Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород действие излучений

    Радиолиз воды, содержащей перекись водорода. Действие излучения на эту систему вызывает разложение перекиси водорода. В данном случае возможны реакции 25, 15, 36, 37, 38, а также реакции  [c.90]

    Первичное химическое действие излучения на воду приводит к образованию свободного радикала гидроокисла и атома водорода по схеме [c.364]


    При обсуждении процессов, возникающих под действием излучения, в качестве примеров брались жидкости и протекающие в них реакции. Поведение твердых углеводородов качественно аналогично поведению жидких. Процессы, зависящие от подвижности реагирующих звеньев молекул любого размера, будут замедляться в твердых углеводородах. Однако реакции атома водорода и одностадийные молекулярные процессы будут происходить примерно с такой же скоростью, как и в жидкостях. [c.161]

    Вулканизация может протекать также под действием свободнорадикальных инициаторов (например, пероксидов) или под действием излучений высокой энергии (например, 7-излучения). Механизм реакции заключается в отрыве подвижного атома, например атома водорода, от макромолекулы с образованием свободного радикала. Рекомбинация макрорадикалов в конечном счете приводит к образованию разветвленных и сшитых полимеров. [c.61]

    К радиационно-химическим относятся реакции присоединения, разложения, полимеризации и др. Под действием излучений из кислорода получается озон из азота и кислорода — оксиды азота вода разлагается на водород и кислород пероксид водорода — на кислород и воду аммиак — на азот и водород и т. п. При низких температурах проводят окисление углеводородов кислородом воздуха с получением практически важных веществ, входящих в состав смазочных масел, моющих средств. [c.200]

    Химическое действие радиоактивных излучений. Исследованием химических изменений, возникающих в веществе под действием ядерных излучений, занимается радиационная химия. Вскоре после работ Беккереля была обнаружена способность излучений радия разлагать воду на водород и кислород. В последующие годы расширились работы, посвященные действию излучений радиоактивных элементов на различные вещества. Было установлено, что под действием излучений возникают ионы и радикалы. Часто наблюдается протекание цепных реакций. Современный этап радиационной химии связан с появлением мощных источников ядерных излучений. Решение прикладных задач по эксплуатации ядерных [c.407]

    Под действием излучений происходит выделение газов и водорода за счет реакций передачи цепи  [c.96]

    По данным Литтл [15] и Лоутона и других [16], в полиэтилене, подвергающемся действию излучения ядерного реактора или быстрых электронов, преобладает процесс сшивания. Чарлзби 17] опубликовал результаты тщательно выполненного исследования действия излучения ядерного реактора и показал, что облученный полиэтилен не растворяется в горячих органических растворителях и обладает упругостью, подобной упругости каучука, при температурах выше 100—105° — точки плавления кристаллической части. Очень тонкие пленки увеличивали вначале свой вес вследствие окисления поверхности, но затем это компенсировалось за счет потери в весе вследствие выделения водорода — главного летучего продукта. Вес более толстых образцов с самого начала уменьшался, хотя выделение водорода задерживалось вследствие необходимости диффузии через массу полиэтилена. Принималось, что каждый акт отщепления водорода эквивалентен образованию одной поперечной связи образование двойных связей при этом считалось несущественным. [c.111]


    Цистин, по-видимому, сам подвергается постепенному распаду на последних этапах реакции, так как при облучении дозами выше 10 000 р его выход значительно меньше ожидаемого. Таким образом, дисульфидные связи, которые определяют строение многих белков, особенно ферментов, могут подвергаться действию излучения. Однако дозы, необходимые для достижения заметных эффектов, велики и вызывают значительно более сильные побочные явления. Количество перекиси водорода, образую-шейся в растворах аминокислот, больше, чем в чистой воде (если раствор не имеет щелочной реакции). [c.222]

    Все альдегиды поглощают [145] в сравнительно близкой ультрафиолетовой области спектра, а именно в интервале между 3300—3400 и 2500 А. У большинства альдегидов наблюдается вторая область поглощения при более коротких волнах. Фотолиз простых алифатических альдегидов в парах под действием излучения в первой области поглощения-изучен довольно подробно (см. стр. 275 и сл. в книге [14]). Насыщенные алифатические альдегиды всегда дают окись углерода, однако одновременно с более низкими выходами синтезируются другие соединения. Так, ацетальдегид дает в основном окись углерода и метан, однако в небольших количествах образует также диацетил, глиоксаль, формальдегид, водород и этан. [c.260]

    В качестве примера рассмотрим действие излучений на водород. При действии электронами большой энергии на молекулы водорода могут происходить следующие превращения  [c.547]

    И ДЛЯ получения удовлетворительных результатов приходится брать довольно большие образцы — не менее 1 г. Исследование радиолиза дейтерированных полимеров [49] позволяет по анализу образовавшейся смеси дейтерия и водорода получить сведения о местах молекул, подвергшихся действию излучения. Было также показано, что при радиолизе полиэтилена образуются углеводороды, состав которых зависит от боковых цепей полимера [25]. [c.224]

    Ионизирующее действие излучения на воду и водные растворы приводит к образованию водорода, вызывающего появление водородной хрупкости стали, находящейся в облученной воде. [c.15]

    Под действием излучений вода разлагается на ионы водорода Н+ и гидроксила ОН- обладающие высокой химической активностью. Они вступают в химические реакции с другими молекулами ткани, образуя соединения, не свойственные здоровому организму. Характер поражающего действия радиоактивных излучений зависит от ряда условий вида излучения, (альфа-, бета-, гамма-, нейтронного излучения), его активности и энергии, срока жизни изотопа (периода полураспада), внутреннего или внешнего облучения, времени облучения и т- Д. [c.124]

    Элементарная оценка энергетики процесса позволяет заключить, что можно не учитывать диссоциацию водорода газовой фазы на атомы под действием излучения. [c.138]

    В другом случае [8] исследовался радиолиз гидроочищенного газойля под действием излучения ядерного реактора в интервале температур радиационно-термического крекинга. Опыты проводили при температуре 300 °С и давлении 3—3,5 ат. Доза излучения составляла от 200 до 800 Мрад. При этом было установлено, что с увеличением дозы излучения уменьшался выход водорода и увеличивалось содержание более тяжелых углеводородных газов. Выход газа линейно возрастал при дозе излучения до 100 Мрад. При дальнейшем увеличении дозы выход газа приближался к предельному значению. При облучении уменьшалась доля алканов, за счет их деструкции, и увеличивалось количество алкенов и цикленов. Однако при дозе излучения выше 600 рад образование непредельных углеводородов замедлялось. [c.167]

    Проведен ряд исследований по влиянию излучений на различные водные растворы. Кинетика этих процессов очень сложна результаты исследований во многих случаях являются противоречивыми, а поэтому можно сделать лишь небольшое число обобщений. Протекающие процессы обычно согласуются с постулированным начальным образованием Н- и ОН-радикалов из воды или (в случае присутствия газообразного кислорода) образованием пергидроксила в дальнейшем протекают реакции этих радикалов с растворенным веществом, хотя Лефор и Гайсинский сообщают о случае, когда арсенит в водном растворе, по-видимому, перешел в элементарный мышьяк под прямым действием излучений [90]. В ряде случаев скорость образования перекиси водорода оказы-ваб гся более высокой, чем при облучении чистой воды так, например, ионы галогенидов в растворе повышают количество образующейся перекиси водорода, причем йодид более эффективен, чем бромид, который в свою очередь эффективнее хлорида. В недавно проведенной дискуссии на заседании Фарадеевского общества [84] были сообщены результаты ряда новейших исследований по влиянию растворенных веществ. В этих сообщениях содержатся также ценные ссылки иа предыдуш ие работы. Из других новых работ нужно указать на облучение рентгеновскими лучами водных растворов йодноватокислого калия [101], йодистого калия [102], дезоксирибонуклеиновой кислоты [103] [c.63]


    Только сравнительно недавно в известной степени выяснены явления, имеющие отношение к разложению перекиси водорода в паровой фазе, особенно взрывного характера. В этом разделе рассматриваются экспериментальные и теоретические данные, касающиеся разложения пара перекиси водорода. Экспериментальные методы получения пара перекиси водорода обсуждены на стр. 158. Разложение пара перекиси под действием излучения кратко рассмотрено на стр. 382. [c.373]

    Продукты радиолиза галоидалкилов образуются при разрыве связи углерод — галоид. Этот разрыв является просто гемолитическим, но некоторые образующиеся продукты, появление которых нельзя объяснить таким путем, образуются в результате молекулярных процессов. Спирты и а-оксикис-лоты отщепляют атомы водорода от а-углеродных атомов и от гидроксильных групп и дают газообразный водород, гликоли и карбонильные соединения. При облучении водных растворов эти вещества взаимодействуют главным образом со свободными атомами водорода и гидроксильными радикалами, образующимися из воды, однако суммарная реакция является той же. Кислород, взаимодействуя с органическими свободными радикалами, подавляет образование гликоля и увеличивает образование карбонила, а сам восстанавливается до перекиси водорода. Действие излучения на простые эфиры аналогично действию на спирты происходит разрыв связей углерод — водород и углерод— кислород. Это приводит к образованию водорода, димеров, карбонильных соединений, спиртов, алканов и алкенов. В карбональных соединениях наиболее чувствительными [c.147]

    Повышенная энергия Движения электронов может достигаться при поглощении видимого света (или других электромагнитных колебаний) и переходе электронов на волее высокий энергетический уровень (как, например, при активации хлора в реакции Н2- -С12 = 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Ыа + С12 = НаС1 + С1) и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми колебаниями, действием излучений различного рода и другими путями. [c.479]

    В последнее время получают развитие количественные исследования кинетики радиационных химических реакций. В качестве примера рассмотрим упоминавшуюся уже выше реакцию разложения пе рекиси водорода при действии излучений большой энергии в жидких средах. Изучению ее посвящен ряд работ разных авторов. В. Я. Черных, С. Я. Пшежецкий и Г. С. Тюриков исследовали кинетику разложения перекиси водорода в водных растворах под действием у-излучения. [c.555]

    Ненасыщенные алифатические углеводороды — олефины — выделяют при облучении значительно меньше водорода, чем насыщенные. Выход водорода достигает приблизительно 1 молекулы на 100 эВ, выход других газообразных продуктов также незначителен. С другой стороны, выход продуктов с высоким молекулярным весом, образовавшихся в результате соединения двух или более исходных молекул, может быть достаточно высоким, если двойная связь находится в доступном положении. Например, число молекул 1-гексе-на или циклогексена, вступающих в реакцию соединения, достигает приблизительно 10 на 100 эВ. Число реагирующих молекул снижается, если двойная связь находитсл внутри длинной молекулы. Благодаря стойкости к действию излучения особого внимания заслуживают ароматические соединения — бензол, толуол, нафталин и др., характеризующиеся резонансно-стабилизированным арсмати-ческим кольцом. Поглощенная ими энергия перераспределяется таким образом, что разрушение. молекул предотвращается. [c.160]

    Дол и другие [25] при облучении в ядерном реакторе получили близкие результаты. Лоутон, Земани и Балвит [30] нашли, что при облучении образцов промышленного полиэтилена электронами с энергией 800 кэв водород составляет только 85% выделяющегося газа остальные газы в основном составляют углеводороды Са, Сз и С4. Они связали различия в полученных результатах с различием в характере действия излучения, но гораздо вероятнее, что действительной причиной было более эффективное удаление газа из полимера. Миллер и другие [26] провели сравнение для относительных количеств водорода i углеводородов, выделившихся под действием электронов с энер гией 800 кэв из октакозана, полиметилена с молекулярным ве сом, большим 10 , и полиэтилена со среднечисленным молеку лярным весом 9100, имевшим короткие ответвления (главныл образом н-бутильные группы), в среднем 1,3 на каждые 100 ато MOB углерода. Результаты, полученные для этих веществ, при ведены в табл. 8. [c.119]

    Хорощо известно, что галоидопроизводные (за исключением фторидов) обладают высокой чувствительностью к действию ионизирующих излучений. В табл. 4 (стр. 58) приведено число свободных радикалов, образующихся при действии -излучения на каждые 100 эв поглощенной энергии, для ряда галоидосодержащих органических соединений. Эти значения высоки для хлороформа, бромоформа и четыреххлористого углерода они выще, чем для любого другого из изученных ранее органических соединений. К подобному же заключению пришли также Зайтцер и Тобольский [1]. Чистый хлороформ в отсутствие кислорода воздуха при облучении дает гексахлорэтан и не образует хлористого водорода, в присутствии же кислорода образуется перекись, разлагающаяся с образованием фосгена [2]. Подобным же образом реагирует метиленхлорид четыреххлористый углерод и четыреххлористый этилен не образуют перекисей, но тем не менее дают фосген и хлор [2], Алифатические бромиды дают бромистый водород и бром механизм этих реакций точно не установлен [3]. При изучении радиолиза и [c.163]

    Были предприняты попытки определить природу мостиков, образующихся в полисилоксанах под действием излучения большой энергии. Одно из направлений этих исследований — определение состава выделяющихся газов. Уоррик [17] проанализировал газы, выделившиеся из октометилциклотетрасилоксана, облученного дозой 52,5 мегафэр -излучения Со Чарлзби [21] определял состав газов, выделившихся из линейных полидиметилсилоксанов после нескольких дней облучения в ядерном реакторе. Эти результаты приведены в табл. 15. Наблюдается некоторая разница в составе газов (вероятно, главным образом потому, что облучались разные вещества), но все же есть соответствие — прежде всего в количестве выделившегося водорода при облучении других полимеров водорода обычно выделяется больше всех остальных газов в случае силоксанов он выделяется в меньших количествах. Основной реакцией, очевидно, является отщепление метильных групп образующийся [c.199]

    Однако в присутствии сенсибилизаторов, распадающихся фотохимически с образованием свободных радикалов, соответствующие реакции могут найти полезное применение. Например, окисление этана в газовой фазе до уксусной кислоты в присутствии бромистого водорода в качестве катализатора может происходить при более низких температурах и более тщательно контролироваться, если газовую смесь подвергать действию излучения, поглощаемого бромистым водородом 1269]. Аналогичные замечания относятся также к процессам окисления других органических соединений. Механизмы состветствую-щих реакций полностью не изучены. [c.277]

    Реакции, которые относятся, по-видимому, к этому типу, наблюдаются также в случае стероидов [315], хотя они и протекают при других экспериментальных условиях. Так, эргостерин (LV1I1) под действием излучения в отсутствие кислорода, но в присутствии сенсибилизаторов, например эозина или флуоресцеина, дает [316] б с-эргостадиенол, для которого была предложена структура X V11. Возможно, что в этих реакциях сенсибилизатор действует так же, как акцептор водорода. [c.286]

    СКИЙ уровень (как, например, при активации хлора в реакции Нг -f- 2 — 2НС1). Энергия электронов в атомах может повышаться при разрыве валентной связи, например при диссоциации молекулы водорода на атомы или при образовании других атомов с ненасыщенной валентностью или свободных радикалов. Такая активация может осуществляться и при химических взаимодействиях (как, например, в реакции Na + СЬ = Na l-f С1), и при ударах молекул о стенку сосуда и пр. Наконец, молекулы могут активироваться действием электрического разряда, ультразвуковыми ко> лебаниями, действием излучений различного рода и другими путями. [c.473]

    Полное сечение ионизации молекулы и полное сечение ее электронного возбуждения быстрой частицей примерно пропорциональны одной и той же характеристике молекулы — силе осциллятора, причем отношение этих сечений в широком диапазоне энергий мало меняется, будучи близким к единице. Так, согласно данным Сантара и Бернара [1434], отношение числа возбужденных к числу ионизированных молекул составляет для водорода величину, равную 1,2 для кислорода — 1,0—1,8 для азота 0,8—0,9 для аммиака — 1,2—1,6 и для метана 0,8—0,9. В результате оказывается, что число актов ионизации, возбуждения, а также число молекул, вступающих в химическую реакцию, под действием излучения (в отсутствие цепных реакций), отнесенное к единице поглощенной энергии, поразительно одинаково для самых разных веществ. Поэтому, полагая число химически превращенных молекул равным 4 на 100 эе, мы в подавляющем большинстве случаев не ошибемся более чем в 2—3 раза. Поэтому с такой ке точностью можно прогнозировать скорость распада индивидуального вещества при радиационно-химическом воздействии, пользуясь просто выражением  [c.361]

    Виталина, Шипуло и Климова [191 исследовали действие излучения дуговой ксеноновой лампы мощностью 2 кет на различные классы органических соединений, в том числе на хлор- и броморгани-ческие соединения, для разрушения их и определения галогена известными методами. Сухие вещества (1 жг) облучали в кварцевых ампулах (длина 30—40 мм, наружный диаметр 4—6 мм, толщина стенок 0,5—1 мм), которые после внесения навески анализируемого вещества охлаждали сухим льдом и запаивали. После облучения ампулу вскрывали в герметически закрытой колбе с поглотительным раствором. Для веществ, содержащих мало водорода или содержащих бром, серу или азот, в качестве поглотительного раствора использовали смесь 1 мл 2 н. раствора КОН с 1 мл 30%-ной перекиси водорода, для остальных веществ — [c.133]

    Спектр I типа наблюдается в основном для Н (МН4 , активированный при 400—500° С) и характеризуется -тензором аксиальной симметрии и сверхтонким взаимодействием с одним ядром А1 (А = = 7,5 Гс). Авторы [36] предположили, что центром, ответственным за спектр, является дырка, локализованная на несвязывающей -орби-тали кислорода решетки, связанного с ирном алюминия, Образование центров связано с разрушением связи О—И под действием излучения. Поскольку в облученном Н были обнаружены атомы водорода [43], то такой механизм вполне допустим. При выдерживании образца в кислороде сигнал I типа исчезает, а на его месте появляется новый, сравнительно узкий сигнал [36]. Последний спектр не имеет сверхтонкой структуры, обусловленной взаимодействием с A1. Эсперимент с применением кислорода, обогащенного изотопом О, показал, что индуцированные кислородом центры имеют два неэквивалентных ядра кислорода [36]. В результате последующего вакуумирования при комнатной температуре этот сигнал исчезал и восстанавливался первоначальный спектр I типа. Авторы [36] отнесли сигнал, индуцированный кислородом, к перекисным радикалам, образованным из молекул О2 и центров I типа. При облучении НУ в присутствии кислорода интенсивность сигнала была в 10 раз выше [36]. [c.445]

    При изучении процесса фотодеструкции Кенион [140] показал, что па алкилхлориды и, следовательно, на чистый ПВХ не должно действовать излучение с длиной волны, превышающей 2350 А. Однако практически оказалось, что полимер поглощает свет с длиной волны больше указанной и подвергается при этом деструкции инициирование процесса фотодеструкции осуществляется, по-видимому, в результате поглощения света примесями. Методом ИК-спектроскопии было найдено, что при действии света на полимер в присутствии воздуха увеличивается поглощение, характерное для карбонильных групп, а присутствие при облучении поливинилхлорида карбонильных соединений типа ацетона приводит к повышению скорости деструкции. Но даже в чистом ПВХ имеет место некоторое поглощение света и деструкция, что обусловлено, по мнению Кениона, наличием в молекуле этого полимера ненасыщенных групп, образовавшихся в результате происходящего в ничтожной стенени во время получения полимера отщепления хлористого водорода. [c.85]

    Масс-спектрометрический анализ показал, что при облучении ПИБ в относительно больших количествах образуются лишь метан, водород и изобутилен [246]. Скорость образования метана и водорода пропорциональна деструкции, но скорость образования изобутилена возрастает с увеличением дозы облучения. Это явление связано с тем, что изобутилен образуется в результате отщепления как концевых групп молекулы исходного полимера, так и концевых групп, возникающих под действием излучения. Исследование ИК-спектров поглощения показало, что одному акту разрыва цепи соответствует образование 1,87 винилиденовых групп RR = СНз [246]. [c.109]

    При радиолизе нафтеновых углеводородов основным газообразным продуктом реаквдш является водород. Основные превращения циклогексана под действием излучений приведены ниже. [c.278]

    Ароматические углеводороды наиболее радиационноустойчивы. Газ, образующийся при действии излучения на бензол, состоит из водорода и ацетилена. Выход водорода значительно ниже, чем при радиолизе парафинов. Основной продукт радиолиза жидкого бензола — полимер молекулярного веса около 300 механизм образования его не выяснен. При действии у-лу-чей на жидкий бензол в продуктах радиолиза идентифицирован дифенил кроме того, образуются в незначительных количествах фенилциклогексадиен, фенилциклогексан, фенилциклогек-сен, циклогексилциклогексадиен. [c.278]

    Биологическое действие излучений на организм. Излучения, испускаемые источниками радиоактивных веществ, взаимодействуют с атомами и молекулалп среды, в которой они распространяются. Это взаимодействие является причиной изменений, которые происходят в организме человека, подвергшегося действию облучения. Первичным моментом радиационного поражения является ионизация атолюв и молекул тканей при прохождении через них потока ионизирующих частиц. Ионизация вызывает разрыв молекулярных связей и изменение химического строения соединений ткани непосредственным результатом облучения является также расщепление молекул воды, содержащейся в ткани, на радикалы гидроксил и водород, обладающие высокой хидшческой активностью и образующие при взaи юдeй твии с молекулами ткани ряд новых соединений, не свойственных здоровой ткани. В результате таких изменений нарушается нормальное течение биохимических процессов и обмен веществ в организме. [c.106]

    Ионизирующие излучения, обладающие большой энергией, могут в значительной степени изменять свойства твердых тел. В связи с этим в настоящее время большое значение приобретают работы по изучению одного из разделов радиационной химии — влияние ионизирующих излучений на активность катализаторов. Облучение ряда окисных катализаторов показало, что их активность в различных реакциях при этом возрастает. Увеличивают свою каталитическую активность алюмосиликатные катализаторы и катализаторы, приготовленные на основе алюмосиликата, в том числе в реакциях крекинга изопропилбензола и изомеризации гексана [1], дей-теро-водородного обмена [2], разложения перекиси водорода [3]. Отмеченное увеличение активности является, очевидно, следствием возникновения под действием излучения различных физических и химических изменений в микроструктуре окисных катализаторов. [c.376]

    Интересен вопрос и о физиологическом действии перекиси водорода на молекулярном уровне. Показано, что перекись водорода может вызвать мутации, и в ряде литературных источников [442] описываются условия и природа этого эффекта. Последний иногда считают радиомиметическим эффектом, причем он представляет интерес с точки зрения образования перекиси водорода в живых организмах прн действии ионизируют,их излучений (см. стр. 60). Механизм этого мутагегпюго действия точно еще не известен, а поэтому заслуживают внимания различные высказанные мнения и точки зрения. Процессы мутации находятся в близком родстве с карциногеиезом, и, как указывает Дженсен (см. в работе [443] стр. 159), необходимо различать возникновение опухоли и ее развитие факторы, имеющие значения для одного из этих явлений, могут ие оказывать влияния на другое. Мутагенное действие перекиси водорода изменяется также в зависимости от легкости доступа ее к клеточным ядрам (см. в работе [443] стр. 116). Процесс может зависеть и от возможного изменения содержания каталазы в разных частях клетки. Шнейдер (см. в работе [359] стр. 273) считает, что каталаза в клеточном ядре почти отсутствует и находится в растворимой форме в цитоплазме однако мнения по этому предположению расходятся [443]. Тем не менее установлено [444], что каталаза устойчива против рентгеновского облучения. Логическим выводом из того, что рентгеновские лучи и подавляют опухоли и вызывают образование перекиси водорода, была мысль, что перекись водорода может оказывать благоприятное влияние на лечение рака. Такого рода опыты проводились (см. в работе [443] стр. 149 [445]) и проводятся сейчас, но пока еще положительных результатов не получено. Возможно, что перекись, образующаяся при действии излучения, представляет органическую перекись или перекись водорода в форме аддитивного соединения, причем высказана мысль (см. в работе [443] стр. 149), что эти соединения не разлагаются каталазой. Большинство авторов в на- [c.358]


Смотреть страницы где упоминается термин Водород действие излучений: [c.169]    [c.489]    [c.164]    [c.107]    [c.108]    [c.170]    [c.770]    [c.359]   
Краткий курс физической химии Изд5 (1978) -- [ c.547 ]




ПОИСК





Смотрите так же термины и статьи:

Водород из метана действием альфа-излучения

Водород из нефтяных масел действием альфа-излучения

Водород из пропилена действием альфа-излучения

Излучение действие на перекись водород

ОКИСЛЕНИЕ ВОДОРОДА ПОД ДЕЙСТВИЕМ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ Влияние освещения на скорость реакции и на длину цепи вблизи пределов воспламенения



© 2025 chem21.info Реклама на сайте