Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аниониты экспериментальные

    Теория электролитической диссоциации. Классическая Теория электролитической диссоциации была создана С. Аррениусом (1887). Она основана на представлениях о частичном и самопроизвольном распаде электролита в растворе под действием растворителя на ионы различного знака (катионы и анионы). Экспериментальной основой этой теории было установление связи (качественной и количественной) между способностью разбавленных растворов электролитов проводить электрический ток и систематическими отклонениями общих свойств этих растворов от соответствующих свойств, растворов неэлектролитов. [c.226]


    Энергия кристаллической решетки равна энергии образования одного моля кристалла из газообразных катионов и анионов. Экспериментально определить эту величину нельзя, но ее можно рассчитать, используя цикл Борна-Габера. В качестве примера рассмотрим следующую реакцию  [c.14]

    Анион Экспериментальные потоки Теоретические потоки по уравнениям работы  [c.20]

    Для проверки общности такого метода получения солей со смешанными анионами экспериментальное исследование реакций окисления проводилось для всех вбз-можных валентных переходов и структурных типов кристаллических соединений. [c.156]

    При определении коэффициентов активности растворов электролитов, например по давлению пара или из криоскопических измерений, не удается рассчитать в отдельности коэффициенты активности, относящиеся к ионам и к недиссоциированному электролиту для такого расчета необходимы данные по электропроводности или по э. д. с. Величины же активностей отдельно катионов и анионов экспериментально вообще не могут быть раздельно определены. Поэтому для оценки активности ионов в растворе вводят понятие о средней ионной акгивности  [c.101]

    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]


    Если поверхностно-активное вещество не проявляет заметно ионогенных свойств, то оно будет лучше адсорбироваться на слабо заряженных поверхностях, т. е. вблизи точки нулевого заряда, где больше поверхностное натяжение. Это связано с тем, что именно при этих условиях в результате адсорбции произойдет наибольшее уменьшение энергии Гиббса поверхностного слоя. Экспериментальные данные полностью подтверждают этот вывод (рис. И. 11). Максимум электрокапиллярной кривой в присутствии ПАВ снижается, становится менее четким, но не сдвигается ио оси потенциала. Такая закономерность позволяет использовать метод, основанный на адсорбции неионогенных ПАВ, для нахождения точки нулевого заряда. Ионогенные вещества, ионы которых значительно отличаются по поверхностной активности, могут сдвигать точку нулевого заряда в ту или иную сторону по оси потенциала. Например, анионы 0Н , ЗО , СО3 , НРО не являются поверхностно-активными на границе вода — ртуть (они сильно гидратированы и к ртути не имеют специфического сродства) и поэтому [c.52]

    Для межфазной поверхности масло — вода пе существует строгого метода определения г . Сильные электрические двойные слои возникают вследствие адсорбции анионного или катионного поверхностноактивного вещества, что доказывается явлением электрофореза или поверхностного потенциала . Однако последний плохо определим экспериментально и теоретически для поверхности М/В и, конечно, пе равен гр. Из-за отсутствия лучшего метода обычно предполагают, что -потенциал равен г1). Качественно известно, что для стабильности эмульсий требуется -потенциал (любого знака), больший 30 мв (Повис, 1914), но количественное его значение точно не установлено. Поэтому необходимо рассмотреть эту проблему детально. [c.101]

    В растворах электролитов невозможно изменять концентрацию только катионов, не меняя при этом концентрацию анионов. Поэтому экспериментальные данные позволяют определить только среднеионный (т.е. усредненный по катионам и анионам) коэффициент активности. В теории дело обстоит иначе она позволяет рассчитывать коэффициенты активности отдельных ионов. [c.234]

    На основании экспериментальных данных Кольрауш пришел к выводу, что в разбавленных растворах каждый из ионов обусловливает свою определенную долю эквивалентной проводимости. Иными словами, эквивалентная электрическая проводимость является аддитивным свойством электролита, т. е. суммой двух независимых величин, а именно суммой проводимостей катиона и аниона  [c.130]

    На основании экспериментально определенных значений оптических плотностей растворов при различных длинах волн возможно определить равновесную концентрацию анионов и кислоты. При постепенном изменении pH раствора соотношение между интенсивностями полос поглощения будет меняться. В пределе при а = 1 в спектре останется только одна полоса, соответствующая поглощению аниона А . В другом предельном случае, когда при низком значении pH диссоциация кислоты будет практически подавлена и а = О, в спектре останется полоса, принадлежащая поглощению кислоты НА. [c.75]

    При комнатной температуре и 2 = 1 значение к равно приблизительно 3-10 л]с (где с — концентрация электролита, моль/л). Отсюда в 1 н. водном растворе электролита с одновалентными катионом и анионом вычисленная емкость двойного электрического слоя равна 3-10 -80/4 = 200 мкФ/см . Емкости, определенные экспериментально, равны всего одной десятой этого значения. [c.184]

    В данном уравнении необходимо определить величины б и п. Толщина двойного слоя была вычислена А. В. Марковичем по уравнению Гуи (16). Для I—I валентного электролита (КС ) при концентрации 0,01н. толщина двойного слоя равна 3 ммк. Для получения значения числа переноса аниона в двойном электрическом слое Маркович воспользовался теми значениями, которые были нами получены экспериментально, причем за основу для расчета была принята величина, соответствующая [c.147]

    Доминируюш,ей формой суш ествования золота(1) в цианидных растворах является комплекс Ли(СК)2 — один из самых прочных комплексов золота [869]. В связи с этим можно ожидать, что экстрагируемые из цианидных растворов соединения з6лота(1) должны быть соединениями этого аниона. Экспериментальные данные подтверждают это. По сведениям, полученным при изучении механизма экстракции Аи(1) из цианидных растворов [159, 582, 583, 883], экстрагируемыми соединениями являются гидрато-сольваты недиссоциированной кислоты НАи(СК)2- Величины сольватных чисел т для ЦГН найдены равными 1—6 при [3]о = 0,3—2,3 М и для амилового спирта 1,9—4,5 при [8]о = 0,18—2,5 М. По [c.152]

    Подобным же образом можно также провести вычисление для трудно растворимых солей различных металлов с одним и тем же анионом экспериментальное определение произведений растворимости соответствующих солей в указанных трех растворителях показало, что и здесь разности значений для Zn, Сс1, РЬ, Си, Hg, Ag большей частью приблизите 1Ьно постоянны, независимо от растворителя. В нижеследующих таблицах I и II приведены численные значения q, если для иода и серебра во всех трех растворителях произвольно принять равными нулю. Отношение между таблицей I и II получается, если принять во внимание, как было далее установлено, что разности значений Ед для серебра и иода в воде равны 0,170 вольт, в метиловом спирту—0,277 вольт, в этиловом спирту — 0,347 вольт. Эти разнасти, как мы видим, далеко не одинаковы. [c.239]


    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    До недавнего времени, ввиду йт yt tвий прямых экспериментальных данных о природе и строении активных центров, не было четких представлений о механизме действия литийорганических инициаторов. Этому в значительной мере также препятствовала большая сложность изучаемых систем, связанная в первую очередь с ассоциацией литийорганических соединений и растущих полимерных цепей. Рассмотренные различными авторами механизмы анионной полимеризации диенов в большей или меньшей степени объясняли только кинетические закономерности процесса, не давая каких-либо приемлемых представлений об элементарных актах формирования звеньев полимерной цепи [87]. [c.128]

    Хорошо согласуется со всеми известными фактами предположение о том, что активными центрами являются контактные ионные пары, а порядок реакции 0,5 по катализатору объясняется их обратимой димеризацией [12, 29]. Ассоциация силанолятов и силоксандиолятов щелочных металлов в неполярных средах с образованием димеров недавно подтверждена экспериментально [51]. Представление о ионных парах как активных центрах анионной полимеризации циклосилоксанов выдвигается и другими авторами [10, 11]. [c.476]

    А л ь ф р е д В е р и с р — шясйцарский химик,. лауреат Нобелевской премии, один из создателей учения о комплексных соединениях. Научная деятельность Бернера протекала в Цюрихском университете, профессором которого он был с 1893 т. Вернер синтезировал большое число новых комплексных соединений, систематизировал ранее известные и иновь полученные комплексные соединения и разработал экспериментальные, методы доказательства их строения. Для объяснения строения и свойств комП" лексных соединений Вернер выдвинул идею о координации, т. е. о пространственном окрулсении иона металла анионами или нейтральными молекулами. Коор- динационная теория легла в основу современных представлештй о комплексных соединениях.  [c.582]

    Как уже отмечалось, реакция (Х,2) между Oj и водой может быть ускорена каталитически. Не считая карбоангидразы—энзима, присутствующего в крови, наиболее эффективными катализаторами являются анионы некоторых слабых кислот. Каталитическое действие различных анионов рассмотрено Шарма и Данквертсом Отметим, что данные Деннарда и Уиллиамса неточны, так как при обработке исходных экспериментальных измерений был допущен ряд ошибок. [c.243]

    Самоассоциация между ионными парами ведет к образованию агрегатов, например димеров, трпмеров или квадруплетов. Такая ассоциация энергетически выгодна и часто наблюдается в неполярной среде, если растворы не бесконечно разбавлены. Ассоциация становится измеримой уже при таких низких концентрациях, как 0,001 моль/л. Например, криоскопическая степень ассоциации (отношение экспериментально найденной молекулярной массы к формульной) для тиоцианата тетра-н-бутиламмония в бензоле составляет 2,5 при концентрации 0,0013 моля на 1000 г растворителя, увеличивается до 31,9 при 0,281 моля на 1000 г растворителя и снова несколько снижается при более высоких концентрациях (22,7 при 0,753 моля на 1000 г растворителя) [25]. Такая ассоциация ионных пар оказывает очень сильное влияние на экстракцию солей из водной фазы в органическую (разд. 1.3.1). Степень ассоциации зависит от катиона, аниона, растворителя и концентрации. Тримеры одновалентных ионов являются заряженными частицами и проводят электрический ток таким же образом, как и ионные пары, содержащие многовалентные ионы. [c.19]

    Флуорен алкилируется несколько труднее, поскольку он является гораздо более слабой кислотой. Как и в случае других слабых кислот, для получения хороших результатов необходимо добавлять к реакционной смеси, включающей насыщенный алкилбромид, небольшое количество ДМСО. В этих условиях при 80—100°С образуется смесь моно- и диалкилированных продуктов [357]. Алкилирование самого циклопентадиена должно проходить легко, и оно описано в литературе, но без экспериментальных подробностей [214, 360]. Однако можно предположить, что при этом образуются сложные смеси. Катализ краун-эфирами также был использован при алкилировании индена [45]. Следует подчеркнуть, что комплексующие агенты можно использовать с большим эффектом, чем ониевые соли, в очень основных средах в отсутствие воды, поскольку ониевые соли в этих условиях распадаются слишком быстро. Дитрих и Леен [359], используя азамакробициклический полиэфир крип-тофикс[2.2.2] (5) и твердый гидроксид калия/ТГФ или амид натрия/крнптофикс[2.2.2]/ТГФ, провели депротонирование соединений, имеющих очень высокие рКа [359. В последней системе были генерированы окрашенные анионы трифенилметана и дифенилметана и получены продукты их бензилирования [c.195]

    Качественно это прекрасно согласуется с экспериментальными данными [1181 и указывает на сильное отравление ионами С)- и НЛ-С1 замедляет образование олефинового комплекса (Уз), а Н+ — его разложение (г з). Анионы Вг" и I" оказывают даже еще более сильное замедляющее действие, связанное с прочностью координационной связи. При концентрации 0,1 М Рс1С12 в воде реакция (I) завершается примерно за 1 ч при 20° С и за 10 мин при 50° С. [c.168]

    Увеличение удельного расхода регенерирующего вещества (т. е. количества реагента на 1 т-град поглощенных ионитам катионов или анионов) повышает обменную способность ионита. Однако, по имеющимся экспериментальным и эксплоатацион-ным данным, повышение обменной способности ионитов в результате увеличения удельных расходов регерерирующих веществ в технико-экономическом отношении не оправдывается, так как оно связано с перерасходом сравнительно дорогостоящих кислот и щелочей. [c.21]

    V При производстве этил-, пропил- или додецилбензолов редакционную массу алкилирования бензола олефинами в присутствии хлорида алюминия очищают от катализатора водно-щелочной обработкой при температуре 10—20°С. Многократная промывка дает значительный объем сточных вод. Так, при производстве 1 т алкилбензола получается 10—12 сточных вод.- Чтобы уменьшить количество последних и полностью извлечь катализатор из реакционной массы процесса, предложено использовать ионообменные смолы/ КУ-2 в Н+ и натриевой формах, анионит АВ-Г6-ТС в ОН- форме [248], анионообменные смолы АВ-17, катионообменные ткани в Н+форме, анионо-обменные ткани в ОН-, РО= б-формах [249]. [ Эти материалы являются эффективными ионообменными сорбентами при очистке алкилатов от хлоридов алюминия. При времени контакта 10—12 мин, температуре 60—70°С коэффициент. извлечения хлорида алюминия практически составляет 100% (в статичес ких условиях). Экспериментальные данные, полученные в динамических условиях, показали, что максимальная объемная скорость подачи алкилата не должна превышать, 9—10 м /м ионита, так как возможен механический унос последнего. Применение ионообменных тканей и нетканых материалов позволяют в 2—3 раза повысить объемные скорости потока при 100%-ном извлечении. [c.261]

    Уравнения (11.76) и (11.77) называют уравнениями электрокапиллярной кривой. Из них следует, что поверхностное натяи<ение при условии постоянства емкости двойного электрического слоя изменяется в соответствии с уравнением параболы (рис. 11.8). Вершина параболы (рис. И. 8) отвечает максимальному поверхностному натяжению Омакс, а сама парабола симметрична, что по физическому смыслу означает предположение равного сродства катионов и анионов, выступающих в роли противоионов, к поверхности, имеющей соответственно отрицательный и положительный потенциал. Уменьшение полол<ительного потенциала, как и отрицательного, ведет к увеличению поверхностного натяжения. Однако в реальных системах емкость двойного электрического слоя несколько изменяется с изменением потенциала и поэтому экспериментальные электрокапиллярные кривые обычно не являются симметричными. [c.49]

    В третьей статье ван ден Темпель (1953с) приводит экспериментальные данные, полученные путем микроскопического анализа эмульсий масла с плотностью 1,01 г/сл в растворах ПАВ. Оказалось, что эти эмульсии являются умеренно стабильными. Кинетика чистой флокуляции в начальной стадии следовала приблизительно ожидаемой зависимости 1/с линейна от времени т. При добавлении солей двухвалентных катионов увеличение скоростей более эффективно, чем при добавлении одновалентных катионов, анионы же не оказывают влияния. Хотя этот вывод и ожидается из теории двойного слоя, абсолютное значение Kq найдено высоким 10 30 10 сж /сек-, т. е. несмотря на присутствие стабилизатора оно иногда превышало теоретическое значение для быстрой коагуляции. [c.115]

    В кристаллах с дефицитом анионов анионные вакансии могут занимать электроны и тем самым компенсировать избыток положительного заряда. Обсудим следующий экспериментальный факт. При нагревании в парах иатрия кристаллы Na I становятся желтого цвета. Это можно объяснить следующим образом. При растворении в кристалле Na I атомы натрия ионизируются  [c.106]

    Энергия кристаллической решетки известна для многих ионных с(]единений теплоту растворения веществ можно определить экспериментально. При расчете но указанному ур авиению находят суммарное значение энтальпии гидратации катиона и аниона. Энтальпию гидратации данного иона определяют по известной энтальпии гидратации иона противоположного знака. Энтальпия гидратации зависит от заряда и размера гидратируемого иона. В ряду ионов с однотипной электронной конфигура цией энтальпия гидрагации нозрастает с уменьшением размера иона, папример (рис. 77)  [c.122]

    С этих позиций можно объяснить следующие экспериментальные факты в присутствии А1Вгз метилбромид реагируете бензолом в 200 раз быстрее, чем метилиодид в присутствии ВРз гексилфторид алкилирует бензол, а гексилбромид — нет. Последний факт может быть связан также с большей устойчивостью аниона Вр4 по сравнению с ВРзВг".  [c.382]

    В практикуме по осциллографической полярографии кратко рассматриваются теоретические основы метода вольтамперной осциллополярографии, критерии определения механизмов электродных процессов, аппаратурное оформление метода и взаимосвязь отдельных узлов осциллополярографов. Описана последовательность операций получения и обработки осциллополярограмМ определения ионов металлов и их смесей, анионов, органических веществ, восстанавливающихся, окисляющихся или адсорбирующихся на электроде, определение микроколичеств металлов, приемы обработки экспериментальных данных. [c.208]

    Скорость реакции, измеренная по выделению аниона R0", равна скорости образования промежуточного циклического ангидрида. Таким образом, здесь идет циклизация. Сопоставление экспериментальных данных для реакции (3.2) (табл. 16) с кинетическими показателями реакции лактонизации (см. табл. 13) показывает, что эти реакционные системы схожи в них приблизительно одинаковы как характер изменения структуры реагентов, так и величина наблюдаемых эффектов. Очевидно, одинаковы должны быть и причины ускорения реакций [27]. Сравнение констант скоростей внутримолекулярного процесса, приведенных в табл. 16, с соответствующими величинами для межмолекулярной реакции осложнено тем, что гидролиз замещенных фенил-ацетатов под действием ацетат-иона скорее всего идет по механизму общеосиовного катализа, а не путем нуклеофильной атаки с промежу- [c.82]

    Оценка имеющегося экспериментального материала показывает, что координационные свойства растворителя можно количественно описать и предсказать с определенной степенью точности на основе донорных и акцепторных чисел. Это касается прежде всего ряда свойств, связанных с сольватацией растворенных частиц. Если доминируют нуклеофильные свойства растворителя (большое )лг, малое Лдг), то достаточно учитывать донорные числа. Так, при полярографическом осаждении катионов из таких растворителей установлена связь между потенциалом полуволны окислительно-восстановительной системы, например Ма++е Ка, и донорным числом ДПЭ-растворителя, что позволяет заранее оценить неизвестное значение потенциала полуволны при заданном донорнрм числе. Потенциал полуволны оказывается тем более отрицательным, чем прочнее сольватная оболочка, т. е. чем больше донорное число Оц. В то же время в случае преобладания электрофильных свойств. растворителя можно ограничиться рассмотрением акцепторных чисел. Они особенно удобны для выявления различий сольвати-рующей способности растворителей при взаимодействии с анионами. Если же одновременно проявляются ДПЭ- и АПЭ-свой- ства растворителя, то необходимо привлекать оба числа — дозорное и акцепторное, так как наиболее полная характеристика координационной способности растворителя становится возможной лишь в рамках модели двух параметров. [c.448]

    Опыт показывает, что мембраны из целлюлозы и пергамента, а также керамические диафрагмы в растворах электролитов приобретают отрицательный заряд. Некоторые полупроницаемые перегородки, например из дубленой желатины, наоборот, приобретают в растворах электролитов положительный заряд. Экспериментально установлено, что при отрицательном заряде диафрагмы с уменьшением диаметра пор перенос электричества анионами уменьшается и в пределе становится равным нулю. В этих условиях электричество переносится только с помощью катионов. Если же диафрагма заряжена положительно, наблюдается обратное явление. Следует отметить, что при одном и том же диаметре капилляров изменение чисел переноса тем больше, чем выше электрокинетический потедшиал стенок капил-ляров. - + [c.257]


Смотреть страницы где упоминается термин Аниониты экспериментальные: [c.313]    [c.372]    [c.274]    [c.452]    [c.28]    [c.197]    [c.155]    [c.248]    [c.256]    [c.148]    [c.40]    [c.84]    [c.116]    [c.191]    [c.160]   
Ионообменные высокомолекулярные соединения (1960) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Методика экспериментальных исследований кинетики анионной полимеризации



© 2024 chem21.info Реклама на сайте