Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Непрерывные в паровой фазе

    Альтернативной оказывается такая схематизация, при которой исходная разрывная среда с помощью того или иного метода преобразования рассматривается как фиктивная неразрывная среда [83]. В этом случае предполагается, что каждая из фаз равномерно распределена ( размазана ) в вьщеленном объеме и является сплошной. Фиктивная среда, будучи эквивалентна исходной (в смысле предложенного преобразования), в то же время состоит из непрерывной жидкой и непрерывной паровой фаз, для которых уже можно применить аппарат дифференциального исчисления. Здесь, как и в первом случае, паровая и жидкая фазы рассматриваются как раздельные системы, между которыми происходят те или иные обменные процессы. [c.91]


    Простая перегонка жидких смесей осуществляется путем постепенного или однократного их испарения, а простая перегонка паровых смесей — путем постепенной или однократной их конденсации. При постепенной перегонке жидких смесей они постепенно нагреваются от начальной температуры до конечной с непрерывным отводом из системы образующихся паров. При однократной перегонке жидкость нагревается до заданной температуры, при которой паровая фаза однократно отделяется от жидкости. [c.13]

    При однократной перегонке высококипящих остатков в вакууме возможны осложнения, обусловленные использованием аппарата ОИ. Рекомендуется поддерживать постоянной скорость подачи сырья 400 мл/ч, для того чтобы обеспечить время пребывания жидкой фазы в испарителе от 19 до 70 мин в зависимости от доли отгона. Состояние равновесия следует считать достигнутым при совпадении температур жидкой и паровой фаз и температуры теплоносителя в бане с заданной точностью 1—2%. Максимальные колебания давления в системе не должны быть более 1,33 гПа, возможные изменения доли отгона составят при этом не более 1,5—1,7% (масс.). Надежность экспериментальных данных однократного испарения смесей следует косвенно проверять по непрерывному характеру изменения некоторых свойств паровой и жидкой фаз в зависимости от доли отгона, а именно плотности, молекулярной массы и коксового числа [58]. [c.59]

    Сырьевые теплообменники. Как отмечалось в гл. И1, неправильная обвязка сырьевых теплообменников, а также низкие скорости продуктов нарушают нормальную работу оборудования, приводят к аварийным ситуациям и снижают технико-экономические показатели работы установки. Так, в блоке предварительной гидроочистки беизина установки каталитического риформинга при подаче свежего газа 7700 м /ч наблюдались резкие непрерывные колебания температуры в реакторе (в пределах до 50 °С). При увеличении нодачи газа до 8800 м /ч эти явления устранялись. Рабочие условия в реакторе температура 350 С, давление 2,0 МПа. Температура газо-сырьевой смеси на выходе пз теплообменника составляла 200— 225 Т. В этих условпях в результате неправильной обвязки теплообменника, высокого парциального давления сырья и низких скоростей подачи сырья в межтрубном пространстве скапливалась жидкая фаза, периодический унос которой потоком газа в печь вызывал колебания температуры. Дополнительная подача свежего газа снижала парциальное давление сырья, сырье поступало в печь в паровой фазе, и колебания температуры исчезали. [c.138]


    С этой целью над перегонным кубом, в который загружается жидкое сырье, устанавливается укрепляющая колонна, предназначенная для ректификации поднимающихся из куба паров (рис. 111.43). Пары с верхней тарелки колонны отводятся в конденсатор (полный или парциальный), где образуются потоки подаваемого обратно в колонну жидкого орошения и отводимого в качестве продукта разделения дистиллята. В ходе перегонки составы загруженной в куб жидкости и поступающих в колонну паров непрерывно утяжеляются благодаря прогрессивному переходу НКК в паровую фазу. Тем не менее вполне возможно в течение достаточно длительного периода получать с верха укрепляющей колонны дистиллят постоянного состава, отвечающий практически чистому НКК. Этот важный результат достигается путем непрерывного увеличения удельного съема тепла в конденсаторе колонны, или, что то же, с помощью непрерывного увеличения флегмового числа. [c.219]

    Периодичность процесса накладывает особый отпечаток и на характер работы укрепляющей колонны, связанной с кубом. Непрерывное обеднение состава идущих из куба паров низкокипящим компонентом влечет за собой непрерывное же изменение составов и температур жидких и паровых фаз па тарелках укрепляющей колонны. Эта особенность периодической ректификации коренным образом отличает ее от непрерывной ректификации, характеризующейся неизменными во времени составами и температурами фаз на каждом определенном уровне колонны. Эта же особенность периодической ректификации является основной причиной трудностей, связанных с обоснованием и разработкой методики ее расчета. [c.220]

    Сущность процесса постепенной перегонки заключается в том, что образующаяся паровая фаза немедленно выводится из системы и в каждый данный момент с остаточной жидкостью находится в равновесии только бесконечно малая масса пара мгновенного состава у. При этом непрерывно меняется и состав X остаточной жидкости, приближаясь вместе с паром к составу, отвечающему чистому компоненту, играющему роль высококипящего для рассматриваемой системы. [c.47]

    Пусть требуется подвергнуть постепенной конденсации насыщенный пар состава а, фигуративная точка Ц которого расположена на кривой СЕ равновесных составов паровой фазы. С этим паром находится в равновесии микроскопическая капля жидкости, фигуративная точка которой расположена в точке пересечения изотермы начала конденсации с кривой точек кипения жидкой фазы. Непрерывное понижение температуры начального пара 1 2 сопровождается его постепенной конденсацией и отводом конденсата, в результате чего фигуративная точка остаточного пара, обогащающегося в ходе конденсации низкокипящим компонентом а, будет все время двигаться вдоль кривой СЕ конденсации от точки ]/ вниз, по направлению к фигуративной точке С чистого компонента а. В то же время и фигуративная точка выделяющегося конденсата будет все время двигаться вдоль кривой СА кипения, от точки / , вниз, по направлению к той же фигуративной точке С низкокипящего компонента а. Последний может быть получен в чистом виде лишь в конце процесса постепенной конденсации пара, с последним его пузырьком. Но если ограничиться практически приемлемой его чистотой, то можно получить компонент а значительно раньше и в заметном количестве. [c.61]

    На установках первичной перегонки нефти основным аппаратом процесса ректификации является ректификационная колонна — вертикальный аппарат цилиндрической формы. Внутри колонны расположены тарелки—одна над другой. На поверхности тарелок происходит контакт жидкой и паровой фаз. При этом наиболее легкие компоненты жидкого орошения испаряются и вместе с парами устремляются вверх, а наиболее тяжелые компоненты паровой фазы, конденсируясь, остаются в жидкости. В результате в ректификационной колонне непрерывно идут процессы конденсации и испарения. [c.49]

    На характер протекания химической реакции большое влияние оказывает качество смешения компонентов. Если в аппаратах периодического действия смешение производится в самом реакторе, то для непрерывно действующих реакторов, особенно при реакциях в паровой фазе, необходимо предварительное смешение. Нами уже упоминались смесители, применяемые при хлорировании. На рис. 48 показано несколько конструкций камер предварительного смешения они могут быть соединены с реактором или смонтированы отдельно от него. [c.122]

    Перегонка, проводимая под очень низким давлением (10" мм рт. т.), причем так, что молекулы, переходящие в паровую фазу, непрерывно удаляются, называется молекулярной дистилляцией. В аппаратах для молекулярной дистилляции параллельно поверхности испарения располагают холодную конденсирующую поверхность. Между этими поверхностями молекулы, перешедшие в паровую фазу, движутся с минимальным числом столкновений (вследствие глубокого вакуума) в одном направлении от испаряющей поверхности к конденсирующей. Для полной конденсации паров между конденсирующей поверхностью и поверхностью испарения поддерживается перепад температур 100° С. [c.118]


    Установки с колоннами непрерывного действия лишены этих недостатков. Принципиальная схема такой установки для разделения смеси пентанов представлена на рис. 99. Установка состоит из подогревателя сырья 1, ректификационной колонны 2, теплообменников 3, конденсатора-холодильника 4 и кипятильника 5 Нагретое сырье вводится в ректификационную колонну, где разделяется на жидкую и паровую фазы. В результате ректификации сверху [c.209]

    Парциальный дефлегматор следует рассматривать как массообменный аппарат, в котором происходит дополнительное разделение в условиях противотока с непрерывной конденсацией части паровой фазы. В качестве характеристики разделяющей способности дефлегматора обычно используется задание его эффективности разделения, аналогично тому, как это делается при задании к. п. д. тарелки (см. табл. 15, модель 2). Однако это — грубое приближение, поскольку невозможно, например, моделировать парциальные дефлегматоры с эффективностью разделения больше 1, и, кроме того, появляются трудности с учетом влияния параметров режима не разделительную способность дефлегматора. [c.304]

    Цикличность подачи паровой фазы осуществляется клапаном, установленным между кубом и колонной на линии подачи паровой фазы, при этом тепло в куб подается непрерывно. Для циклической подачи жидкости используют клапаны, установленные на линии сырья и орошения флегмы. Тепло дефлегматора отводится непрерывно. [c.212]

    Организовать процессы циклической ректификации и абсорбции можно тремя путями. Наиболее простым является случай непрерывной подачи жидкой фазы (верхнего орошения и сырья), в то время как паровая фаза подается через определенные промежутки времени при этом жидкость по тарелкам движется в отсутствие парового потока. [c.212]

    При принятии граничных условий (12) исходили из того факта, что верхняя часть капли (паровая фаза) адиабатически изолирована. Таким образом, при 0 = (3 температура непрерывной фазы Т = = Г . [c.56]

    Сущность разделения смеси на высококипящие и низкокипящие компоненты в простой тарельчатой колонне заключается в том, что в результате массообмена между жидкой и паровой фазами концентрации низкокипящих и высококипящих компонентов в этих фазах по высоте колонны непрерывно изменяются. [c.134]

    При конденсации паров парогазовых смесей или ири частичной конденсации многокомпонентных паровых смесей, когда состав паровой фазы непрерывно меняется и температура все время понижается, расчет требуемой по- [c.587]

    Рассмотрим процесс теплообмена при конденсации пара. Выберем на поверхности раздела жидкой- и паровой фаз элементарную площадку ёР. Пар, непрерывно конденсируясь, переходит в жидкую фазу. Обозначим линейную скорость жидкости, образующейся при конденсации пара и протекающей через выбранную элементарную площадку, и), плотность этой жидкости р и теплоту парообразования г. Очевидно, что количество тепла, передаваемое жидкости от пара при его конденсации через площадку в течение 1 часа, составит [c.141]

    Реакторы с псевдоожиженным катализатором. Каталитические реакции в газовой или паровой фазе часто целесообразно проводить в псевдоожиженном слое твердого зернистого катализатора. В этом случае обеспечивают хорошее перемешивание реакционной смеси и постоянство температуры, определяющие хороший выход целевого продукта. Это особенно важно, когда реакцию проводят в узком интервале температур (получение фталевого ангидрида). Процессы, в которых катализатор быстро теряет активность и требует регенерации, практически неосуществимы в реакторах с неподвижным слоем. Псевдоожиженный слой в сочетании с пневмотранспортом позволяет проводить такие процессы в агрегате, состоящем из реактора и регенератора, с непрерывно циркулирую-292 [c.292]

    Следовательно, в строгом смысле слова говорить о равновесии между жидкой и паровой фазами при испарении нефтепродуктов не приходится, поскольку при одной и той же температуре с течением времени состав обеих фаз будет непрерывно изменяться. [c.151]

    Нельсон [59] предложил прибор (рис. X. 37), в котором пары нефтепродукта, проходя кольцевое пространство, частично конденсируются, благодаря чему происходит непрерывное восполнение тепловых потерь сепаратора и обеспечивается адиабатичность разделения нефтепродукта на жидкую и паровую фазы. Таким образом устраняется необходимость специального подогрева сепаратора. Проверка работы описываемого аппарата показала, что он дает относительно хорошие результаты при сравнительно низких температурах при высоких же температурах перегонки наблюдается большая разница в температурах между жидкой и паровой фазами. [c.198]

    Многократное исиарение заключается в повторении процесса однократного испарения с удалением из системы наров, образующихся после каич дого процесса однократного испарения. При по-степеппом испарении по море нагрева жидкости паровая фаза непрерывно удаляется нз зоны перегонки (например, нерегопка из колбы или куба). [c.196]

    Замещение гидроксильной группы водородом в принципе можно осуществить тремя различными способами. Во-первых, все спирты можно превратить в соответствующие углеводороды путем каталитического восстановления, например, на сульфидном никель-вольфрамовом катализаторе при температуре около 300° и давлении 200 ат по непрерывной схеме. Чистый пикель особенно в паровой фазе в условиях более высоких температур может вызвать укорачивание углеродной цепи и поэтому непригоден для рассматриваемой цели (Пальфрей)  [c.59]

    Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. На рис. 1-21 показаны варианты схемы процесса однократной перегонки. При однократном испарении (рис. 1-21, а) исходную жидкую смесь непрерывно подают в подогреватель 1, где она нагревается до заданной температуры, соответствующей определенной доле отгона смеси при фиксированных значениях давления и температуры, затем парожидкостная смесь поступает в адиабатический селаратор 2, где паровая фаза отделяется от жидкой. Пары конденсируются и охлаждаются в конденсаторе 5 и в виде дистиллята поступают в емкость 4. Дистиллят из емкости и остаток из сепаратора после охлаждения непрерывно отводятся с установки. [c.54]

    Можно считать, что линии открытого испарения совпадают с кривой ректификации в аппарате с непрерывным изменением состава фаз при- бесконечном флегмовом числе и при сосредоточении сопротивления м сопере-даче в паровой фазе. Учитывая это, допустим, что в общем случае тенденции распределения компонентов по высоте колонны непрерывного действия с дифференциальным изменением состава фаз качественно подобны распределению составов по лини 1 дистилляции. [c.201]

    Для построения теории процессов перегонки нефтяных фракций оказался плодотворным предложенный А. М. Трегубовым метод, согласно которому нефтяную фракцию представляют как непрерывную систему, состоящую из практически бесконечно большого числа компонентов. При этом, очевидно, мольная доля каждого псевдокомпопента в жпдкой пли паровой фазе представится дифференциалом х или у, ибо отдельные составляющие могут входить в такую систему только в. бесконечно малом количестве, п на кривой ИТК сложной нефтяной фракции каждый компонент представится точкой. [c.104]

    Пусть требуется подвергнуть постепенной конденсацин насыщенный пар состава а, фигуративная точка Уг которого расположена на кривой СВ равновесных составов паровой фазы. Последовательное охлаждение этого пара будет иметь следствием появление вначале первой капли жидкости, состава х , отвечающего фигуративной точке / 2. лежащей на изобаре жидкой фазы и сответствующей изотерме начала конденсациии. Дальнейшее постепенное понижение температуры повлечет за собой непрерывную конденсацию пара, причем фигуративная точка выделяющейся жидкости будет все время двигаться по кривой АС равновесных составов насыщенной жидкой фазы вниз по направлению к точке А, а фигуративная точка остаточного пара, который в ходе конденсации прогрессивно обогащается компонентом ш, будет все время двигаться по кривой СЕ равновесных составов паровой фазы вниз от точки по направлению к фигуративной точке Е эвтектического пара, отвечающего условию равновесия с неоднородной двухслойной жидкостью. [c.50]

    Перейдем к рассмотрению постепенной нерегонки. Пусть исходная система предстаплена точкой иа изобаре АС жидкой фазы. Состав равновесного пара определяется абсциссой точки, раснолон<енной на изобаре паровой фазы СЕ. При постепенной перегонке температура системы будет непрерывно повышаться и фигуративные точки л идкого остатка и равновесного ему пара будут двигаться по изобарам АС кипения и СЕ ко(щен-сации по направлению к точкам А и Е. В лащком остатке содержание высококипящего компонента IV, увеличиваясь непрерывно [c.126]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]

    Поворачивают краи-дозатор 6 в вертикальное положение и отбирают 0,01 мл катализата. Его вводят в поток газа-носителя гелия, непрерывно проходящего через кран в детектор прибора. В печи 5 жидкая проба мгновенно испаряется и в паровой фазе поступает в колонку фрактометра. [c.163]

    В Советском Союзе в результате исследований, проведенных во ВНИИСК и ЦНИЛ Ереванского завода, был разработан оригинальный и простой способ гидрохлорирования ВА непрерывным методом в адиабатических условиях. Постоянство температуры реакции обеспечивается за счет теплоты испарения ВА, подаваемого частично в жидкой фазе, и путем проведения реакции при небольшой глубине конверсии, с отводом продуктов реакции в паровой фазе. [c.718]

    Во избежание крекинга при перегонке в вакуумных колоннах непрерывного действия температуру предварительного нагрева мазутов в трубчатых печах, определяющую долю отгона, ограничивают примерно 400°С. При периодической перегонке температура нагрева должна быть еще ниже. В работе [106] показано, что при перегонке в лабораторных условиях мазута ромашкинской нефти крекинг начинается уже при 320—325°С (температуры измерялись в паровой фазе). Это подтверждается изменениями свойств остатка остаток становится более жидким (увеличивается пенетрация, снижается температура размягчения, уменьшается дуктильность), возрастает содержание асфальтенов и уменьшается содержание смол. [c.81]

    При нагревании такой сложной смеси, как нефть, в паровую фазу прежде всего переходят низкокипящие компоненты, обладающие высокой летучестью. Частично с ними уходят высококипящие компоненты, однако концентрация низкокипящего компонента в парах всегда больше, чем в кипящей жидкости. По мере отгона пизко-кипящих компонентов остаток обогащается высококипящими. Поскольку давление насыщенных паров высококипящих компонентов при данной температуре ниже внешнего давления, кипение в конечном счете может прекратиться. Чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в паровое пространство переходят все новые и новые компоненты со все возрастающими температурами кипения. Отходящие пары 1<онденси-руются, конденсат отбирают по интервалам температур кипения компонентов в виде отдельных нефтяных фракций. [c.112]

    В основе промышленных процессов, осуществляемых на установках непрерывного действия, находится Т1ерегонка нефти с одно-и многократным испарением. При перегонке с однократным испарением нефть нагревают до определенной температуры и отбирают все фракции, перешедшие в паровую фазу. Перегонка нефти с многократным испарением, например с трехкратным, заключается в том, что сначала нефть нагревают до температуры, позволяющей отогнать из нее фракцшо легкого бензина. Затем отбензиненную смесь нагревают до более высокой температуры и отгоняют фракции, выкипающие примерно до 350° С (т. е. фракции тяжелого бензина, реактивного и дизельного топлив). В остатке от перегонки получается мазут, из которого в дальнейшем под вакуумом отгоняют фракции смазочных масел в остатке щ)Лучается гудрон. Другими словами, нефть последовательно нагревают три раза, каждый раз отделяя паровую фазу от жидкой. Образующиеся паровую и жидкую фазы подвергают ректификации в колоннах. Таким образом, промышленные процессы перегонки нефти основаны на сочетании перегонки с одно- и многократным испарением и последующей ректификацией паровой и жидкой фаз. [c.199]

    Технологическая схема процесса приведена на рис. 25. Чтобы процесс был непрерывным, на установке применяют два реактора. Сырье подогревается сначала в теплообменниках 3, а затем в печи 1 до температуры реакции и в паровой фазе подается в реактор 2. В реакторе 2 происходит в это время регенерация катализатора. Продукты реакции (изомеризат, полимеры и газ) выходят иг реактора 2 и поступают в колонну 4. Полимеры удаляются с низг колонны, а изомеризат и газ с верха колонны поступают в сепара тор 5 и затем в депропанизатор 6, откуда выходит готовый продукт Процессы при низких температурах. Для повышения октаново го числа бензинов термического крекинга перспективными катали заторами оказались синтетические цеолиты типа 5А [2]. В йх при [c.178]

    Выходящий из верхней части хлоратора тетрахлорэтан-сырец охлаждается в выносном холодильнике и непрерывно циркулирует в системе. Часть продукта отбирается и направляется на дегидрохлорирование, которое ведется в паровой фазе при температуре 400 С в присутствии хлора, являющегося инициатором. Получающийся контактный газ термического дегидрирования последовательно охлаждается, при этом органические хлорпродукты конденсируются и направляются на ректификацию, а хлористый водород абсорбируется водой и поступает на очистку (стрипинг-процесс) для последующего использования в производстве хлорвинила. [c.334]

    Этот метод основан на непрерывном возвращении в кипятильник конденсата паровой фазы до установления равновесия, по достижении которого отбираются для анализа пробы жидкой фазы и конденсата. Один из наиболее распространенных приборов для этого предложен Отмером [128] (рис. 55). [c.146]

    Л. Малагамба с соавт. осуществил циклическую подачу жидкой фазы и непрерывную - паровой на системе этиловый спирт - вода под атмосферным давлением в колонне диаметром 56 мм с тремя ситчатыми тарелками, межтарельчатое расстояние составляло 500 мм, живое сечение - 21%. При циклической подаче пара и непрерывной подаче жидкости, однако, отмечались следующие недостатки гидравлический удар в начале парового периода, различный уровень жидкости на тарелках, значительное перемешивание жидкости при ее сливе, вместо поршневого движения. Поэтому была изменена схема процесса во-первых, было организовано движение жидкости прерывистое, а во-вторых, цикл начинался с увеличения свободного сечения нижней тарелки с 21% до 75%, при этом скорость пара в сечении колонны падала и жидкость быстро сливалась с тарелки в куб. Пар, минуя тарелку, контактирует с жидкостью на вышележащих тарелках. Такое волнообразное изменение свободного сече- [c.218]

    МПа (4—6 кгс/см2), температура в испарителе 100—110°С. Из испарителя продукт конденсации в виде перегретого раствора поступает в пароотде-литель 6, где происходит разделение жидкой и паровой фаз. Жидкая фаза (конденсационный раствор) дозировочным насосом непрерывно перекачивается в смеситель 10 для замешивания композиции мелалита, а пары воды и частично формальдегида поступают в холодильник 7. В смедитель 10 одновременно с конденсационным раствором подается сульфитная целлюлоза. Замешивание массы мелалита в смесителе производится при 80—90 °С. Продолжительность пребывания массы в смесителе— 10 мин. Из смесителя сырая масса мелалита по транспортеру непрерывно передается в ленточную сушилку 11. Температура воздуха в сушилке не превышает 150 °С, продолжительность сушки составляет 1,5—2 ч. Высушенная масса мелалита поступает на помол в шаровую мельницу 12, куда отдельными порциями вводят добавки сыпучих компонентов — белила, красители, смазку, катализатор. [c.72]

    Приборы непрерывного действия без ректификации, работаюпцие по принципу однократного испарения, широко применяют для построения кривых однократного испарения ОИ и кривых равновесия нефтей и нефтепродуктов. Построение кривых ОИ сводится к определению выхода (в процентах) паровой и жидкой фаз, образующихся в условиях однократного испарения при данных температурах. При построении кривых равновесия производят анализ равновесных жидких и паровых фаз (полученных в результате однократного испарения исследуемого нефтепродукта при различных температурах) на содержание продукта, принимаемого за легкокипя-щий компонент. Для получения истинного фракционного состава фаз раз-гонка фаз должна проводиться с ректификационной колонной. [c.194]

    И некоторых случаях небольшое изменение температуры в адиабатическом реакторе достигается подачей вместе с сырьем инертного, I O участвующего в реакции вещества (теплоагента), которое поглощает при экзотермической или компенсирует ирп эндотермической реакции часть теплового эффекта реакции. Примером такого реактора является выносная реакционная камера термического кр( -кинга, куда непрерывно поступает исходное сырье, нагретое в трубчатой и( чи до 470—500 . Объем камеры выбирается с таким расчетом, чтобы паровая и кидкая части потока находились в анпарате в зопо высоких температур в течение отрезка времени, необходимого для достигкения требуемой глубины крекинга. Вследствие эндотермического эффекта реакцип крекипга температура в реакционной каморе иоиижаотся. Глубина крекинга может регулироваться как изменением температуры поступающего в реактор продукта, так п да-влепи< м в каморе при изменении давления изменяется объем паровой фазы, а следовательно, и продолжительность нребывапия в зоне реакции. Отлагающийся в камере при крекинге кокс периодически один раз в 1—2 месяца удаляется. [c.619]


Смотреть страницы где упоминается термин Непрерывные в паровой фазе: [c.78]    [c.59]    [c.94]    [c.110]    [c.259]    [c.705]    [c.66]    [c.17]    [c.632]   
Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.229 ]

Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.229 ]

Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.199 ]




ПОИСК







© 2024 chem21.info Реклама на сайте