Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глюкоза образование из аминокислот

    Следует отметить, что, если первый этап аэробного окисления углеводов — гликолиз является специфическим процессом катаболизма глюкозы, то два последующие — окислительное декарбоксилирование пирувата и ЦТК относятся к общим путям катаболизма (ОПК). После образования пирувата (Сз фрагмент) и ацетил-КоА (С2-фрагмент), образующихся при распаде не только глюкозы, но и липидов и аминокислот, пути окисления этих веществ до конечных продуктов происходят одинаково по механизму реакций ОПК. [c.261]


    При поедании животными крахмал, а в некоторых случаях также целлюлоза разрушаются, давая снова исходную (+)-глюкозу. Последняя с током крови переносится в печень и там превращается в гликоген, или животный крахмал в случае необходимости гликоген снова может быть разрушен до (+)-глюкозы. (-Ь)-Глюкоза переносится током крови в ткани, где она окисляется в конце концов в двуокись углерода и воду с выделением энергии, полученной первоначально с солнечным светом. Некоторое количество (- -)-глю-козы превращается в жиры, а некоторое реагирует с азотсодержащими соединениями с образованием аминокислот, которые, соединяясь друг с другом, дают белки, являющиеся субстратом всех известных нам форм жизни. [c.931]

    Метаболиты, образующиеся из углеродных скелетов аминокислот, либо непосредственно включаются в цикл трикарбоновых кислот, либо превращаются в пируват и через ацетил-КоА деградируют до образования конечных продуктов — Oj и HjO. В зависимости от потребностей организма безазотистые метаболиты могут включаться в синтез глюкозы (гликогенные аминокислоты) либо в синтез высших жирных кислот (кетогенные аминокислоты). [c.378]

    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]


    При инсулиновой недостаточности помимо нарушений углеводного обмена наступают расстройства жирового и белкового обмена нарушается образование жирных кислот (из глюкозы) и биосинтез белков, усиливается образование глюкозы из аминокислот. Создается впечатление, что при инсулиновой недостаточности для проникновения глюкозы в ткани нужны более высокие, чем в норме, ее концентрации в крови, и чтобы все же обеспечить ее поступление в ткани, организм разными путями поднимает концентрацию глюкозы. [c.204]

    В основе представления об активном транспорте через мембрану лежит тот факт, что удаление какого-то одного вещества из клетки является движущей силой активного переноса других веществ. Так, активный перенос ионов Ма+ из клетки ( натриевый насос ) приводит к образованию градиента концентрации этих ионов, направленного внутрь клетки, который и обусловливает активный перенос ионов калия, глюкозы и аминокислот внутрь клетки. Если удаление ионов N3+ из клетки не компенсируется поступлением внутрь других ионов, по-видимому, происходит возникновение градиента электрического потенциала ( электро-генный насос ). Предполагают, что этот тип натриевого насоса является первичным механизмом при возникновении трансмембранного потенциала в мышечных клетках (обеспечение действия кальциевого насоса ) (см. стр. 430). Необходимо отметить, что все системы переноса через мембрану работают за счет энергии АТФ или других носителей энергии. [c.431]

    Изучено превращение 2,4-Д и ее аналогов и гомологов в различных вицах растений [12, 79, 101, 163, 188—195]. Установлено, что в растениях протекают процессы гидроксилирование ароматического ядра, расщепление эфирной связи, деструкция ароматического ядра, образование соединений с глюкозой и аминокислотами. Отмечается, что в различных видах растений указанные процессы протекают с различной скоростью, но все же достаточно быстро [192, 194]. [c.87]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]

    Этим и объясняется, например, что поступление в клетку Р останавливается при прибавлении флоризина, который ингибирует образование эфиров глюкозы. Поглощение аминокислот может быть подавлено пенициллином. [c.481]

    Втор 1Я важная функция белков — транспорт веществ. У одноклеточных это в основном транспорт через мембрану. Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время фосфолипидная мембрана непроницаема для таки.х важнейших компонентов, как аминокислоты, сахара, ионы щелочных металлов. Их проникновение внутрь клетки из окружающей среды происходит при участии специальных транспортных белков, вмонтированных в мембрану. Наприме 5, у многих бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара — лактозы (6). Последняя представляет собой дисахарид, образованный молекулами глюкозы и ее изомера галактозы  [c.35]

    Образование глюкозы из аминокислот стимулирует гормон кортизол, который индуцирует синтез ферментов глюконеогенеза в печени. [c.243]

    Биохимические функции. Глюкокортикоиды стимулируют катаболические процессы в организме, преимущественно в мышечной и жировой тканях. Новосинтезированные гормоны быстро секретируются в кровь и связываются со специфическим белком — транскортином. Образованный макромолеку-лярный комплекс переносится к клеткам-мишеням, где происходит его диссоциация и реализация действия гормонов. Глюкокортикоиды усиливают распад белков, повышают содержание аминокислот в крови и аминного азота в моче. Данные гормоны ингибируют синтез нуклеиновых кислот во всех тканях, кроме печени. Их действие на углеводный обмен проявляется прежде всего в увеличении глюкозы в крови за счет активации глюконеогенеза в печени. В липидном обмене глюкокортикоиды стимулируют интенсификацию липолиза, а также ингибируют синтез жирных кислот в печени. [c.159]


    Четким симптомом диабета служит высокая концентрация глюкозы в крови, содержание которой может достигать 8— 60 мМ . Очевидно, что прекращение процесса использования глюкозы вызвано выходом глюкозы из-под контроля, осуществляемого по принципу обратной связи. В результате процесс глюконеогенеза становится более интенсивным, что в свою очередь приводит к усиленному расщеплению белков и аминокислот. Запасы гликогена в печени истощаются, и в моче обнаруживается избыток азота, образующегося в результате распада белков. Накопление продуктов расщепления жирных кислот приводит к избыточному образованию кетоновых тел (стр. 515), а увеличение объема мочи сопровождается обезвоживанием тканей. [c.505]

    Мет — Асп — Тре — ОН (мол. м. 3485 букв, обозначения см, в ст. а-Аминокислоты). Для сохранения биол, активности Г. необходима структурная целостность его молекулы. Секретируется а-клетками островков поджелудочной железы, В-во, подобное Г,, вырабатывается также в слизистой оболочке кишечника. Г, участвует в регуляции углеводного обмена, является физиол, антагонистом инсулина. Усиливает распад и тормозит синтез гликогена в печени, стимулирует образование глюкозы из аминокислот и секрецию инсулина, вызывает распад жиров. При введении в организм повышает уровень сахара в крови, [c.139]

    Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикиназы —ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредованно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существуют и различия в физиологическом действии в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные М-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот. [c.272]

    Если число моносахаридов, участвующих в образовании природных полисахаридов, очень ограничено, более того, важнейшие полисахариды, такие, как крахмал, целлюлоза и гликоген, построены исключительно из одного моносахарида, )-глюкозы, то аминокислот в объектах живой природы встречается более 70, но только 22 из них играют жизненно важнзто роль Все они относятся к а-аминокислотам Х-ряда, кроме глицина, и представлены в таблице 25-1 [c.863]

    В жировой ткани уменьшается утилизация глюкозы и снижается ингибирующее действие инсулина на липолиз, жир мобилизуется в виде свободных жирных кислот и глицерола. Свободные жирные кислоты переносятся в другие ткани, где они либо окисляются, либо эстерифицируются. Глицерол после активации (превращения в глицерол-З-фосфат) поступает в углеводный пул (в основном в печени и почках). Во время перехода от сытого состояния к голоданию эндогенное образование глюкозы (из аминокислот и глицерола) отстает от ее использования и окисления, запасы гликогена в печени истощаются и концентрация глюкозы в крови падает. Мобилизация жира возрастает в течение нескольких часов, затем содержание свободных жирных кислот в плазме и глюкозы в крови стабилизируется на уровне, характерном для состояния голодания (0,7 —0,8 мкмоль мл и 60—70 мг/100 мл соответственно). Можно полагать, что при этом уровне глюкозы в крови животного ее поступление в ткани обеспечивает потребности утилизации и окисления. Компенсаторное увеличение окисления жирных кислот и ке тоновых тел позволяет снизить уровень окисления [c.297]

    Среду приготавливают и стерилизуют в четыре приема в определенной последовательности в различных условиях. Раздельная стерилизация глюкозы и кукурузного экстракта предупреждает образование аминосахаров — комплексов глюкозы с аминокислотами, которые угнетают рост культуры. Стерилизация кукурузного экстракта при кислом pH сохраняет витамин Вь который во время стерилизации при нейтральном или щелочном pH распадается на осколки, не используемые пропионовокислы-ми бактериями. Стерилизация глюкозы при температуре 120— 123° и кислом pH способствует уменьшению ее кармелизации, т, е. разложению с образованием различных продуктов (карме-лана, органических кислот и др.). При мягкой стерилизации разлагается не более 15% глюкозы, при более жесткой процент разложения глюкозы резко возрастает. Продукты разложения глюкозы задерживают рост пропионовокислых бактерий и образование ими витамина В12. [c.83]

    Дальнейшие энзиматические превращения фосфоглицериновой кислоты ведут к образованию карбоновых кислот, углеводов и аминокислот. Синтез гексоз проходит в обратном направлении, тем же путем, как гликоли т. е. энзиматический распад углеводов с участием процессов фосфоролиза,. наблюдаемый при спиртовом брожении, в мышечных тканях и т. д. Предшественниками сахарозы являются не глюкоза и фруктоза, а продукты их фосфорилирования, а именно глюкозо-1-монофосфат (эфир Кори) и фрук-тозо-6-монофосфат. Это видно из того, что в сахарозе и в обоих эфирах, при кратковременном освещении, радиоактивный углерод появляется раньше, чем в глюкозе и фруктозе. Образование аминокислот, из которых синтезируются белки, идет в общих чертах следующим путем. Двууглеродные группы типа ацетатов образуют пировиноградную и щавелеуксусную кислоты, аминирование которых дает аминокислоты. Синтез последних из ацетатов был подтвержден прямым путем добавление к освещаемой взвеси хлореллы ацетата, меченного радиоактивным С в карбоксиле, быстро ведет к появлению радиоактивного а-аланина с меченым углеродом не только в карбоксиле, но и в углеродной цепи. Превращения пировиноградной кислоты по рассматриваемому ниже циклу трикарбоновых киСт лот, повидимому, при фотосинтезе не происходит, так как не удалось идентифицировать образования радиоактивной а-кетоглютаровой кислоты и некоторых других звеньев этого цикла. Во всех рассмотренных превращениях принимают участие энзимы и процессы фосфорилирования и дефое-форилирования, как и в других случаях обмена углеводов. [c.309]

    Кроме того, важную роль в регуляции общего пути катаболизма в целом играет регуляция первого звена этого процесса — пируватдегидрогеназного комплекса. Комплекс может быть в двух состояниях — нефосфорилированном (активная форма) и фосфорилированном (неактивная форма). Протеинкиназа, фосфорилирую-щая комплекс, является одной из его субъединиц. Протеинфосфатаза, дефосфо-рилирующая комплекс, также связана с комплексом. На рис. 8.12 представлены наиболее существенные регуляторные связи пируватдегидрогеназного комплекса. Главное назначение этого механизма — поддерживать скорости образования пирувата и ацетил-КоА, соответствующие их расходованию. При этом пируват и аце-тил-КоА расходуются не только как источники энергии для синтеза АТФ в цитратном цикле, но и в анаболических процессах при определенных состояниях организма и в определенных органах пируват используется для синтеза глюкозы и аминокислот, а ацетил-КоА — для синтеза жирных кислот (эти процессы подробнее рассматриваются в последующих двух главах). При мышечной работе [c.241]

    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    При гидроксилировании ароматического ядра 2,4-Д отмечено образование 2,3-дихлор-4-оксифеноксиуксусной и 2,5-дихлор-4-ок-сифеноксиуксусной кислот [79, 190], которые далее могут вступать во взаимодействие по гидроксильным группам глюкозы. С аминокислотами образуются соответствующие амиды [163, 188—190], например 2,4-дихлорфеноксиацетилглутаминовая кислота [c.87]

    Метаболизм аминокислот, жирных кислот. Синтез гемоглобина, участвует в поддержании уровня глюкозы в крови Образование красных кровяных клеток, работа нервной ситемы [c.271]

    Стабильность цитокининов в растении невысока, время полураспада зеатина составляет в зависимости от вида растения и его органа от 6 до 20 ч. Скорость разрушения в молодых тканях ниже, чем в старых. Медленнее всего этот процесс идет в корнях. Деструкция цитокининов начинается с конъюнгирования с сахарами (рибоза, глюкоза) и аминокислотой аланином. При этом путь образования О-глюкозидов цитокинина можно рассматривать как запасание этого гормона, а другие — как необратимую деструкцию. Недавно открыт фермент цитокининоксидаза, окисляющий цитокинин без предварительного гликозидирования. Окисление при этом происходит по месту присоединения алифатической части к аденину. [c.337]

    Способность выполнения ряда специфических функций, возникшая в процессе длительной эволюции нервной системы, отразилась также на формировании ее особого химического состава и определенной специфики метаболизма. Здесь можно отметить и высокую концентрацию в нервной ткани липидных веществ, в частности липопротеидных и липонуклео-протеидных надмолекулярных комплексов и огромные скорости протекания метаболических процессов и исключительную интенсивность потребления энергии и связанное с этой особешюстью весьма эффективное использование ряда аминокислот в качестве источников энергии и исключительное развитие биохимических аппаратов образования аминокислот из глюкозы и наличие множества альтернативных путей превращения веществ, выполняющих в деятельности нервной системы особо важную роль и развитые механизмы пространственного разобщения метаболитов, отличающихся по обменной активности и необычные механизмы транспорта биологически важных веществ но отросткам нейронов на периферию клетки и специфическую локализацию в нервной ткани таких соединений, как протеолипиды, некоторые виды ганглиозидов, ГАМК, К-ацетил-Ь-аспарагиновая кислота и др. и высокую активность био- [c.19]

    Учитывая устойчивость продуктов перегруппировки Амадори при значениях pH, близких к 7, с одной стороны, и тот факт, что возникновение темных окрашенных продуктов происходит параллельно с перегруппировкой К-замеш енных гликозиламинов или с образованием продуктов перегруппировки непосредственно при взаимодействии п-глюкозы с аминокислотами, с другой стороны, Готтшалк развил представление, согласно которому промежуточный аминоенол [схема (3)] является неустойчивым веш еством, способным или образовывать стабильный продукт перегруппировки Амадори, или претерпевать деградацию с отш еплением молекулы воды и образованием производных фурана [20]. Позднее были найдены некоторые доказательства существования аминоенола как промежуточного продукта реакции [28] его образование в ходе перегруппировки Амадори и параллельная деградация постулировались в недавно предложенных схемах реакции Майяра [9, 18]. Таким образом, кажется вероятным (хотя строгих доказательств этого нет), что реакция Лобри де Брюина — Альберда ван Экенштейна (см. гл. 7) и перегруппировка Амадори протекают через аналогичные промежуточные продукты первая включает образование ендиола-1,2 с последующим образованием (в случае с-глюкозы) в-маннозы и в-фруктозы (более стабильных) и продуктов деградации с отщеплением воды, а вторая идет через аналогичный 1-аминоенол-2 по указанному выше пути. Однако есть и существенное различие между этими реакциями перегруппировка Лобри де Брюина — Альберда ван Экенштейна обратима и количество продуктов разложения при этом незначительно [29], в то время как перегруппировка Амадори практически необратима, а количество окрашенных продуктов деградации может быть сопоставимо с количеством основного продукта. [c.110]

    Действие глюкокортикоидов приводит в конечном счете к увеличению количества глюкозы, извлекаемой из печени (из-за повышения активности глюкозо-6-фосфатазы), к повышению содержания глюкозы в крови и гликогена в печени, а также к уменьшению количества синтезируемых мукополисахаридов. Процессы включения аминокислот, образующихся в результате распада белков, замедляются, а синтезы ферментов, катализирующих процессы распада белков, усиливаются. Среди этих ферментов тирозин- и аланинаминотрансферазы — ферменты, инициирующие процессы распада аминокислот и обеспечивающие в конечном счете образование фумарата и пирувата — предшественников глюкозы при глюконеогенезе. [c.515]

    Например, в опытах in vivo при применении в качестве предшественника равномерно меченой -1-6-глюкозы оказалось, что по интенсивности образования аминокислот за счет глюкозы ряя органов можно расположить в следующем порядке головной мозг > кровь > печень > селезенка и легкие > мышца. [c.92]

    Таким образом, образовавшиеся при распаде жирных кислот молекулы ацетата превращаются в углеводы, из четырех молекул ацетата синтезируется одна молекула глюкозы, В этом и заключается физиологическая роль глиоксилатного цикла — аэробного процесса. Он имеет большое значение в дыхании зеленых листьев на свету. Глиог<силевая кислота является исходным веществом для образования аминокислоты гликокола. [c.255]

    Органы, ткани, суспензии растительных клеток, протопластов культивируют на питательных средах (твердых агаровых или жидких), включающих макро- и микроэлементы минерального питания, сахара (чаще сахароза или глюкоза), витамины, аминокислоты или гидролизат казеина, фитогормоны (цитокииины, ауксины, гиббереллины и биологически активные вещества). Все живые, изолированные клетки и ткани разных органов растений (стебля, корня, листа, стеблевой меристемы, частей цветка покрытосемянных, гаметофитов голосемянных и споровых растений) при определенных условиях культивирования образуют каллусную ткань, состоящую из дедифферен-цированных клеток. Изменяя условия культивирования кал-лусной ткани, можно вызвать дифференциацию клеток, образование регенерационных меристем и восстановление целого-растения (рис. 70). [c.408]

    На изолированных гепатоцитах исследовали синтез глюкозы из аминокислот. Для этого к культуре клеток добавляли различные аминокислоты и регистрировали скорость образования глюкозы. В контрольном опыте (без добавления аминокислот) скорость глюконеогенеза составляла 0,15 мкмоль глюкозы в минуту. При введении в инкубационную среду аланина, пролина и глутаминовой кислоты скорость увеличивалась до 0,17—0,18 мкмоль/мин, а при добавлении лизина или лейцина не изменялась. Объясните, почему это произошло. Напишите реакции глюконеогенеза из аланина до образования фосфоенолпирувата. [c.412]

    По сравнению с неорганическими катализаторами ферменты обладают значительно большей специфичностью действия. Некоторые ферменты катализируют превращение практически только одного какого-либо вещества. Например, фермент глюкозооксида-за, получаемый из плесневых грибов различных видов, специфически окисляет -D-глюкозу до глюконовой кислоты и почти не действует на другие моносахариды. Многие ферменты действуют только на определенный вид химической связи. Например, фермент пепсин гидролизует пептидные связи в молекулах белка, образованные только ароматическими аминокислотами. Наименьшую специфичность обнаруживают ферменты, которые катализируют опреде- ленные группы реакций. Так, например, ферменты, [c.111]

    ИСКУССТВЕННАЯ ПИЩА, пищ. продукты, к-рые олуча -ют из разл. пищ. в-в (белков, аминокислот, липидов, углеводов), предварительно выделенных из прир. сырья или полученных направленны.м синтезом из минер, сырья, с добавлением пищевых добавок, а также витаминов, минер, к-т, микроэлементов и т. д. В качестве прир. сырья используют вторичное сырье мясной и молочной пром-сти, семена зерновых, зернобобовых и масличных культур и продукты их переработки, зеленую массу растений, гидро-бионты, биомассу микроорганизмов и низших растений прн этом выделяют высокомол. в-ва (белки, полисахариды) и иизкомолекулярные (липиды, сахара, аминокислоты и др ) Низкомол. пищ. в-ва м. б. получены также микробиол. синтезом из глюкозы, сахарозы, уксусной к-ты, метанола, углеводородов, ферментативным синтезом из предшественников и орг. синтезом (вкл очая асимметрич. синтез для оптически активных соед ). Высокомол. в-ва должны обладать определенными функциональными св-вамн, такими, как р-римость, набухание, вязкость, поверхностная активность, способность к прядению (образованию волокон) и гелеобразованию, а также необходимым составом и способностью перевариваться в желудочно-кишечном тракте. Низкомол. в-ва химически индивидуальны или являются смесями в-в одного класса в чистом состоянии их св-ва не зависят от метода получения. [c.273]

    Тканевое дыхание и биологическое окисление. Расиад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к вьщелению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом  [c.306]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]

    Солюбилизаторами в аминокислотных растворах служат многоатомные спирты - полиолы сорбит и ксилит, являющиеся одновременно и энергетическими компонентами растворов. Использование с подобной целью глюкозы нежелательно, так как в случае ее применения последующая тепловая стерилизация раствора ведет к появлению окраски либо образованию осадка (взвеси). При этом образующиеся фруктозаминокислоты обладают меньшей биологической и питательной ценностью, чем свободные аминокислоты, чего не происходит при замене сахаров на полиолы. Для облегчения растворения аминокислот и стабилизации растворов могут быть использованы и биополимеры, повышающие вязкость растворов и предотвращающие осаждение желатин, крахмал, альгиновая кислота. [c.348]

    На схеме 6.2 представлены основные ступени образования предшественников лигнина [104, 106, 107, 206, 242]. Биосинтез лигнина начинается с образованием глюкозы (I) при фотосинтезе. Она превращается в шикимовую кислоту (И)—важнейшее промежуточное соединение в так называемом пути шикимовой кислоты. В качестве конечных соединений на этом пути образуются две ароматических аминокислоты Ь-фенйлаланин (IV) и Ь-тиро-зин (V) восстановительным аминированием через префеновую кислоту (III). В свою очередь эти аминокислоты служат исходными веществами ( аминокислотная совокупность ) для ферментативного синтеза фенилпропаноидных соединений (путь коричной кислоты), который приводит через активированные производные ко- [c.104]


Смотреть страницы где упоминается термин Глюкоза образование из аминокислот: [c.393]    [c.57]    [c.162]    [c.237]    [c.147]    [c.220]    [c.85]    [c.262]    [c.119]    [c.147]    [c.440]    [c.446]    [c.243]   
Биологическая химия Издание 3 (1960) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Глюкоза и образование АТР



© 2025 chem21.info Реклама на сайте