Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация и сжимаемость

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]


    Метод Бернала и Фаулера и его модификации. Другое направление теоретических работ по энергиям гидратации начинается с исследований Бернала и Фаулера (1933), посвященных природе воды и льда. Как известно, вода обладает рядом аномалии. Ее плотность увеличивается при плавлении и продолжает расти в интервале температур от О до +4° С. При +4° С плотность максимальна и примерно на 10% превышает плотность льда при температ ре плавления. Теплоемкость воды минимальна при +34,5° С в интервале от О до 45° С сжимаемость воды уменьшается с ростом температуры и т. д. [c.60]

    Число гидратации можно также получить, измеряя сжимаемость воды и раствора. Коэффициент сжатия для первого гидратного слоя должен быть меньше, чем для остального растворителя. Определив [c.66]

    Другим примером использования метода молекулярного щупа является исследование гидратации фосфатной группы нуклеозидов и нуклеотидов [149, 163]. В качестве гидратационной характеристики использовался эффект ионизации этой группы, наблюдаемый по скорости распространения ультразвука в растворе (изменения скорости ультразвука отражают изменения объема и сжимаемости при ионизации молекулы). На рис. 3.6 представлены схематические изображения исследо- [c.49]

    На рис. 3.8 показана температурная зависимость парциальной сжимаемости сахарозы как пример поведения молекул, содержащих большое число сближенных друг с другом атомных групп [185]. Одиночные полярные группы качественно отличаются от сближенных групп по действию на свойства воды. При этом под одиночной понимается атомная группа, удаленная от других полярных атомных групп на расстояние не менее четырех СНг-групп между ними. Термодинамические эффекты сближения полярных групп известны давно (см., например, [151, 152, 168]). Они учитываются при аддитивных расчетах парциального объема, теплоемкости, свободной энергии и энтальпии гидратации [168]. Наиболее ярко эти различия проявляются при изучении сжимаемости. В работе [161] проведен аддитивный анализ парциальной адиабатической сжимаемости аминокислот и спиртов и показано, что вклад в сжимаемость от одиночной полярной группы, во-первых, положителен и, во-вторых, его температурная зависимость имеет отрицательную первую и положительную вторую производную, — т. е. все названные величины противоположны по знаку тем же величинам для сближенных атомных групп (рис. 3.9). [c.55]


    Число первичной гидратации электролитов, т. е. число молекул воды в первичной оболочке, может быть определено, например, методом измерения сжимаемости раствора. В нем предполагается, что молекулы воды, находящиеся в первичной гидратной оболочке, максимально сжаты под действием сильного электрического поля иона (явление электрострикции). Поэтому при увеличении давления сжимается только остальная часть растворителя (вторичная оболочка и свободный растворитель). Изменение коэффициента сжимаемости раствора по сравнению с чистым растворителем позволяет определить долю воды, не вошедшей в состав первичной гидратной оболочки электролита. [c.163]

    В работе [57] дан анализ информативности различных термодинамических свойств и доказывается, что из всех экспериментально определяемых объемных характеристик наиболее полно отражают стереоспецифические эффекты гидратации углеводов кажущиеся молярные сжимаемости изоэнтропийные и изотермические <с ,(7),ф,2- В пользу этого заключения авторы [57] приводят следующие аргументы величины ,ф, 2 не содержат собственной сжимаемости растворенного вег ества и могут быть измерены с более высокой точностью, чем та, которая достигается при определении кажущегося молярного объема и предполагаемой молярной расширяемости. Их определение, несомненно, представляет интерес, так как эти величины отражают изменения объема гидратной оболочки под влиянием давления в изотермических или адиабатических условиях. Они позволяют достаточно адекватно судить об ажурности структуры растворителя в гидратных оболочках и относительной прочности межмолекулярных связей в окружении и в объеме. [c.97]

    Это подтверждается имеющимися в литературе сведениями об ультразвуковых исследованиях водных растворов мочевины [49, 53, 107-110], а также влияния последней на процессы ионной гидратации [51, 111, 112]. В то же время в большинстве из указанных сообщений результаты определений i/j и изоэнтропийной сжимаемости растворов относятся лишь к 298,15 К. Исключение составляет, пожалуй, только работа [ПО], в которой, наряду с данными о сжимаемости водных растворов мочевины в узком интервале температур (303,15-318,15 К), приведены результаты моделирования параметров гидратного комплекса мочевина-вода. При этом обнаруженные авторами [ПО] закономерности, в частности, тенденция к резкому уменьшению значений гидратного числа и в растворах мочевины с ростом температуры, вызывают сомнения, поскольку противоречат многочисленным результатам экспериментальных исследований и модельных расчетов, имеющихся, например, в работах [29, 83]. [c.147]

    Как видно из рис. 3.11, с увеличением содержания мочевины в растворе абсолютные значения 5 возрастают при высоких температурах и уменьшаются в интервале 278 298 К. Особенно заметно влияние добавок растворенного вещества на сжимаемость системы проявляется в области т.м.п. изотопомеров воды, что прежде всего свидетельствует о сходстве воздействий температуры и концентрации мочевины на структуру гидратного комплекса. Однако, если в первом случае вследствие разрушения исходной структуры воды гидратация мочевины усиливается, то во втором, очевидно, ослабляется из-за уменьшения молярной доли "свободного" растворителя и растущего перекрывания ко-сфер гидратации. Вместе с тем закономерности изменения изотопного эффекта в ф 2 температуры в пределах исследованной области концентраций в целом не отличаются от таковых при бесконечном разведении, т.е. соответствуют приведенной на рис. 3.11 зависимости Д А 2 (Т). [c.156]

    Результаты проведенной оценки п , К и параметров уравнения (3.31) представлены в табл. 3.13. Из данных таблицы следует, что значения щ и сжимаемости гидратных сфер в случае ОгО выше. При увеличении концентрации изотопомера мочевины в результате растущего перекрывания ко-сфер гидратации гидратные числа падают. В тяжелой воде этот эффект проявляется сильнее, чем в Н2О. Это под- [c.157]

    ПОДВИЖНОСТИ, сжимаемости и др. Однако во многих случаях нет данных для изолированных ионов, известны лишь числа гидратации для некоторых солей. Для того чтобы получить непосредственные данные для отдельных ионов, используют методы рентгенографического анализа, а также данные по кинетике обмена, полученные методом ЯМР (табл. 4.29). [c.213]

    Водные растворы сахаров титруют этанолом до полного осаждения. Предполагается, что добавление этого осадителя приводит к количественной дегидратации при полном осаждении. Степень гидратации определяют, исходя из объема, концентрации и сжимаемости исходного водного раствора и водно-спиртового раствора при полном осаждении [164]. [c.584]


    Как правило, числа сольватации, полученные различными методами, плохо согласуются. Плохая согласованность, не говоря уже об экспериментальных трудностях, отражает различия в моделях, используемых для определения чисел сольватации, а также в основных допущениях, принятых в этих моделях. К сожалению, модели с двумя состояниями растворителя являются очень грубыми приближениями. Даже для сильно гидратированных ионов с относительно несжимаемой первой гидратной оболочкой воздействие на более удаленные молекулы воды не сводится только к одной электрострикции. Сильно гидратированный ион, такой, как влияет на достаточно удаленные молекулы воды и вызывает некоторое возмущение внешней гидратной оболочки, возможно даже усиливает сжимаемость этой части растворителя. На современном этапе исследования структуры растворов ценность дальнейшего изучения чисел гидратации находится под большим вопросом, поскольку они сложным образом зависят от различных взаимодействий типа ион - растворитель, для которых пока не имеется достаточно адекватной модели. [c.444]

    В последние годы ультраакустические измерения часто находят применение при исследовании растворов. Одним из интересных направлений в использовании акустических измерений при изучении растворов является определение на основании данных о скоростях звука в растворах гидратации ионов [1—7]. Физическое основание для подобных расчетов состоит в существенном уменьшении сжимаемости гидратной оболочки под действием электрического поля иона по сравнению со сжимаемостью чистой воды. Простейшим является предположение о полной несжимаемости гиДратной оболочки [1], которое, однако, физически необосновано и приводит к трудно объяснимым значениям гидратации. [c.72]

    Сжимаемость гидратных оболочек можно учитывать различными способами [5, 7]. С физико-химической точки зрения интересно исследовать распространение звука в насыщенных растворах с различной гидратацией твердой фазы, считая, что при равновесии гидратация в растворе и в твердой фазе одинакова. Гидратированные комплексы можно рассматривать как особого рода молекулы, характеризуемые соответствующей скоростью звука и сжимаемостью. В этом случае, зная скорость звука в чистом растворителе и растворе, а также гидратацию ионов можно оценить сжимаемость гидратных оболочек и физико-химически охарактеризовать их [7]. [c.72]

    S.2.4.4. Влияние гидратации на сжимаемость растворов и поглощение ими ультразвука [c.556]

    В работе [149] измерялись также объемные эффекты ионизации и изменения сжимаемости. Таким образом, взаимовлияние атомных групп нуклеотидов и нуклеозидов на гидратацию проявляется на расстояниях 0,6—0,8 нм между вандерваальсо-выми поверхностями групп, что соответствует двум-трем слоям молекул воды, т. е. менее чем двум слоям в гидратной оболочке. [c.50]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают газ-восстановитель при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и па силикагеле. Для восстановления соединений платины используют аммиачный раствор формальдегида [19 ]. При приготовлении платино-силикагелевого и аналогичных катализаторов надо иметь в виду, что неносредственная пропитка геля раствором часто приводит к растрескиванию геля. Причина этого, вероятно, кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникаюнщм во время ускоренной дегидратации, или в более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой, пропуская через него сильно увлажненный воздух [16]. [c.184]

    Однако представление о каком-то особом сродстве полимеров к растворителям не имеет достаточных оснований. Еще в 1932 г. Маринеско, определяя количество воды, энергетически связываемой крахмалом, путем сравнения значений диэлектрической проницаемости раствора со значениями диэлектрических проницаемостей его компонентов получил данные, указывающие, что это количество воды незначительно и приблизительно соответствует образованию мономолекулярного слоя. А. В. Думанский, а также С. М. Липатов в результате калориметрических исследований пришли к такому же выводу Наконец, к аналогичным выводам прищел и А. Г. Пасынский, определявший сольватацию по сжимаемой части растворителя. Этот метод основан на том, что в сольватной оболочке растворитель находится под большим внутренним давлением сжимаемость он определял по скорости распространения ультразвука в растворах. Ниже приведены обобщенные результаты исследований А. Г. Пасынского по гидратации различных полярных групп ряда органических соединений  [c.433]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    Вместе с тем отрицательный вклад в сжимаемость водного раствора могут давать весьма различающиеся по природе взаимодействия. Такой эффект вызывается как гидрофобной гидратацией или электро-стрикцией в ионных растворах [51], так и гидрофильной гидратацией неэлектролитов (например, сахаров [120, 121]), образующих с водой непрерывную сетку Н-связей. [c.153]

    Kf(S).2 становятся положительными. Для объяснения наблюдаемой из данных табл. 3.12 инверсии знаков численных значений 2 можно назвать, как минимум, две возможные причины. Во-первых, с ростом температуры гидратация мочевины ослабляется и происходит разрыхление гидратного окружения. Во-вторых, с ростом температуры темп уменьшения сжимаемости воды in bulk превалирует над изменениями сжимаемости растворителя вблизи молекул мочевины. В разделе 3.2.2 и работах [28, 83, 91] нами было установлено, то при повышении температуры гидратация мочевины усиливается. По всей вероятности, более реальной является вторая из названных причин, и [c.153]

    Полученные выводы могут быть дополнены результатами анализа представленных на рис. 3.11 концентрационных зависимостей кажущейся молярной изоэнтропийной сжимаемости разбавленных растворов мочевины в Н2О и дейтеромочевины в D2O. Согласно выводам [106], для низкомолекулярных Н-связанных растворенных веществ кажущаяся сжимаемость может рассматриваться как мера их гидратации. Для вычисления величин К ф 2 использовалось основанное на уравнении (3,22) выражение  [c.155]

    Отрицательные при низких температурах избыточные молярные изоэнтропийные сжимаемости системы вода-мочевина и изотопные эффекты в <5 (рис. 3.13) свидетельствуют о доминирующей роли эффекта разрушения структуры воды (предположительно в области NH,r<, j-rpynn). С ростом температуры вследствие нарушения локального порядка в сетке Н(В)-связей растворителя структурная основа отрицательной гидратации исчезает, и при Т 300 К определяющим становятся эффекты стабилизации структуры воды. Данный вывод подтверждается инверсией знака (рис. 3.13) и (рис. 3.4), [c.160]

    Трудность задачи при оценке гидратации ионов начинается за пределами коллоидной химии. Как известно, исследование свойств растворов (чисел переноса, сжимаемости, высаливания и др.) приводит к существенно неодинаковым значениям чисел гидратации. В растворе один ион натрия связывает по Реми [73] 66 молекул воды, по Пасынскому [74] — 6—7 молекул, по Дармуа [75] — 1 молекулу. Различия чисел гидратации ионов еще более значительны (от 4 до 160). Эти расхождения объясняются не столько особенностями методики измерений, сколько зависимостью гидратации от условий эксперимента [76]. [c.147]

    Для получения металлических катализаторов на носителях требуется восстановление окислов или солей газом (водородом, парами спирта) либо восстанавливающим раствором. В первом случае через катализатор, предварительно прокаленный для перевода солей в окислы, пропускают восстанавливающий газ при повышенной температуре. Очень часто процесс восстановления ведут непосредственно в реакторе. Примером металлических катализаторов на носителе, восстанавливаемых из солей растворами, являются платиновые катализаторы на окиси алюминия и на силикагеле. Для восстановления соединений пластины используют аммиачный раствор формальдегида [49]. При приготовлении платипо-силикагелевого и аналогичных катализаторов надо иметь в виду, что непосредственная пропитка геля раствором может привести и часто приводит к растрескиванию геля. Причина этого кроется в возникновении при быстрой гидратации внутренних напряжений в геле, аналогичных возникающим во время ускоренной дегидратации, а возможно и более простом эффекте за счет давления сжимаемого в капиллярах зерна воздуха. Для устранения растрескивания гель перед пропиткой насыщают водой пропусканием через него сильно увлажненного воздуха [46]. Вторым существенным моментом приготовления катализатора являются условия восстановления. Чтобы соль платины не вымывалась в момент восстановления раствором формалина, пропитанный раствором соли носитель надо высушить и затем всыпать в заранее доведенный до нужной температуры раствор восстановителя. [c.330]

    Характер гидратации ионов влияет на основные свойства водных растворов — их сжимаемость и плотность, коэффициент диффузии растворенных веществ, давление пара, электропроводность, температуры кипения и замерзания, растворяющую способность, ИК-спектры и химические сдвиги. В исследованиях процессов, связанных с магнитной обработкой, рассматривают ее влияние на скорость ультразвука и ширину линий протонномагнитного резонанса. [c.14]

    В. С. Духанин и Н. Г. Ключников для установления влияния магнитной обработки на степень гидратации ионов использовали ультразвуковой метод определения гидратных чисел ионов (вероятности нахождения среднего числа постоянно присутствующих в данных условиях молекул воды вблизи иона). Хотя такое определение и является некоторым упрощением, но в первом приближении по гидратным числам можно судить о степени гидратации ионов. Этот метод основан на определении степени адиабатической сжимаемости растворов по скорости ультразвука [19, с. 70—73] (метод А. М. Па-сынского). Степень адиабатической сжимаемости в значительной мере зависит от изменения (даже незначительного) интенсивности ионных, молекулярных и ионномолекулярных взаимодействий. Принимается, что вода в гидратных оболочках сжимается меньше, чем в объеме. Используя ультразвуковой анализатор скорости типа [c.27]

    Не предвосхищая окончательного решения этого сложного вопроса, связанного с разработкой общей теории теплоемкостей растворов электролитов, мы полагаем, что для нахождения донолнитель-ного критерия близости значений п. м. теплоемкостех пары ионов полезно обратиться к п. м. объемам ионов в растворе. Как известно, существует тесная связь между теплоемкостями, с одной стороны, и плотностями, коэффициентами сжимаемости и расширения растворов — с другой (см. нанример, В. К. Семенченко [26]), что несомненно указывает на общность лежащих в основе этих свойств явлений. Как уже указывалось (стр. 200), Фаянс и Джонсон [27], весьма убедительно показали, что кажущиеся объемы ионов КН4 и СГ равны между собой и равны объему моля воды (18,0 см г-мол). Из трех упомянутых пар ионов с близкими эффективными радиусами и теплотами гидратации только НН и СГ оказываются близкими и по объемным характеристикам в растворе. Поэтому мы решили избрать Л"Н4С1 как основу для разделения С между ионами. Разумеется, и этот путь разделения условен, но в его пользу можно привести больше аргументов, чем в пользу предложенных остальных. [c.223]

    Сольватацией называется такое взаимодействие растворенного вещества с растворителем, которое приводит к более низкой активности растворителя вблизи частиц растворенного вещества по сравнению с чистым растворителем. В случае водных растворов сольватация называется гидратацией. Гидратация ионов обусловлена ориентацией дипольных молекул воды в электрическом поле иона, а гидратация полярных групп — в молекулах неэлектролитов и полимеров— ориентацией молекул воды в результате взаимодействия диполей и образования водородных связей. В гидратном слое молекулы воды располагаются более упорядоченным образом, но остаются химически неизмененными, чем гидратация отличается от химического соединения с водой окислов металлов и ангидридов кислот. Благодаря постепенному падению энергии связи растворенного вещества с растворителем (по мере удаления от молекулы растворенного вещества), сольватный слой имеет несколько диффузный характер, но в основном энергия взаимодействия и наибольшее падение активности растворителя сосредоточены в первом молекулярном слое. Растворитель в сольватной оболочке обладает, меньшей упругостью пара, меньшей растворяющей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т.,д. изменение любого из этих свойств раствора может быть использовано для определения величины сольватации. Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью например, Каргин и Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя на одну полярную группу — ОМОг полимера (табл. 15). Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания (см. стр. 78), в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым [c.173]

    Явления переноса в растворах электролита тесно связаны с взаимодействием молекул и ионов. Соответствующие соотношения и связи сложны и многообразны, и их можно выразить посредство1м различных сил. Тем не менее взаимодействие между частицами растворов электролита и явления, вызванные ими, можно классифицировать, разделяя их на две основные группы разной природы. В одной из групп преобладающими силами являются электростатическое притяжение и отталкивание между электрическими зарядами ионов, т. е. кулоновские силы. Эти силы главным образом видоизменяют пространственное распределение растворенных ионов и уменьшают ионную подвижность. Теории, рассматривающие это явление, обычно объединяются под названием электростатическая теория сильных электролитов. В другой группе явлений рассматривается взаимодействие между ионами и молекулами растворителя. С одной стороны, электрическое или какое-либо другое атомное поле ионов нарушает или разрушает структуру воды (или вообще структуру растворителя). С другой стороны, оно связывает молекулы растворителя с ионами более или менее упорядоченными, но обычно не ковалентными связями. Эти явления, называемые сольватацией или в случае воды гидратацией, очень сложны. Однако общее для них состоит в том, что некоторые свойства растворителя, главным образом его структура и, следовательно, его энтальпия, энтропия, мольный объем, сжимаемость и подвижность молекул, изменяются в присутствии ионов. Подвижность молекул воды играет очень важную роль в явлениях переноса, и ионные поля влияют на нее в двух противоположных направлениях подвижность молекул воды возрастает из-за разрушения решетчатой упорядоченной структуры воды и уменьшается под действием упрочняющего структуру ион-дипольного взаимодействия, а также и других вандерваальсовых сил. Если результирующая сила, зависящая от относительной величины этих двух типов влияний, уменьшает подвижность молекул воды, то имеет место положительная гидратация (или, коротко, гидратация), если же результирую- [c.462]


Смотреть страницы где упоминается термин Гидратация и сжимаемость: [c.395]    [c.47]    [c.51]    [c.60]    [c.28]    [c.47]    [c.51]    [c.60]    [c.173]    [c.174]    [c.174]    [c.263]    [c.376]    [c.539]   
Явления переноса в водных растворах (1976) -- [ c.556 ]




ПОИСК





Смотрите так же термины и статьи:

Сжимаемость



© 2025 chem21.info Реклама на сайте