Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Муравьиная кислота определение формальдегидом

    Определение содержания формальдегида в формалине основано на реакции окисления формальдегида до соли муравьиной кислоты и последующем взаимодействии избытка иода е титрованным раствором тиосульфата натрия  [c.326]

    Раствор формальдегида обычно содержит примесь муравьиной кислоты НСООН, и если ее не нейтрализовать, то определение даст неверный результат. Нейтрализацию проводят по фенолфталеину, прибавляя щелочь до слабого порозовения. [c.311]


    Для определения муравьиной кислоты сначала отгоняют все летучие жирные кислоты, как описано в разделе Летучие кислоты жирного ряда (см. стр. 194), затем в отгоне восстанавливают муравьиную кислоту до формальдегида и определяют последний любым из описанных вьше методов. Если анализируемая сточная вода содержит формальдегид, его перед отгонкой связывают аммиаком или фенилгидразином. [c.199]

    Объемный метод определения метилового спирта. В основу метода положен принцип окисления метилового спирта до формальдегида и дальнейшего окисления его до муравьиной кислоты. Формальдегид окисляют хлорноватой кислотой по уравнению [c.203]

    Определенные трудности в изучении равновесий под давлением, т. е. при повышенной температуре, вносит протекающая в этих условиях с заметной скоростью реакция диспропорционирования формальдегида в муравьиную кислоту и метанол. Весьма сложны манипуляции с растворами, содержащими выше 50—60% формальдегида, так как даже при небольшом охлаждении из них выделяется полимер. [c.141]

    Реакция протекает количественно, и на ее основе разработан ряд аналитических методов, в которых проводится определение количества формальдегида, муравьиной кислоты и расхода йодной кислоты [c.86]

    Определение формальдегида [199—202]. Смешивают 0,5 мл раствора, содержащего не более 15 мкг формальдегида, с 0,5 мл изопропилового спирта и 0,5 мл 7,5%-ного водного раствора гидрохлорида фенилгидразина. Через 10 мин вводят 0,3 мл 5%-ного раствора Кз[Ре(СЫ)б], еще через несколько минут — 2 мл 10%-ного раствора NaOH и разбавляют водой до объема 25мл. Оптическую плотность оранжево-красного раствора измеряют при 520 нм (е=2,1 10 ). Фенол, метиловый спирт и муравьиная кислота определению не мешают. Если выполнять реакцию при кипячении, то окислителем может служить кислород воздуха [202]. [c.58]

    Периодатное окисление полисахаридов обычно проводят в водном растворе (приблизительно 0,1—0,5%-ном) в темноте при постоянной низкой температуре (4—20° С) с использованием минимального количества окислителя, которым может быть сама йодная кислота, метапериодат натрия или калия. Реакционную смесь разбавляют до определенного объема дистиллированной водой или буферным раствором. Контрольные растворы готовят аналогичным образом, но без добавления полисахарида. Время от времени из реакционной смеси и контрольного раствора отбирают пробы и определяют содержание йодной кислоты, муравьиной кислоты и формальдегида. [c.314]


    Разработан метод определения муравьиной кислоты в природных водах [21]. Закон Бера соблюдается до содержаний формиата 20 мкг, чувствительность определения 1 мкг, не мешают фенол при содержании более 500 мкг/л и 10-кратный избыток органических кислот. В работе [23] отмечено, что восстановление формиата протекает всего на 30%. Воспроизводимость метода невысока, ошибка может достигать 30% [24]. Определению муравьиной кислоты мешает формальдегид, его следует отделять или связывать, например, фенилгидразином [23]. Разработан метод, основанный на восстановлении нитрата серебра до металлического серебра в слабокислом буферном растворе [24] 5 [c.92]

    Якубчик, Васильев и Жабина [244] предложили быстрый метод определения характера химической структуры (внешней и внутренней двойной связи) для полимеров бутадиена, основанный на измерении количеств муравьиной кислоты и формальдегида, образующихся при разложении продуктов озонолиза. [c.103]

    Путь, по которому авторы провели подобное доказательство предложенной ими схемы окисления пропилена, был следующий. Обработкой экспериментальных данных при помощи схемы была установлена истинная кинетика образования промежуточных продуктов — формальдегида и ацетальдегида,— т. е. кинетика пх образования, не искаженная дальнейшим окислением. Разность между рассчитанными из схемы такими истинно образовавшимися количествами альдегидов и аналитически найденными давала количество альдегидов, подвергшихся окислению. По принятым в схеме суммарным уравнениям окисления альдегидов рассчитывалась далее сумма количеств СО и СОа, получающихся этим путем. Кроме того, количество СО, получающейся по реакции 6, определялось как разность между количествами формальдегида, полученного распадом радикала СН2(00)СН0, и аналитически определенным количеством муравьиной кислоты. Таким образом, пользуясь своей схемой, авторы смогли рассчитать все количество СО СО2, которое должно образоваться к каждому моменту реакции. Эти данные затем сравнивались с аналитически определенными количествами СО -I- СО2. [c.392]

    Нельзя отождествлять степень окисления с валентностью элемента, если даже абсолютные их значения совпадают. Валентность атома, определяемая как число химических связей, которыми данный атом соединен с другими атомами, не может иметь знака (+ или —) и равняться нулю. Поэтому особенно неудачны выражения положительная и отрицательная валентность и тем более нулевая валентность , бытующие поныне в химической литературе. Рассмотрим пример метана СНд, метилового спирта СНзОН, формальдегида НСОН, муравьиной кислоты ИСООН и диоксида углерода СОа, в которых валентность углерода равна четырем, а степени окисления его равны соответственно —4, —2, О, + 2 и -1-4. Кроме того, для установления валентности атома требуется знание химического строения соединения, а определение степени окисления производится в отрыве от строения вещества, т. е. формально. [c.72]

    Иодометрический метод. Определение основано на окислении формальдегида иодом до муравьиной Кислоты  [c.195]

    Первые попытки получить блестящие осадки приводили к хрупкости. Вейсберг и Стоддарт утверждают, что сплав никеля с кобальтом может быть осажден в виде блестящего и нехрупкого покрытия из сульфатхлоридной ванны, содержащей аммониевую соль, соль муравьиной кислоты и формальдегид в отсутствии кобальта получаемый слой никеля несколько менее блестящий. Никелирование на большие толщины представляет собой определенное искусство сущность его и области применения описаны Вилсоном . Никелирование алюминиевых сплавов также представляет собой специальную проблему, так как в данном случае трудно получить хорошее сцепление, вероятно, благодаря невозможности полного удаления окисной пленки. Тем не менее даже, где непосредственно сцепление с гладкой поверхностью недостижимо, можно получить механическое сцепление, если поверхность сделана шероховатой. Часто для этой цели применяется пескоструйная обработка, однако обычно предпочитают применять травление в подкисленном растворе хлористого никеля или хлорного железа. Фотографии Уорка ясно показывают, как покрытия стремятся заполнить создавшиеся углубления. Никелирование цинкового литья также требует изменения процесса, так как стандартные ванны склонны давать черные покрытия никеля простым замещением, как только богатые цинком сплавы погружаются в электролит. Это явление обычно устраняется введением в ванну сернокислого или лимоннокислого натрия, которые, вероятно, служат для уменьшения концентрации никелевых катионов, связывая никель до некоторой степени в комплексные анионы. [c.693]

    Некоторым витаминам принадлежит особо важная роль в азотистом обмене. Подвергаясь в организме фосфорилированию, а в некоторых случаях более сложным превращениям, они дают начало образованию небелковых компонентов ферментов, катализирующих реакции превращения аминокислот. Витамин Ва (флавин) является составной частью кофермента оксидазы О- и .-аминокислот и аминооксидаз. Пантотеновая кислота входит в состав кофермента ацилирования, играющего важную роль в обмене безазотистых соединений, образующихся из аминокислот (а-кетокислот и др.) и ряда азотистых веществ. Фолиевая кислота и ее производные участвуют в процессах, приводящих к использованию метильных групп метионина, формильных, оксиметильных групп (остатков муравьиной кислоты и формальдегида), возникающих при превращении ряда аминокислот (серина, глицина, гистидина, триптофана). Особо важное место в азотистом обмене занимает витамин В( (пиридоксаль). В виде своего фосфорного эфира Вд служит коферментом ряда ферментов, участвующих в превращениях аминокислот. В частности, ферменты, катализирующие переаминирование аминокислот, содержат в виде кофермента пиридоксальфосфат. Авитаминоз В сопровождается, особенно у микроорганизмов, ослаблением и даже прекращением реакций переаминирования. Пиридоксальфосфат является также коферментом декарбоксилаз аминокислот. Вместе с этим тшридоксальфосфат входит (в виде кофермента) в состав ряда других ферментов, участвующих в превращениях определенных аминокислот (триптофана, серина, серусодержащих аминокислот). [c.433]


    Количественное определение. Количественное определен ие формальдегида основано на окислении йодом в щелочной среде в муравьиную кислоту  [c.85]

    V Метод совместного определения муравьиной кислоты и формальдегида разработан А. С. Молотковой и В. К. Золотухиным [64]. К анализируемому раствору добавляют в избытке растворы Naj Os (1 н.) и КМп04 (стандартный), выдерживают смесь 20—30 мин при комнатной температуре, затем подкисляют серной кислотой (1 4) и немедленно прибавляют избыточное количество 0,1 н. стандартного раствора соли Мора. Избыток последней оттитровывают 0,1 — 0,5 п. раствором КМПО4 при комнатной температуре. Метод позволяет определять сумму формальдегида и муравьиной кислоты в присутствии уксусной, бензойной и других кислот, не окисляемых перманганатом. V [c.15]

    В своей работе по окислению пропилена кислородом Ленер [I] выделил только ацетальдегид, формальдегид и муравьиную кислоту. Однако Ньюитт и Мен, работавшие с избытком пропилена, получили при 215—280" и 12—18 ата окись пропилена, пропиленгликоль и глицерин наряду с различными кислотами и альдегидами [2]. Установлено, что в начальных стадиях окисления образуются аллиловый спирт и пропионовый альдегид. Можно сказать почти определенно, что аллиловый спирт и глицерин получаются в результате атаки кислородом метильной группы. Лукас исследовал окисление бутилена-2 кислородом при 350—500° [3]. Основными продуктами реакции являются ацетальдегид и дивинил. Установлено также присутствие глиоксаля, окиси олефина, кислоты и перекисей метилэтилкетон не обнаружен. Дивинил, по-видимому, получается в результате дегидратации 2,3-бутандиола или окиси бутилена, а окисление его по двойным связям приводит к глиоксалю  [c.158]

    Шарма и Мехротра установили, что при увеличении концентрации серной кислоты до 50—66% и кипячении все кислоты, исследованные Уиллардом и Янгом, за исключением янтарной и уксусной, количественно окисляются до двуокиси углерода. Позднее было показано что при действии чистого сульфата церия (IV) муравьиная кислота не окисляется в сколько-нибудь заметной степени и что количественное окисление объясняется, с одной стороны, высокой концентрацией серной кислоты, с другой — каталитическим действием примесей. При добавлении к чистому сульфату церия небольших количеств хрома (III) в качестве катализатора результаты оказываются такими же, как при использовании неочищенного сульфата церия. Это делает возможным определение глицерина и гликоля в их смесях одну аликвотную порцию окисляют в отсутствие катализатора до муравьиной кислоты, другую — в присутствии хрома (III) —до двуокиси углерода. Аналогичные методики разработаны для анализа смесей муравьиной кислоты с формальдегидом или метиловым спиртом. Шарма установил также, что в отсутствие катализатора альдозы окисляются до муравьиной кислоты кетозы образуют двуокись углерода. В присутствии Сг происходит полное окисление до двуокиси углерода и воды. [c.428]

    При анализе высокозамещенных поливинилформалей определение проводят в присутствии муравьиной кислоты, так как 20%-ный раствор H2SO4 не гидролизует их. Но муравьиная кислота мешает определению формальдегида с помощью гидроксиламина, поэтому его определяют реактивом Несслера или 1ЮлЯ рографически на комбинированном фо- [c.182]

    Метод периодатного окисления. Периодатное окисление олигосахаридов, как и окисление моносахаридов, в определенных условиях протекает строго количественно [4]. При этом разрываются связи углеродных атомов, несущих а-диольные группы, образуется диальдегид и расходуется 1 моль HIO4 при наличии вицинальной три-V ольной группировки средний углеродный атом вычленяется в виде муравьиной кислоты, образуется диальдегид и расходуется 2 моля 2 0 перйодата. Если в молекуле имеется первичный спиртовой гидроксил,, связанный с углеродом, несущим свободный гидроксил, конечный углеродный атом отщепляется в виде формальдегида, при этом расхо-дуется 1 моль перйодата. Поскольку в разных олигосахаридах моно-сахаридные остатки связаны за счет различных гидроксилов, число-а-диольных и триольных группировок может быть различно. Поэтому при периодатном окислении разных по строению олигосахаридов результаты часто бывают различны. Результаты периодатного окисления оцениваются по убыли перйодата, определению количества муравьиной кислоты и формальдегида (для чего разработаны удобные и точные [c.17]

    Исследование продуктов озонирования. Из разбавленного до объема 500 мл водного раствора продуктов озонирования было взято две пробы по 50 мл для количественного определения муравьиной кислоты и формальдегида.. Муравьиная кислота определялась по Финке [ 8]. Из 50 мл раствора было получено 0.0487 г Hgg la, что при пересчете на весь раствор отвечает 0.476 г НСООН, или 53% от теоретически возможного ее количества при данной навеске вещества, если весь образующийся при разложении озонида СНоО переходит нацело в НСООН. [c.494]

    Для определения формальдегида вторая проба испытуемого раствора (50 мл) кипятилась со 140 мл 0.4% водного раствора димедона. После фильтрации и сушки осадок димедонового производного формальдегида плавился при 188—189° (т. пл. 189°[iej) и весил 0.0957 г. Отсюда выход СН2О в реакции озонирования составляет 16.8% теоретического. Суммарный выход муравьиной кислоты и формальдегида в этой реакции равен 69.8% теоретического. Потери могут быть Отнесены за счет частичного окисления имеющейся в растворе НСООН до Og в процесЪе обработки озонида. [c.494]

    Цель экспериментов по окислению гетеросахаридов перйодатом состоит в определении числа и типа (первичные или вторичные) соседних гидроксильных групп. Это достигается путем одновременного определения числа молей перйодата, поглощаемого при окислении, и числа молей образующихся при этом муравьиной кислоты и формальдегида. Выяснение строения остатка молекулы, образующегося после окисления, дает важные дополнительньсе сведения о структуре изучаемого соединения. [c.245]

    Углеродная цепь полиолов разрывается под действием тетраацетата свинца, йодной кислоты и ее солей [25]. Эти окислители действуют лишь на диольные группировки, причем наиболее уязвимыми оказываются грео-гидрокснльные группы (для сорбита — положения 2,3 и 3,4, для маннита — 3,4, для дульцита — положения 2,3 и 4,5), как это показал в своих работах Хокетт [26]. Тетраацетат свинца и йодная кислота широко применяются для определения структуры сахаров, сахарных спиртов и родственных соединений. При использовании избытка этих окислителей фрагменты с вторичными спиртовыми группами превращаются в муравьиную кислоту, а метилольные группировки — в формальдегид применяя ограниченное количество периодг1та, углеродную цепь разрывают главным образом по грео-гидроксильным группировкам [26]. Так, из маннита с избытком этих окислителей получают 4 моль муравьиной кислоты и 2 моль формальдегида, а при недостатке перйодата — 2 моль глицеринового альдегида  [c.14]

    В зависимости от химической природы предшественника и от конкретных условий атмосферы вклад того или иного процесса может существенно изменяться. Например, для газообразного во всем интервале температурных условий тропосферы и плохо растворимого в воде метана главным направлением окисления является гомогенное газофазное. Образовавшийся же на определенных стадиях формальдегид может абсорбироваться частицами атмосферной влаги и окисляться до муравьиной кислоты уже в жидкокапельной фазе атмосферы. При эпизодах высокой запыленности атмосферы, например в зоне выноса мельчайшего аэрозоля из пустыни Сахара, определенный вклад в окисление даже слабо сорбирующегося метана может вносить гетерогенное фотостимулиро-ванное окисление. Рассмотрим более подробно процессы окисления основных кислотообразующих компонентов атмосферы. [c.205]

    В качестве растворителя при периодатном окислении чаще всего используют воду. Расход перйодата определяют восстановлением избытка окислителя арсенитом с последующим обратным титрованием арсенита иодом , титрованием тиосульфатом , спектро [фотометрически и другими методами. Муравьиную кислоту определяют кислотно-основным , иодометрическим или потенциометрическим титрованием Для определения формальдегида применяют весовой метод (димедоновое производное ы) или колориметрию (по реакции с хромотроповой кислотой или ацетилацетоном - ). [c.444]

    Электрохимическое окисление метанола, этанола, формальдегида и муравьиной кислоты было изучено достаточно подробно еще много лет назад. Известны суммарные реакции окисления как в кислых, так и в щелочных электролитах. Бич щелочного электролита — его карбонизация, хотя скорости реакций вполне приемлемы. В кислых электролитах электрохимическое окисление указанных топлив связано с определенными осложнениями. Катализаторами для окисления служат те же электродные материалы, что и для водородного электрода. Принципиально возможно электрохимическое окисление и таких веществ, как нзопропанол, гликоль, глицерин и щавелевая кислота. Практически построенные на основе этих систем установки по мощности не превы- [c.338]

    Результаты определения в реакционной смеси формальдегида и муравьиной кислоты дают лишь самое общее представление о структуре исходного иолисахарида. Основную информацию получают, изучая окисленный полисахарид — полиальдегид и продукты его деструкции. Наиболее часто используют вариант расщепления по Смиту, заключающийся в преобразовании полнальдегида в высокомолекулярный полиол, его последующем гидролизе и идентификации полученных фрагментов. В результате анализа получают информацию о размерах циклов моносахаридиых звеньев, формирующих макромолекулу исходного иолисахарида, о стеиени [c.65]

    Методика определения. В коническую колбу емкостью 250 мл наливают 15 мл 25%-НОГО водного раствора формальдегида (формалина), добавляют 100 мл дистиллированной водь. , 2—3 капли фенолфталеина и точно нейтрализуют кислый раствор формалина (который может содержать свободную муравьиную кислоту) 0,1 н. раствором NaOH до слаборозовой окраски. В случае если исходный раствор формалина более концентрирован или содержит менее 25% формальдегида, то берут его соответственно меньше или больше 15 мл. [c.140]

    Эта реакция, в частности, используется для количественного определения формальдегида (см. гл. 4). В кислой среде при уме репном нагревании преимущественно образуется муравьиная кислота. Так, в лаборатории автора было найдено, что в присутствии 2% серной кислоты и при 60°С за 4,5 ч конверсия формальдегида составила 62%, а мольная селективность образования муравьиной кислоты 83%. Оба реагента (О3 и Н2О2) могут быть использованы и для препаративного получения муравьиной кислоты или ее производных. [c.113]

    Определение метанола. Методы определения метанола сложны и недостаточно селективны. Большинство методов связано с полным окислением всех органических компонентов хромовой кислотой [1]. Если содержанием муравьиной кислоты и других примесей можно пренебречь, концентрация метанола находится вычитанием из суммы окисленных продуктов количества формальдегида, которое предварительно определяется одним из описанных выше методов. Впрочем, количество муравьиной кислоты также можно найти алкалиметрическим титрованием, хотя это и увеличивает погрешность определения метанола. В отсутствие формальдегида метанол окисляют и находят количество образовавшегося формальдегида. По одному из предложений формальдегид связывают избытком аммиака с получением уротропина, после чего раствор дважды перегоняют с последующим дензиметрическим определением метанола в погоне. [c.124]

    Определение муравьиной кислоты. Этот анализ не представляет трудностей, если в анализируемой смеси отсутствуют другие кислоты. Содержание муравьиной кислоты находят алкалимет-рически [268]. В зависимости от природы присутствующих примесей пользуются одной из следующих методик. Большинство методов основано на восстанавливающих свойствах муравьиной кислоты. На практике применяют методы восстановления ионов Hg2 -до Нд+ с образованием нерастворимой в воде соли хлоридом ртути (I), либо превращения нитрата серебра в металлическое серебро. Можно саму муравьиную кислоту восстановить до формальдегида действием металлического магния с последующим определением формальдегида [262]. [c.127]

    Для совместного определения небольших количеств формальдегида и муравьиной кислоты применяется метод ферментативного окисления [273]. Под действием иммобилизованного фермента альдегидоксидазы формальдегид превращается в пероксид водорода, содержание которой находят с помощью хемилюминесцент-ного фотометра. Муравьиная кислота в другой пробе восстанавливается до формальдегида и т. д. [c.127]

    Для устранения методических трудностей с определением формальдегида последний в некоторых случаях переводят в другие соединения, более удобные для хроматографирования. Так, было предложено действием этанола в присутствии п-толуолсульфокислоты превратить формальдегид в диэтилформаль (ацеталь). Присутствующие в изучавшихся смесях муравьиная и уксусная кислоты преобразуются в соответствующие этиловые эфиры (рис. 39) [276]. Как видно из рисунка, описанным методом можно с достаточной точностью определить содержание и формальдегида и муравьиной кислоты. С применением пламенно-ионйзаци-онного детектора находят относительное содержание метанола и формальдегида в контактном газе формалинового производства [277]. Полный состав смесей, содержащих водород, кислород, оксид и диоксид углерода и т. п., выполняется с применением трех колонок [278]. Анализ водных растворов муравьиной и уксусной кислот можно проводить и с применением катарометра [279]. [c.129]

    Еще одна часто встречаемая в неионогенных ПАВ примесь — это полиэтиленгли-коль. Для определения содержания этой примеси образец, как правило, растворяют в водном растворе натрий хлорида, который впоследствии экстрагируют этилацетатом. Слой этилацетата затем еще раз экстрагируют раствором натрий хлорида. Далее раствор натрий хлорида экстрагируется хлороформом. Слой хлороформа упаривают досуха, и сухой остаток экстрагируют ацетоном для удаления проэкстрагированных солей. Остаток после выпаривания ацетона соответствует содержанию полиэтиленгликоля в исходном образце [63]. Также была разработана технология определения сорбита в сложных эфирах сорбита [2], которая заключается в омылении эфиров сорбитана, после чего выделенный сорбит окисляется перйодной кислотой. Результатом является образование четырех молекул муравьиной кислоты и двух молекул формальдегида, которые могут быть измерены количественно. [c.131]

    Для определения воды в феполоформальдегидных смолах, получаемых щелочным катализом и представляющих собой водорастворимые фенолы, содержащие метилольные группы, применялись различные методы [63, 132]. В техническом растворе содержатся различные количества свободного фенола, формальдегида и муравьиной кислоты. При нагревании может произойти конденсация, приводящая к образованию нерастворимой и термостойкой смолы. Следовательно, методы, основанные на высушивании в су- [c.146]


Смотреть страницы где упоминается термин Муравьиная кислота определение формальдегидом: [c.440]    [c.517]    [c.517]    [c.19]    [c.52]    [c.364]    [c.372]    [c.117]    [c.129]   
Химико-технические методы исследования Том 3 (0) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Методы количественного определения перйодата, формальдегида и муравьиной кислоты

Муравьиная кислота

Муравьиный Формальдегид



© 2025 chem21.info Реклама на сайте