Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций, отделение от стронция бария

    Небольшие количества кальция отделяют от магния, осаждая сульфат кальция из водно-спиртовой среды, применяя стронций в качестве носителя [2 . Условия отделения кальция от стронция, бария и магния описаны в работах [3, 4.  [c.198]

    Отделение фосфатов бария, стронция, кальция, магния, марганца, железа III), хрома, алюминия. Исследуемый раствор обрабатывают избытком концентрированного водного раствора NHg. [c.196]


    Ацетатный буфер используют при отделении ионов бария Ва от ионов кальция Са и стронция с помощью дихромат-ионов Сг О . Тот же буфер применяют при определении катионов никеля N1 с помощью диметилглиоксима (реактива Чугаева). [c.140]

    Удаление дихромат-ионов. После осаждения хромата бария смесь центрифугируют и отделяют раствор от осадка. В растворе могут содержаться катионы кальция и стронция. В нем же присутствуют и дихромат-ионы, введенные на предыдущей стадии анализа. Для отделения катионов кальция и стронция от дихромат-ионов к раствору прибавляют раствор карбоната натрия до перехода окраски из желто-оранжевой в желтую. При этом выпадает осадок карбонатов кальция и стронция, который отделяют от раствора центрифугированием. Осадок карбонатов промы- [c.327]

    Электролиз с применением ртут ного катода является прекрасным ме тодом отделения алюминия, титана циркония, магния, кальция, стронция бария, бериллия, ванадия, фосфата мышьяка и урана от железа, хрома цинка, никеля, кобальта, меди, олова молибдена, висмута и серебра, осаждающихся на ртутном катоде. При этом осаждение ведут из сернокислого раствора. В принципе можно осаждение проводить также из раствора H I, но при этом в электролит необходимо прибавлять гидроксиламин. Схема электролиза с ртутным катодом представлена на рис. 12.6. В качестве анода обычно используют платиновую проволоку. Электролиз проводят при силе тока 5—6 А и напряжении 6—7 В. Конец электролиза определяют капельной пробой на отделяемый элемент. Затем, не прерывая тока, сливают электролит и промывают ртуть водой. Промывные воды присоединяют к электролиту, перемешивают и определяют интересующие компоненты, [c.234]

    Применяется как заменитель этанола для приготовления спиртовых растворов диметилглиоксима, 8-оксихинолина, промывки аналитических осадков, отделения хлоридов калия и натрия от хлорида магния, для разделения нитратов бария и кальция, улучшения осаждения сульфатов кальция и стронция. [c.246]

    Таким образом, несмотря на близость температур кипения лития и некоторых примесей (магний, кальций, стронций, барий, цинк, кадмий, мышьяк и сурьма), вакуумная дистилляция позволяет существенно уменьшить содержание магния и кальция — примесей, отделение которых от лития считалось [3, 11] трудной операцией. [c.395]

    Магний, кальций, стронций, барий и радий имеют разное сродство к сильнокислотным катионообменникам в растворах минеральных кислот, которое повышается в ряду Mg < Са < Sr < Ва < Ra. Этого различия достаточно для успешного отделения кальция от магния (1,0 М НС1) или стронция (2,5 М НС1). [c.176]


    Выделенные карбонаты щелочноземельных металлов растворяют в уксусной кислоте. Перед качественным обнаружением кальция сначала отделяют барий в виде хромата, затем стронций — в виде сульфата при действии сульфата аммония, в котором сульфат кальция растворим. Обычно отделение бария в ходе качественного анализа не вызывает затруднений, кальций и стронций, напротив, по классической схеме разделяются недостаточно четко. Кроме сульфата аммония, для отделения кальция от стронция можно применять сернокислый гидразин (в водных растворах распадается на ионы гидразиния, гидроксония и сульфат-ионы), а также диметилсульфат в водно-глицериновой среде 1263]. [c.14]

    Часто кальций обнаруживают по образованию смешанного ферроцианида кальция и аммония (NH4)2 a(Fe( N)6J при действии аммиака и хлорида аммония [617, 920]. Соответствующие осадки стронция и бария в отличие от соединения кальция растворимы в уксусной кислоте, поэтому реакция может применяться для открытия кальция в их присутствии (263, 301, 617]. Мешают ионы магния, взаимодействующие аналогично, и окислители, окисляющие реагент [301, 617]. Реакция применима для отделения стронция от кальция [617]. Чувствительность реакции [c.16]

    В разбавленных растворах уксусной кислоты сульфат осаждает барий и стронций, но не осаждает кальций. Это дает возможность почти полностью отделить кальций от стронция [10321. Отделение кальция хроматом основано на том, что хромат бария нерастворим в растворах уксусной кислоты в присутствии ацетата натрия, хромат стронция нерастворим в растворах аммиака, и при добавлении к исследуемому раствору этанола хромат кальция растворим в любых условиях [29]. Отделение кальция от бария хроматом используется в количественном анализе. [c.161]

    Э. А. Остроумов и Б. Н. Иванов-Эмин предлагают осаждать гидроокись бериллия слабым органическим основанием а-пиколином в присутствии хлорида аммония. В рекомендуемых авторами условиях осаждения в растворе устанавливается pH = 7. При этом происходит количественное отделение бериллия от кальция, стронция, бария, магния и щелочных металлов, а также от марганца, кобальта, никеля, цинка, образующих растворимые комплексные соединения с а-пиколином. Доп. перев.  [c.583]

    Надо хорошо понять различное поведение щелочноземельных элементов в отношении оксалата аммония. Ни один из получаемых оксалатов не является полностью нерастворимым в условиях осаждения. Оксалат стронция осаждается почти так же полно, как оксалат кальция,-но окса-лат бария осаждается очень неполно з. Если барий присутствует в количестве до 3—4 мг, то он никогда не будет найден в осадке оксалатов кальция и стронция после двукратного осаждения, а очень часто в этом осадке не обнаруживают бария, даже если он находился в больших количествах. Барий следует извлекать из соединенных фильтратов (после отделения оксалатов бывает два фильтрата, так как осаждение проводят двукратно). Если, однако, количество бария настолько велико, что только в третьем осадке его совсем не будет, то уместно провести и третье осаждение. Трехкратное осаждение следует проводить также и в присутствии большого количества магния. [c.696]

    Отделения кальция от стронция и бария [c.697]

    Отделение бария в виде хромата. Нитраты, полученные, как указано на стр. 697, или хлориды обрабатывают для отделения и определения бария хроматным методом в том его единственном варианте которым можно почти количественно отделить барий от кальция и стронция. [c.700]

    Если стронций встречается в условиях, когда можно определить ег в виде сульфата, то лучше всего осадить и взвесить стронций в этой форме. Такие условия получаются в обычном ходе анализа только после того, когда стронций отделен от бария и кальция, вместе с которыми его выделили перед этим в другой форме, например в виде оксалатов. [c.712]

    В совершенно исключительных случаях, после дву- или трехкратного осаждения кальция и стронция в виде оксалатов, барий может оказаться вместе с ними. Обычно он переходит количественно в фильтрат вместе с магнием, откуда и может быть выделен осаждением серной кислотой после удаления аммонийных солей. Прибавив при этом немного спирта, можно одновременно выделить следы стронция, если анализируемая порода была им богата. Но нельзя быть уверенным, что отделенный таким образом от магния барий представляет все количество этого элемента, содержавшееся в породе. Найденные таким путем величины почти всегда оказывались ниже истинных, вероятно потому, что в ходе анализа создаются благоприятные условия для небольших потерь бария. [c.969]

    Метод определения бария в силикатных горных породах и отделения его от кальция и стронция, описанный выше, дает наиболее удовлетворительные результаты при наименьшей затрате времени. Наша долголетняя практика показала , что если даже не предпринимать отделения следов стронция, загрязняющих осадок бария и обратно, ошибка обычно не имеет большого значения. Это обусловлено тем, что относительная ошибка даже в 25% от содержания вещества, составляющего только 0,1—0,2% породы, менее важна в сравнении с тем, что присутствие данного компонента вообще констатируется, хотя бы с приблизительной точностью. [c.970]


    Обратимся к определению бария. Его определяют после выделения V, IV и III групп катионов в отсутствие кальция и стронция непосредственным осаждением разбавленной серной кислотой. Комплексообразующие вещества, предложенные для связывания некоторых мешающих элементов (винная, щавелевая, лимонная кислоты), не получили большого практического применения. Для этих целей комплексов III превосходит все эти вещества [831. Он не только образует в слабокислых растворах с большинством катионов и со свинцом очень прочные комплексные соединения, но позволяет аналитику необычным путем—путем переосаждения сульфата бария—получить его в чистом виде после растворения в аммиачном растворе комплексона и повторного осаждения простым подкислением раствора. В присутствии комплексона можно осадить барий непосредственно без предварительного отделения остальных элементов. Метод имеет значение главным образом при обратном определении—при определении сульфата. [c.104]

    Ранее изученные нами реакции осаждения ионов бария хроматом или бихроматом калия (см. гл. HI, 22, стр. 146) в присутствии смеси уксусной кислоты и ацетата натрия, отделение карбонатов бария, стронция и кальция от Mg -ионов в присутствии смеси хлорида аммония и гидроокиси аммония (см. гл. III, 19 и 26, стр. 140 и 160) представляют собой примеры применения буферных растворов.  [c.172]

    Отделение стронция от кальция достигается с трудом. Нитрат кальция растворяется в амиловом спирте, безводном ацетоне, бутилцеллозольве смеси абсолютного спирта и эфира, в то время как нитрат стронция в этих растворителях нерастворим. Можно такл е осадить нитрат стронция из 80%-ного раствора азотной кислоты нитрат кальция остается при этом в растворе, нитраты бария и свинца осаждаются вместе с нитратом стронция [c.1015]

    В отдельных пробах раствора, оставшегося после отделения катионов бария, открывают катионы стронция (реакцией с гипсовой водой — насыщенным водным раствором сульфата кальция) и кальция (реакциями с гексацианоферратом(П) калия и с оксалатом аммония (КН4)2Сг04). [c.327]

    Остаток осадка обрабатывают последовательно порциями горячего 30%-го раствора ацетата аммония до полного растворения сульфата свинца PbS04 (отрицательная реакция с раствором хромата калия на катионы свинца РЬ В осадке остаются сульфаты катионов третьей аналитической группы, которые переводят в карбонаты обработкой раствором соды (как было описано выше в разделе 13.2.7 при характеристике отделения и открытия катионов третьей аналитической группы), растворяют в уксусной кислоте и в полученном растворе открывают катиошл кальция Са , стронция и бария Ва . как было описано в разделе [c.343]

    Широкое распространение получил экстракционный метод отделения железа (ГП) в в iдe Н[РеС14] от многих других ионов, например от кальция, стронция, бария, алюминия, редкоземельных и многих других элементов. Тетрахлоридный комплекс железа экстрагируют этилацетатом или диэтиловым эфиром. [c.267]

    Отделение. металлюв группы сернистого ам.мония от щелочных н щелочноземельных металлов производится посредством сернистого я ммония в присутствии хлористого ам.мония. Но если исследуемый ра.створ содержит фосфорную, щавелевую или много бариой кислоты, то при нейтрализации раствора вместе с металлами рассматриваемой группы выпадают в осадок также. кальций, стронций, барий и магний в виде (фосфатов, оксалатон или боратов. В присутствии фтористоводородной кислоты наблюдается в этих условиях осаждение фтористого ка.льция. [c.279]

    Некоторые схемы качественного анализа предусматривают предварительное отделение стронция и бария в виде сульфатов и качественное обнаружение кальция после его выделения в смеси с карбонатад1и других ионов двух- и трехвалентных металлов или после отделения трехвалентных катионов фосфорной кислотой и бензоатом аммония [670]. [c.14]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    Выделение стронция-9 0. В 10 л пробы вносят по 50 мг/л (в пересчете на металл) нитратных растворов носителей стронция, бария, лантана и церия и добавляют раствор хлорида кальция 20 мг/л (по кальцию). Перемешивают, нагревают до 80° С, прибавляют 10%-ный раствор карбоната натрия из расчета 580 мг/л для осаждения карбоната кальция. Воду с осадком отстаивают 2—3 ч, сливают, осадок растворяют в нескольких миллилитрах концентрированной азотной кислоты и разбавляют дистиллированной водой до объема 50—100 мл. Раствор переносят в стакан вместимостью 200—300 мл, добавляют 10 мл 0,5%-ного раствора хлорида железа (П1), нагревают до кипения и осаждают гидроксид железа (П1) аммиаком, не содержащим СО2. Осадок отделяют, промывают 2—3 раза слабым раствором аммиака и отбрасывают. Раствор и промывные воды нейтрализуют 6 н. раствором азотной кислоты, прибавляют 1 мл 6 н. раствора уксусной кислоты, 2 мл 6 н, раствора ацетата аммония, нагревают до 70—80° С и добавляют 1—2 мл 1,5 и. раствора хромата натрия. После осаждения хромата бария осадок отделяют, промывают разбавленным раствором ацетата аммония и отбрасывают. К оставшемуся раствору прибавляют хлорид железа (П1) и повторяют осаждение гидроксида железа. После этого добавляют аммиак до пожелтения раствора и насыщенный раствор карбоната аммония до полноты осаждения карбоната стронция. Выпавший осадок отстаивают 2—3 ч, проверяют полноту осаждения, центрифугируют, промывают водой, растворяют в концентрированной азотной кислоте и разбавляют дистиллированной водой до объема 50 мл. Затем замеряют объем азотнокислого раствора н отбирают 1 мл для определения химического выхода носителя стронция. После этого вносят 50 мг в пересчете на металл раствора носителя иттрия и оставляют на 6 дней для 75%-ного накопления иттрия-90. Затем осаждают свободным от углекислоты аммиаком гидроксид иттрия и отмечают время отделения иттрия-90 от стронция-90. Осадок гидроксида иттрия 2—3 раза промывают слабым раствором аммиака, подсушивают на фильтре и во взвешенном тигле прокаливают при 900° С. Осадок взвешивают, наносят на мишень и на малофоновой установке измеряют радиоактивность. [c.371]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Превосходные разделения в аналитической химии можно выполнить пользуясь в качестве элюента растворами ЭДТА [28]. Примером может служить разделение кальция, стронция, бария и радпя [6, 15]. Кальций и стронций элюируют раздельно 0,01М раствором ЭДТА при pH 7,4. Затем при pH 9 элюируют последовательно барий и радий. Аналогичные методы разделения щелочноземельных металлов применялись многими авторами [9, 13, 38, 88 89]. Этп-лендиаминтетраацетат является ценным элюентом и тогда, когда нужно щелочноземельные металлы отделить от других металлов. В этом случав также рекомендуется применять ступенчатое элюирование растворами с повышающейся величиной pH. Для химика-аналитика представляет также интерес отделение редкоземельных элементов от стронция и бария [15], разделение актиния, висмута, свинца и радия [15], а также отделение алюминия от магния [22]. Когда константы нестойкости комплексов значительно различаются, разделение удобно осуществлять методом селективного поглощения. Типичным примером может служить разделение свинца и бария [76]. [c.313]

    Выделение бария, стронция и кальция может быть осуществлено в форме сульфатов осаждением серной кислотой с добавлением равного объема этилового спирта [14]. Сульфаты отделяют и обработкой ЫагСОз переводят в карбонаты последние растворяют в слабой соляной кислоте, после чего производят осаждение хромата бария в условиях, при которых стронций и кальций остаются в растворе. Отделение стронция от преобладающего избытка кальция осуществляется пятикратным высаливанием нитрата стронция азотной кислотой ( =1,45— 1,46). Выход стронция по носителю оказывается при этом сравнительно низким и составляет 30—50%, [c.568]

    Москаленко Г. В. Отделение нитрата кальция от нитратов бария и стронция ацетоном. Тр. Сев.-Кавк. горно-металлург. ин-та, 1949, вып. 7, с. 23 27. Библ. 10 назв. [c.189]

    В фильтрате от Ш группы, обработанном, как указано на стр. 163, отделяют IV fpynny от V. Для этого руководствуются указаниями, дающимися автором настоящей книги на стр. 100,101 и 102,103. Следует лишь заметить, что в присутствии большого количества аммонийных солей может не только не выпасть часть кальция при осаждении фильтрата от III группы углекислым аммонием, но может также не подвергнуться осаждению даже весь кальций, а также барий и стронций. Поэтому до осаждения углекислым аммонием следует к 1—2сл раствора прибавить несколько капель серной кислоты. Появление осадка укажет нам на присутствие Ва" или Sr" или того и другого. К другой такой же порции раствора следует прибавить аммиака и щавелевокислого аммония в случае присзггствия кальция появится осадок. Получив положительный результат с обеими пробами или с одной из них, приступают к удалению аммонийных солей и только после этого производят систематическое отделение IV группы от V. Однако можно избежать длительной операции удаления аммонийных солей, если поступать следующим образом. Убедившись в присутствии щелочных земель, прибавляют к раствору, содержащему много аммонийных солей, серяой [c.297]


Смотреть страницы где упоминается термин Кальций, отделение от стронция бария: [c.393]    [c.198]    [c.260]    [c.162]    [c.796]    [c.600]    [c.18]    [c.372]    [c.619]    [c.599]    [c.199]   
Радиохимия и химия ядерных процессов (1960) -- [ c.568 , c.569 ]




ПОИСК





Смотрите так же термины и статьи:

Барий от кальция и стронция

Барий отделение

Барий отделение от стронция

Кальций отделение

Отделение кальция от бария

Стронций

Стронций отделение



© 2024 chem21.info Реклама на сайте