выявляет нелинейной, асимметричной структуры ее молекулы, которую можно рассматривать как тетраэдр с атомом кислорода в центре и с двумя ядрами водорода и двумя парами электронов по углам. Полярная природа молекулы объясняет ее сильную тенденцию к образованию водородных связей и созданию структуры жидкой воды. В воде диссоциируют соли, кислоты и основания. Гидратные оболочки уменьшают притяжение ионов с противоположным зарядом. При любом изучении поведения бурового раствора главными объектами исследований являются реакции между поверхностями глинистых частиц и воды, а также влияние электролитов, растворенных в воде, на взаимо-, действие глины и воды. [c.446]

    Вопросу о роли водородных связей в реакциях протонного обмена типа АН + ВН АН + ВН посвящена обзорная статья С. Ф. Бурейко, Е. В. Рыльцева и А. К. Шурубура. Авторы под-робно рассмотрели влияние водородных связей на скорость реакции и ее механизмы. Совокупность экспериментальных данных согласуется с предположением, что обмен протонами происходит в циклическом комплексе, образованном двумя водородными связями. Такая модель призвана объяснить большую скорость реакции и низкую энергию активации. Следует, однако, отметить, что кинетика этих процессов в целом исследована еще недостаточно. Например, оказалось, что константа скорости протонного обмена между НС1 и НВг в результате тщательной очистки системы сильно понизилась, что свидетельствует о наличии неконтролируемых примесей, катализирующих процесс. [c.9]

    Кроме реакций переноса Н-связи на диэлектрическую проницаемость жидких алканов влияют реакции разрыва и образования водородных связей С -Н,..Су. Каждая из СНд- и СН2-групп молекулы алкана, как правило, участвует в образовании двух связей С/,..Н-Су. Если образуется третья связь, то система перевозбуждается и одна из связей рвется. Среднее число связей, приходящихся на одну мачеку-пу. flH2n l 2 2п. Следовательно, молекула может участвовать в 2 п различных реакциях образования и разрыва водородных связей. Число реакций переноса водородных связей 2п /2 ( 2п /2 -числс возможных сочетаний из различных водородных связей по две). Примем, что каждое из элементарных событий реакций переноса и разрыва водородных связей вносит в среднем сравнимый по порядку величины вклад в поляризацию жидкости при наложении внешнего электрического поля. Тогда вклад реакций разрыва связей С-Н. С в диэлектрическую релаксацию нормальных алканов будет в раз меньше вклада реакций переноса этих связей /130/. Так, для молекул пропана на 60 реакций переноса С-Н,..С-связей приходится одна реакция разрыва связи. Для бутана это отношение больше 25 00. Следовательно, влиянием реакций разрыва и образования водородных связей на времена диэлектрической релаксации > идких алканов с 4 можно пренебречь. Диэлектрическая релаксация в алканах С/ 2п+2 П- 4 обусловлена практически полностью реакциями перекоса водородных связей С-Н. ..С. [c.163]


    Естественно поэтому ожидать влияния водородной связи на реакции окисления углеводородов, в которых образуются такие соединения, как гидроперекиси, спирты, кислоты, способные образовывать водородные связи. Изучение зависимости скорости окисления ряда олефиновых углеводородов W [31, 32] от концентрации гидроперекиси показало, что W — ROOH. Такая пропорциональность возможна лишь в том случае, если образование радикалов происходит при взаимодействии двух молекул гидроперекиси  [c.90]

    Известно, что стерические факторы не являются единственными факторами, определяющими стереохимию эпоксидирования двойных связей. Наличие также и других влияний было обнаружено при наблюдении, что окисление соединения (65, В = СНз( 0) надбензойной кислотой приводит к ожидаемому 1а,2а-эноксиду, тогда как при аналогичной обработке свободного спирта (65, В = Н) образуется соответствующий 1р,2р-эпоксид [118]. Такой г ис-направляющий эффект приписывается [119] наличию водородной связи аллильной гидроксильной группы с реагентом, как это изображено формулой (66). Взаимоотношение стерического эффекта и влияния водородных связей на реакции эпоксидирования было изучено с использованием в качестве олефина стероидных молекул [120]. [c.344]

    Собственно перемещению водорода часто предшествует еще г ыс-гранс-изомеризация по азогруппе. Из-за влияния межмолекулярных водородных связей результат реакции сильно зависит от природы растворителя. У орто-замещенных азофенолов и азонаф-толов гидразоформа может стабилизироваться внутримолекулярными водородными связями. Поэтому у них квантовые выходы фототаутомерии обычно высокие. [c.288]

    Следует обсудить еще один важный фактор, именно, склонность фторид-ионов (в том числе, и образующихся фторид-ио-нов), но не хлорид-ионов, образовывать прочные водородные связи. Влияние этого фактора должно сказываться в том, что в растворителях, обнаруживающих такое водородное связывание (вода, спирты), для реакций фторидов будут создаваться более благоприятные условия, чем для хлоридов. Подобный эффект будет выстут1ать особенно рельефно в тех случаях, когда на атоме фтора в переходном состоянии будет сосредоточиваться значительный частичный отрицательный заряд (например, переходные состояния 9, 10 и // см. рисунок), т. е. для таких реак-  [c.197]

    Четвертая операция — изучение влияния среды (ВС). Трудности получения успешных резу гьтатов состоят в том, что весьлга сложен перенос их из подсистемы в брутто-реакцию. Но этой причине возникает необходимость изучения влияния среды, цель которого — коррекция кинетических параметров при изменении среды, наприме]), выяснение роли водородных связей, влияния растворителя. [c.142]

    Проведение в среде метилового спирта реакции п-фтор-фенялтрифторметилсульфона приводит к увеличению константы окорости реакции по сравнению с бензолом в 55 раз и резкому отклонению от прямолинейности зависиыости С , . - мольная доля спирта в смеси бензол-метанол (рис. 3), что объясняется влиянием дополнительного фактора специфической сольватацией электрофильного характера метиловым спиртом за счёт склонностя фтора к образованию водородных связей. В реакциях фторпроизводных спирт выступает как бифункциональный катализатор. [c.464]

    Если считать, что в реакции замещения водорода металлом в первую очередь происходит атака карбаниона по углерод-водородной связи, то можно было бы ожидать, что сравнительная скорость ее в различные положения должна была бы контролироваться сравнительными плотностями электронов в тех положениях кольца, в которых находятся атакуемые атомы водорода. Представляется невероятным, чтобы существовал какой-либо механизм изменения этих плотностей электронов, в котором резонанс играл бы какую-либо роль. Отсюда следует, что сравнительные плотности электронов должны определяться в первую очередь индуктивным влиянием заместителя. Исходя из этого полон<ения, электронные плотности в моноалкилбензолах должны быть наиболее высокими в о-положении и должны уменьшаться в ж- и п-псложениях в указанном порядке. Из этих данных следует, что замещение в о-положе- [c.474]

    Предполагается, что реакционная способность обеих функциональных групп бифункционального мономера одинакова и не зависит от его молекулярной массы [3, с. 46 9, с. 34]. Это предположение подтверждается тем, что константы скоростей многих реакций не зависят от продолжительности процесса и молекулярной массы полимера. Так, константы скорости реакции полиоксиэтилена (молекулярная масса 393) с концевыми гидроксильными группами и 1-бутанола с фенилизоцианатом составляют соответственно 1,5-10 3 и 1,7-10 л/(моль-с) [10]. Однако имеются экспериментальные данные, противоречащие этому. Было изучено влияние молекулярной массы линейных сложных полиэфиров с концевыми гидроксильными группами в диапазоне 400—3000 на скорость реакции их с фенилизоцианатом. При этом установлено, что реакционная способность диэтиленгликольадипината зависит от длины цепи. Константа скорости реакции резко меняется в области молекулярных масс от 400 до 1500 и асимптотически приближается к постоянной величине в диапазоне молекулярных масс от 1500 до 3000 (рис. 1). Установленные закономерности авторы связывают с возрастанием концентрации меж- и внутримолекулярных водородных связей с ростом молекулярной массы полиэфира [11]. [c.158]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]

    Межфазный катализ включает образование ионных пар, в которых анион и катион довольно тесно связаны. Возможно, поэтому ассиметричное влияние хирального катиона катализатора на реакции анионов приводит к частичному разделению рацематов, т. е. к оптической индукции. Необходимым условием такого эффекта является достаточно тесное взаимодействие аниона и катиона и только в одном из нескольких возможных положений и конформаций. Высокая подвижность аниона по отношению к катиону препятствует этому эффекту. Использование с этой целью четвертичных аммониевых солей с хиральным центром в углеродном скелете, по-видимому, малоперспективно, если только анион-катионное взаимодействие не усиливается дополнительной полярной группой (например, группой ОН, способной образовывать водородную связь). Лучшими катализаторами могут быть соединения с хиральным аммонийным азотом, который с трех сторон стерически экранирован [1173, 1601]. [c.102]

    Число реакций переноса водородных связей 2п /2 (2п /2 -числс возможных сочетаний из различных водородных связей по две). Примем, что каждое из элементарных событий реакций переноса и разрыва водородных связей вносит в среднем сравнимый по порядку величины вклад в поляризацию жидкости при наложении внешнего электрического поля. Тогда вклад реакций разрыва связей С-Н...С в диэлектрическую релаксацию нормальных алканов будет в раз меньше вклада реакций переноса этих связей /130/. Так, для молекул пропана на 60 реакций переноса С-Н,..С-связей приходится одна реакция разрыва связи. Для бутана это отношение больше 2500. Следовательно, влиянием реакций разрыва и образования водородных связей на времена диэлектрической релаксации > мдких алканов с 4 можно пренебречь. Диэлектрическая релаксация в алканах fi при /7 4 обусловлена практически полностью реакциями переноса водородных связей С-Н...С. [c.163]

    Эксперименты с менее полярными растворителями не обнаруживают влияния их природы на функцию карбоксильной группы. Следует ожидать образоват я водородной связи между карбоксильной группой и имидазо- /Н-, лий-ионом. Действительно, для цвиттер-иона од-нозначно показано существование водородной свя- зи. Оказалось, что реакция ОН- с протоном, уча- Т О [c.227]

    Следует подчеркнуть, что сольволиз отрт-бутилхлорида является весьма показательной иллюстрацией отсутствия какой бы то ни было общей закономерности в зависимости константы скорости реакции в растворе от диэлектрической постоянной растворителя. Это реакция является довольно редким примером процесса, в малой степени осложненного специфическими взаимодействиями реагента с растворителем (образованием водородных связей, кислотно-основными взаимодействиями и др.). Естественно, что при наличии специфици-ческих взаимодействий неэлектростатического характера между реагентом и растворителем вообще нет оснований ожидать корреляции между влиянием растворителя на скорость реакции и его диэлектрической постоянной. [c.120]

    Органические растворители, применяемые при изучении про-толитических реакций, могут быть классифицированы по разным признакам. По влиянию на относительную силу протолитов различают дифференцирующие и нивелирующие растворители. Дифференцирующее действие растворителя зависит от ряда факторов кислотно—основных его свойств, диэлектрической проницаемости, сольватирующей способности, способности к образованию водородных связей и т.д. [c.89]

    Полярность о-саязи, индуктивный эффект. Механизм реакций нуклеофильного замещения атома галогена в галогеналкилах. Переходное состояние, энергетика реакции. Сравнительная активность атомов галогена в разтичного типа галогенопроизводных (объяснение). Неподвижность галогена у кратной связи. Сравнительная кислотность гидроксила а разного типа соединениях (объяснение). Водородная связь. Взаимное влияние гидроксила и ароматического ядра в феноле. Влияние заместителей и их положения в ядре ((кнола на кислотность гидроксильной группы. Спектры (ПМР, ИК и УФ) галогенопроизводных, спиртов и с нолов. Гербициды. [c.250]

    Замещение около 50% гидроксилов на фтор приводит к существенному увеличению кислотности фторкремнезема, что объясняется индуктивным влиянием более электроотрицательного атома фтора. В то же время понижается активность оставшихся ОН-групп в реакции изотопного обмена с ОгО вследствие образования более сильных, чем —ОН... ОН, мел<молекулярных водородных связей —ОН.. . Р. Реакция (1.2) частично обратима, и при длительной обработке водой образцов, содержащих не более 0,4 мг-экв Р/г, происходит полное регидроксилирование поверхности. [c.18]

    Кинетака и механизм термического распада пероксидов, осуществляемого как по гомолитическому механизму с разрывом одной связи или с синхронным разрывом двух связей, так и по нерадикальному механизму в растворе, зависят от физических и химических свойств растворителя, от характера сил взаимодействия молекул пероксида с молекулами растворителя. Это влияние особенно существенно для гидропероксидов, легко образующих водородные связи. Общие вопросы кинетики и механизма реакций в жидкой фазе рассматривались в монографиях [1—3]. В первую очередь это изменение характера движения и столкновения реагирующих частиц в жидкой среде и влияние прямого взаимодействия реагирующих частиц с молекулами растворителя. В результате взаимодействия реагирующие частицы и переходное состояние окружаются структурированной оболочкой из молекул растворителя и изменяют свою реакционную способность из-за изменения электронной структуры. [c.201]

    На сопряженные химические реакции оказывают влияние как физические, гак и химические свойства среды Такие физические свойства растворителя, как диэлектрическая постоянная, дипольный момент и способность образовывать водородные связи, влияют на константы скорости и равновесия ряда сопря- [c.85]


Смотреть страницы где упоминается термин Водородная связь, влияние на реакции: [c.173]    [c.115]    [c.14]    [c.355]    [c.158]    [c.336]    [c.423]    [c.115]    [c.116]    [c.161]    [c.239]    [c.85]    [c.767]    [c.1343]    [c.82]    [c.157]   
Принципы органического синтеза (1962) -- [ c.540 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте