Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серии расщепление

    Кроме того, в процессе риформинга протекает целый ряд других реакций гидрирование соединений серы, расщепление и деалкилирование ароматических углеводородов, а также их уплотнение, что приводит к отложению кокса на катализаторе. [c.7]

    В связи с изложенными здесь особенностями поглощения, соответствующему переходу i4) — возникает совершенно общий вопрос о причинах, вызывающих давыдовское расщепление. Применительно к случаю кристалла бензола это вопрос о том, почему чисто электронный переход в кристалле представлен в виде резко поляризованного дублета, а электронно-колебательный переход A g —в виде слабо поляризованных полос поглощения. При анализе спектров других молекулярных кристаллов этот вопрос также важен. Согласно теоретическим представлениям, на величину экситонного расщепления в первую очередь должна влиять сила осциллятора соответствующего молекулярного поглощения. В случае спектра кристалла бензола этим нельзя объяснить отсутствие экситонного расщепления в М-серии, так как они в несколько раз интенсивнее полос /С-серии, расщепление в которых ярко выражено. В п. И настоящего раздела проведен подробный анализ этой проблемы. [c.75]


    Оба продукта практически не содержат серы. Катализатор расщепления имеет следующий примерный состав (в %). [c.41]

    Основной способ переработки кислых гудронов — высокотемпературное расщепление, основанное иа реакции термической диссоциации серной кислоты и триоксида серы  [c.138]

    Химический расход водорода в значительной степени зависит от жесткости процесса. Так, из данных рис. 2.18 [43] видно, что с увеличением степени удаления серы, доля водорода, расходуемого на реакции, не связанные с гидрогенолизом серусодержащих соединений, резко увеличивается. Это обусловлено тем, что с ростом жесткости процесса, например, с увеличением температуры возрастают скорости реакций гидрирования аренов, а также ненасьпценных продуктов расщепления или термической деструкции углеводородов, смол и асфальтенов. В реальных условиях доля водорода, расходуемого на реакции гидрирования, может достигать 70% от фактического расхода водорода. [c.86]

    В то же время имеются данные о возможности применения никелевого катализатора на алюмосиликатном носителе (см. табл. 30, № 20). Содержание окиси кремния в таком катализаторе значительно превышает указанную норму. Из опыта крекирования нефтепродуктов известно, что алюмосиликатный катализатор проявляет большую активность при расщеплении углеводородов, чем окись кремния. Тем не менее такой катализатор стабильно работал более четырех месяцев при конверсии бензина, содержащего менее 0,0001 % серы (по другим данным переработка бензина с таким малым содержанием серы сопровождается зауглероживанием катализатора). [c.48]

    Дальтон использовал данные Гей-Люссака для доказательства того, что равные объемы газов не содержат равного числа молекул это было еще одной его ошибкой, подобно правилу простоты. Рассуждения Дальтона иллюстрируются при помощи рис. 6-6,я. По иному пути пошел итальянский физик Амедео Авогадро (1776-1856). Он исходил из предположения, что равные объемы любых газов (при одинаковых температуре и давлении) содержат равное число молекул. Как показывает рис. 6-6,6, это предположение требует, чтобы газы таких реагирующих между собой элементов, как водород, кислород, хлор и азот, состояли из двухатомных молекул, а не просто из изолированных атомов. Если бы идеи Авогадро, опубликованные им в 1811 г., сразу же получили признание, это избавило бы химию от полувекового периода путаницы. Однако для большинства ученых идеи Авогадро представлялись всего лишь шатким предположением (равное число молекул в равных объемах), основанным на еще более шатком допущении (о двухатомных молекулах). В те времена представления о химической связи почти всецело основывались на учете сил электрического притяжения или отталкивания, и ученые с трудом могли представить себе, чтобы между двумя одинаковыми атомами могло возникнуть какое-либо другое взаимодействие, кроме отталкивания. Но если они все же притягиваются друг к другу, почему же тогда не образуются более сложные молекулы, как, например, Н3 или Н4 Шведский химик Йенс Якоб Берцелиус (1779-1848) пытался использовать данные о парах серы и фосфора, чтобы опровергнуть идеи Авогадро. Однако Берцелиус не понимал, что в этих случаях он имел дело как раз с примерами еще более сложных агрегатов (8 и Р4). Сам Авогадро не мог помочь делу он пользовался настолько путаной терминологией, что иногда казалось, будто он говорит о расщеплении атомов водорода (атомы он называл простыми молекулами ), а не [c.285]


    Несомненно, теория Бора— Зоммерфельда явилась крупнейшим достижением физики. Наличие в атомах дискретных состояний было подтверждено экспериментально в опытах Д. Франка и Г. Герца (1913 г.). Серьезным успехом этой теории стало также вычисление постоянной Ридберга для водородоподобных систем и объяснение структуры их линейчатых спектров. В частности, Бору удалось правильно объяснить серии спектральных линий иона Не+, до того приписываемые водороду. Теория Бора — Зоммерфельда объяснила физическую природу характеристических рентгеновских спектров, расщепление спектральных линий в сильном магнитном поле (так называемый нормальный эффект Зеемана) и другие явления. [c.17]

    Процесс горения капли серы зависит от условий сжигания (температура в камере горения и относительная скорость газового потока) и физико-химических свойств жидкой серы (наличие в сере твердых зольных примесей, битумов и др.) и состоит иэ следующих последовательных стадий 1) смешение капель жидкой серы с воздухом 2) прогрев капель серы и их испарение 3) термическое расщепление паров серы 4) образование газовой фазы и воспламенение ее  [c.39]

    Расщепление образовавшихся цепочек серы, их циклизация под действием кислотного катализа и образование циклов входящих в состав кристаллической серы. [c.204]

    Мазуты содержащие 15,8—4,0% асфальтенов, 1,86— 2,04% серы и 0,27—0,84% азота и кислорода, гидрировали на плавающем и стационарном катализаторах. Показаны преимущества замены плавающих катализаторов стационарными, а также возникающие при этом трудности, связанные с отравлением катализатора Изучалось влияние условий процесса на скорости реакций гидрирования и расщепления. Достаточно глубокое гидрирование ароматизированного сырья происходит при давлениях 200 кгс/см и выше, скорость зависит от химического состава сырья и может изменяться в широких пределах. Гидрирование полициклических соединений протекает последовательно, наиболее медленной ступенью является гидрирование моноциклических ароматических углеводородов [c.50]

    Разработан процесс деструктивной гидрогенизации венгерской смолистой нефти, содержащей 14,9% асфальтенов. Найдено, что расщепление ускоряется в первую очередь повышением температуры продукты расщепления не успевают гидрироваться растворенным водородом даже при 300 кгс/см , но в присутствии доноров водорода (тетралин или фракция гидрогенизата) образуют очень мало кокса, выносимого из реактора вместе с катализатором. В оптимальных условиях образуется 70% перегоняющихся продуктов (против 20% иа сырой нефти) и только 0,2% кокса одновременно удаляется половина (из 3,5%) серы [c.53]

    Так, например, для разработки технологических процессов гидрирования сырья без его изомеризации и расщепления удобнее применять окислы, а не сульфиды переходных металлов, наносить гидрирующий агент на носители, лишенные кислотных свойств, устранять примеси, могущие быть акцепторными добавками (сера,, вода, кислород). В этих условиях реакции изомеризации и расщепления, протекаюш ие по ионному механизму, будут подавлены. Для максимальной изомеризации и расщепления сырья будут выгодны противоположные меры использование сульфидов вместо-окислов, применение кислотных носителей, добавка электроноакцепторных веществ. Многие из этих приемов, как это видно из таблиц первой главы, уже применяются на практике. [c.274]

    На катализаторах, не обработанных НаЗ, при пониженных давлениях и повышенных температурах происходит частичное гидрирование ароматического кольца и образование, помимо пропана, метана и этана. В обычных условиях и ири добавке серы гидрирование кольца незначительно, а расщепление идет только но связи, примыкающей к кольцу  [c.311]

    Состав фракции >350°С при увеличении времени контакта и температуры крекинга изменяется следующим образом содержание серы и коксуемость фракции возрастают концентрация пара-фино-нафтеновых углеводородов в результате их расщепления уменьшается, а ароматических монотонно растет и достигает 64,7 вес. % (см. табл. 32 и 33). [c.112]

    Гидрогенизация (гидрирование) твердого топлива. Гидрогенизация— это способ получения искусственного жидкого топлива — заменителя нефти и нефтепродуктов из бурых и каменных углей, сланцев и других видов низкосортного топлива. Метод основан на гидрировании топлива при высокой температуре, высоком давлении водорода в присутствии катализаторов. В этих условиях происходит разрушение непрочных межмолекулярных и внутримолекулярных связей в органической массе топлива с присоединением водорода и образованием низкомолекулярных углеводородов из высокомолекулярных соединений. Высокие температура и давление способствуют образованию жидкой фазы, которая вновь подвергается каталитическому гидрированию с расщеплением крупных молекул и присоединением водорода. Гидрированию подвергаются также соединения, содержашие серу, кислород и азот. Продуктом гидрогенизации служит жидкая смесь легких углеводородов (моторное топливо) с минимальным содержанием примесей серы, кислорода и азота, удаляемых в газовую фазу в виде НгЗ, Н2О и ЫНз. [c.54]


    Значительное внимание уделяется разложению сухого газа в непрерывной системе на катализаторе, что позволяет снизить температуру распада с 1300 (см. выше) до 850—980° С. Ряд опубликованных работ посвящен разработанному фирмой ЮОР процессу хай-про [106—109]. Он предназначен для получения водорода каталитическим расщеплением предварительно очищенного от серы газа. В качестве сырья используют природный газ или отходящий газ с установок нефтеперерабатывающего завода, не содержащий олефиновых углеводородов. Наиболее благоприятным [c.131]

    Независимо от схемы, по которой протекает гидрокрекинг, результаты его обычно оценивают по достигнутой степени расщепления. В первом приближении во всех случаях эта степень может количественно определяться по уравнению (8). Однако для более полной характеристики процесса целесообразно оценивать также интенсивность гидрирования, например, путем определения скорости присоединения водорода к типичным сероорганическим, кислород- и азотсодержащим соединениям. Во всех формах гидрокрекинга количество сероорганических соединений можно косвенно учитывать по общему содержанию серы в сырье и в продуктах реакции. Кислород- и азотсодержащие соединения условно учитывают по содержанию в сырье фенолов и оснований. [c.146]

    Вначале, — писал П. И. Вальден,— только смеялись над утверждавшейся Вант-Гоффом и Ле Белем возможностью расщепления всех инактйвных, содержащих асимметричные углеродные атомы тел... Вскоре, однако, снисходительные улыбки уступили место искреннему удивлению, когда Ле Бель, начиная с инактив-ного амилового спирта (1878), произвел целую серию расщеплений инактивных спиртов с помощью 3-го пастеровского метода [2, стр. 198]. [c.216]

    Смешанные богатые газы (при переработке упоминавщихся 250 м час угольной пасты образуется около 15 000 м 1час богатого газа на жидкой фазе процесса и 5000 ж /час а паровой) подвергают алкацид-пой очистке при давлеиии около 2 ат и дополнительно щелочной промывке для полного удаления остаточного сероводорода. Небольшие количества сероводорода в объединенных богатых газах получаются частично в результате расщепления сернистого карбонила и меркаптанов, еще содержащихся в богатых газах жидкой фазы после предварительной алкацидной очистки (см. стр. 33 оригинала), и частично за счет сероводорода, добавляемого для осернения катализатора бензинирования. Извлекаемый сероводород снова используется для осернения катализатора, а избыток перерабатывается на серную кислоту или элементарную серу. [c.43]

    Расход водорода при гидрообессеривании остатков изменяется в пределах 80-140 м= /м , причем на реакции гидрогенолиза гетероатомных соединений расходуется лишь около 30%, а остальная часть идет на гидрирование ароматических соединений углеводородов, смол и продуктов расщепления [5, 6, 7, 8]. Производительность катализатора в зависимости от содержания в сырье металлов и асфальтенов при глубине удаления серы 70-93% изменяется в пределах 5,2-1,2 м /кг [9,-10], в то время как на дистиллятном сырье эта величина составляет до 40 м /кг. Низкие показатели по производительности катализаторов свидетельствуют о том, что проблема защиты их от дезактивации является весьма важной. Для подавления коксообразования на катализаторе вьшуждены прибегать к повышению давления водорода в реакторе. Это ведет к увеличению металлоемкости аппаратуры и возрастанию потребления электроэнергии [11,12]. [c.9]

    Такого же рода процессы изомеризации наблюдаются и в условиях каталитического крекинга. Интересная серия опытов проведена по изучению разложения олефинов (производных лпрт-алкилов), сопровождаемого изомеризацией [52]. Так, нанример, нри перегонке асимметричного ди-торет-бутилэтилена со следами бромнафталинсульфоновой кислоты идет расщепление молекулы с образованием изобутилена и гексенов, состоящих главным образом ив тетраметилэтилена. Эта реакция была объяснена на основании теории Уитмора об образовании иона карбония при реакциях изомеризации, катализируемых кислотами  [c.107]

    Изучение этой реакции показало, что основным реагентом является гидросульфид натрия. Роль сульфйта натрия состоит в подавлении обратной реакции и превращении тиосульфеновых очень реакционноспособных групп в концевые меркаптанные группы [16]. В процессе расщепления в данных условиях принимают участие только 5—5-связи, связь С—5 не затрагивается, что было подтверждено применением меченого (по сере) ЫаНЗ для изучения этой реакции. [c.556]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Всесторонний анализ различных возможных методов регенерации отработанной серной кислоты от процесса алкилирования показывает, что в настоящее время наиболее целесообразна регенерация кислоты, основанная на ее термическом расщеплении. Этот метод получил широкое распространение в промышленной практике за рубежом. Так, в 1962 г. таким способом е США было получено около 0,8 млн. т кислоты (вторичная кислота) [167]. По этому же принципу работает несколькс отечественных установок. Сущность метода заключаете в сжигании отработанной кислоты с образованием сер нистого ангидрида, последующем его окислении в сер-ный ангидрид и абсорбции последнего серной кислотой В перспективе такая регенерация отработанной серно кислоты процесса алкилированиз изобутана олефинами вероятно, станет одним из основных методов ее утили зации. [c.164]

    В рамках рассматриваемой схемы важно установить роль катализаторов. Окисление сероводорода диоксидом серы носит кислотноосновной характер. Этот факт можно объяснить следующим образом [83]. Взаимодействие и 50, в водных растворах протекает с высокими скоростями. Согласно схеме Абеля, образуется неустойчивая тиосернистая кислота Н,5,0,, которая распадается на поли-тионаты и тиосульфат. Последние продукты оказываются довольно стабильными в интервале рН=3...7 и медленно распадаются с образованием серы. Как показано выше, для ускорения этого процесса необходимо присутствие катализаторов. Процессы образования серы, высших политионатов, сульфанмоносульфонатов сопровождается разрывом одних 5-5 связей и образованием других 5-5 связей. Перенос протона на один из атомов серы может существенно ослабить связи с соседними атомами и привести к расщеплению связи. Например, образование циклической молекулы серы из сульфанмоносульфоната под влиянием катализатора можно представить следующем образом  [c.203]

    Приведены результаты гидроочистки различных нефтепродуктов легкий крекинг-бензин — содержание серы уменьшается с 0,065 до 0,0013%, бромное число с 56 до 5 г Вгг/ЮО г тяжелый газойль — соответственно с 0,26 до 0,002%, с 75 до 8,4 бензин соответственно с 0,51 до 0,008%, ароматизированный дистиллят с 0,08 до 0,003%, с 28 до 0,5. Расщепление практически не происходит, ароматические углеводороды не затрагиваются, обессеривание протекает несколько быстрее гидрирования олефинов, сохранить которые, однако, не удается При гидроочистке сырой нефти более активен катализатор I содержание серы снижается с 2,08 до 0,17%, тогда как в случае катализатора II — лишь до 0,32% Содержание серы в циркулирующем масле каталитического крекинга уменьшалось от 1,42 до 0,15%. При этом происходило заметное гидрирование ароматических колец (число ароматических атомов на молекулу при нейзменяющемся молекулярном весе 208—209 уменьшается с 11,5 до 8,8, неароматических — возрастает с 3,8 до 6,9), протекающее за счет бициклических ароматических углеводородов. Для полного насыщения ароматических углеводородов необходимо давление 200 кгс/см  [c.48]

    Осуществлена гидроизомеризация товарного сернистого парафина с целью получения высокоиндексных смазочных масел. Платиновые катализаторы менее пригодны из-за чувствительности к сере (АП-56) и интенсивного расщепления сырья (Pt на Al Og + SiOj) Осуществлена промышленная гидроочистка бензина БР-1 с выходом 98,5% (см. ) [c.67]

    Показано, что гидрокрекинг арланского вакуумного дистиллята (3,4% серы) дает гидрогенизаты с содержанием серы 0,08—0,45%. Выход бензина 0,3—4,0%, дпзельйого топлива 28,5—56,1%, остатка 71,2—39,9%. Расход водорода 1 %. Катализатор служит 3 месяца без снижения активности. При опытном пробеге на промышленной установке выход остатка с 0,1% серы составил 55,9%. Для более глубокого расщепления нужны две ступени. Во второй ступени применяется катализатор N13 на алюмосиликате, удовлетворительно работающий при достижении в первой ступени содержания азота 0,01%. В бензиновом варианте выход бензина 55%, дизельного топлива 27,4%, остатка 9,0% в дизельнотопливном — соответственно 32,0, 51,0 и 10,2% [c.74]

    Гидрокрекинг в трехфазном псевдоожиженном слое катализатора разработан на холодной модели (см. з ) и проверен на пилбтной установке с дистиллятным сырьем и мазутом арланской нефти. Глубина расщепления и обессеривания значительно больше, чем в неподвижном слое катализатора (см.з ). Из мазута с 4,11% серы получено 4,9% бензина, 51,2% дизельного топлива и 38,5% остатка >360° С, содержащего 0,84% серы [c.83]

    Гидроизомеризация олефинов, т. е. прямое превращение их в изопарафины протекает только на сульфидированном катализаторе. В отсутствие серы идет только миграция двойной связи и диспропорционирование. Если в качестве носителя использовать 810а гидроизомеризация не идет Главные продукты — углеводороды Сз- -С4. Изучено влияние азотсодержащих соединений на скорость гидрокрекинга Присутствие серы понижает кажущуюся энергию активации с 44 до 36 ккал/моль Гексадекан быстрее всего расщепляется до Се-Только после 100%-ного превращения в заметной степени протекают вторичные реакции, приводящие к углеводородам С4—Си (преобладают С7 — Се). Циклизация незначительна (12—16 моль на 100 моль превращенного сырья). и-Гептан дает в основном продукты Сз —С4. У докозана боле заметны вторичные реакции. Гексадецен превращается аналогично гексадекану. Непревращенное сырье изомеризовано Расщепление происходит в основном по центральным связям [c.309]

    Э. Спектры других элементов. Серии лнинй были обнаружены и в спектрах всех других элементов. Эти спектры более сложны. В отличие от спектра водорода серии линий здесь не располагаются отдельно в различных участках спектра, а накладываются друг на друга. Тем не менее, по определенным признакам (внешний вид линий — резкий или размытый, диффузный , способ их возбуждения — дуговой или искровой, мультиплетность, характер расщепления в-магнитном и электрическом полях и др.) спектроскописты научились различать эти серии. [c.11]

    Хлоркарбоновые кислоты алифатического ряда обычно получают хлорированием карбоновых кислот. Эта реакция катализируется веществами (P I3, хлориды серы), способными давать с кгфбоновыми кислотами ангидриды и хлорангидриды, которые также являются катализаторами. Их влияние объясняют тем, что, в отличие от самих кислот, хлорангидриды достаточно быстро взаимодействуют с хлором, и за счет образования и расщепления ангидридов образуются хлоркарбоновые кислоты  [c.142]

    Процесс гидрокрекинга вакуумного дистиллята служит для получения реактивных и дазельных топлив, компонента высокоиндексных масел и сырья для каталитического крекинга. Из-за низкой октановой характеристики в процессе стараются получать как можно меньше бензина. Направление процесса, выход и качество образующихся продуктов во многом определяются качеством катализатора и исходного сьфья, условиями проведения процесса. Катализаторы гидрокрекинга являются полифункциональными системами и наряду с реакциями расщепления сырья должны обеспечить гидрогенолиз серо-, азот- и кислородсодержащих соединений и гидрирование полициклических, ароматических углеводородов. Для гидрокрекинга вакуумного дистиллята применяют катализаторы двух типов аморфные (оксикремнеземные или металлосиликатные) и цеолитсодержащие. Как правило, эти катализаторы содержат расщепляющий и гидрирующий компоненты. Их эффективность определяется как свойствами каждого компонента, так и вкладом в суммарную гидроконверсию [c.179]

    Гидрокрекинг представляет собой совокупность ряда параллельных и последовательных реакций расщепления парафиновых, нафтеновых и непредельных углеводородов, гидрирования ароматических и олефиновых углеводородов, деструктивного гидрирования, изомеризации и гидрогенолиза серо- и азотсодержащих соединений. В неблагоприятных условиях процесс может сопровождаться реакциями, противоположными основному направлению дегидрогенизацией некоторых алици-клических соединений, полимеризацией непредельных углеводородов и конденсацией их с ароматическими соединениями эти реакции приводят к коксообразованию. Под высоким давлением водорода реакции уплотнения молекул и дегидрирования подавляются и практически могут предотвращаться полностью [3, 4, 49—54]. [c.140]

    Среднее масло сначала подвергают гидрирующему рафинированию, удаляющему кислород и серу содержащие соединения, отравляющие контакт бензннирования и нежелательные в товарном бензине. Это рафинирование (или форгидрирование) проводят также на неподвижном контакте и с его помощью по- ггучают среднее масло, уже не содержащее фенолов и сернистых соединений и пригодное для бензинирования. Под бензиниро-ваиием понимают расщепление среднего масла гидрирования. Для форгидрирования применяются гидрирующие контакты, устойчивые к действию серы и относительно стойкие к действию других катализаторных ядов. Они состоят из сульфида вольфрама или сульфида молибдена, используемых в чистом виде или н небольшом разведении окисью алюминия (отношенпе сульфида к окиси 3 1). Это контакты У1 и Уо. В качестве же преимущественно расщепляющего катализатора для второй ступени парофазного гидрирования (бензинирования) применяется контакт В1. Этот катализатор также содержит сульфид вольфрама (10% 32) на отбеливающей земле (терране) как на носителе. Гидрирование кратных связей и удаление серы из сырья иллюстрируется следующими схемами  [c.156]

    Видно, что химическая стадия характеризуется расщеплением тиофенового кольца с выделением элементной серы в замкнутую пору и установлением равновесия по десорбции и адсорбции серы 8 . Физ ическая стадия, контролирующая процесс выделения 8 за пределы углеродной матрицы, характеризуется накоплением паров серы и разрушением стенок пор. Из предложенного механизма следует вывод о целесообразности удаления серы из коксующейся массы еще до стадии сформирования углеродной матрицы. Большая длительность пребывания сырья на стадии коксования в жидкопластичном состоянии без кар(юидообразования, высокий процент в нем ароматики [c.32]


Смотреть страницы где упоминается термин Серии расщепление: [c.138]    [c.102]    [c.14]    [c.77]    [c.17]    [c.15]    [c.322]    [c.330]    [c.11]    [c.425]    [c.142]   
Основы биохимии Т 1,2,3 (1985) -- [ c.577 ]




ПОИСК







© 2025 chem21.info Реклама на сайте