Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы, определение активность радикалов

    Таким образом, из-за передачи водорода антиоксидантом радикалу, ответственному за развитие цепного процесса окисления, происходит обрыв цепи и одновременно образуется менее активный радикал А. Однако следует учитывать, что в определенны  [c.632]

    II 6.6. Ясно, что мономеры в табл. 6.6 расположены в порядке значений е. Этот порядок определяет полярность мономеров. Относительную важность резонансного и полярного эффектов при определении активности мономеров легче понять, рассматривая данные табл. 6.4 с точки зрения значений — е мономеров. Различные радикалы можно разделить на две группы относительно неактивные радикалы (стирол и бутадиен) и активные радикалы (все остальные). В случае активных радикалов слабые влияния полярности практически не имеют значения, и активность мономеров зависит в первую очередь от резонансных факторов. Значения /с12 возрастают с увеличением значений Q для мономера. Радикалы бутадиена и стирола относительно мало активны и поэтому оказываются чувствительными к слабым полярным влияниям. Эти два радикала, имеющие отрицательные значения е, обладают повышенной активностью по отношению к таким мономерам, как метилметакрилат и акрилонитрил, которые имеют относительно высокие положительные значения е. Однако влияние резонансного эффекта оказывается более важным, чем влияние [c.373]


    Межфазное поведений углеводородов, их смеси или нефти в многокомпонентных системах можно моделировать алканами. Для любого углеводорода существует свой алкановый эквивалент (а.э.), который показывает, что углеводород ведет себя в системе аналогично алкану с соответствующим числом углеводородных атомов. Число атомов углеводорода алкановой цепи, соответствующее а, принято называть алкановым углеводородным числом (а.ч.). Хотя алкановое число является характеристикой исследуемой системы в целом при определенных температурах, концентрации электролитов, структуре и концентрации сопутствующих ПАВ, оно может быть характеристикой самого ПАВ. Влияние различных параметров на а.ч. описывается эмпирическими корреляциями, основанными на исследованиях как индивидуальных, так и сложной смеси технических ПАВ. Введение электролитов в водный раствор суль-фанатов приводит к обогащению межфазного слоя ПАВ. Однако не всегда обеспечиваются условия для оптимального распределения их между водной и углеводородными фазами. Высокое сродство поверхностно-активных веществ к обеим граничащим фазам достигается добавлением в систему сопутствующих ПАВ, в качестве которых наиболее часто используют спирты [19, 20]. Наличие спиртов ведет к образованию более разрыхленной структуры межфазного слоя. Увеличение длины радикала спирта способствует повышению сродства системы к углеводородной фазе, что снижает оптимальную концентрацию электролита и увеличивает глубину минимума межфазного натяжения [19, 20]. Низшие спирты вызывают обратный эффект. Увеличение количества атомов углерода в боковой цепи сопутствующих ПАВ мало сказывается на изменении а. Например, трет-бутиловый и изопропиловый спирты оказывают такое же действие на систему вода-ПАВ-углеводород, как и этанол. [c.10]

    Для определения активности радикала NHo по отношению к СНд рассмотрим группу реакций  [c.47]

    Н, Н. Семенов, предложивший этот метод для сравнения активности радикалов [14], установил, что тепловой эффект Q реакции зависит не от X, а от Н- и К -, Следовательно, реакционную способность радикалов можно сравнивать относительно какого-либо эталонного радикала. Такое сравнение равносильно сравнению радикалов по прочности связи К—X, где X — какой-то определенный радикал или атом. Чем прочнее связь, тем активнее радикал К-. [c.43]

    Формально реакция 2 является реакцией не разветвления, а продолжения, поскольку при этом не создается новых активных центров. Фактически, однако, это реакция разветвления, поскольку роль, играемая радикалами Н и ОН, различна на фазе зарождения. Дело в том, что радикал ОН очень важен при образовании основного конечного продукта — воды (реакции 2, 8, 14), но менее важен как центр разветвления (реакция 24). Реакция 2 наряду с реакцией 4 важна в общем механизме процесса (почти при любых значениях параметров Т, Р, а) и является одним из основных каналов расхода молекулярного водорода. Поэтому вполне понятен интерес, проявляемый исследователями к этой реакции — известно более 150 работ, посвященных определению значения kt [17, 22, 54— 57, 65, 69, 84, 85, 89, 111, 123, 135, 139 и др.]. В основном это экспериментальные работы, основной результат которых сводится к следующему. Наиболее надежные определения проведены в [87, 103, 112], использующих сходную технику — электрическим разрядом в потоке Hj генерировались радикалы Н, вступающие в реакцию с NO2 и дающие ОН. В дальнейшем радикал ОН по реакции 2 реагировал с Hj. [c.253]


    Более полные сведения имеются о свойствах углеводородных радикалов. По данным X. С. Багдасарьяна , при полимеризации наиболее активные радикалы образуются из наименее активных (наиболее устойчивых) мономеров (антибатность). В. В. Воеводский и Н. Н. Тихомирова установили, что в пределах определенного гомологического ряда свободный радикал тем активнее, чем прочнее связь, разрывающаяся при его образовании. [c.11]

    Целесообразно рассматривать не абсолютную, а относительную активность радикала по отношению к какому-либо радикалу, принятому за стандарт. Для радикалов со свободной валентностью у атома С в дальнейшем в качестве стандартного радикала будем принимать весьма активный радикал СНд(К1), Мерой относительной активности радикала может служить разность д[ — д, отвечающая определенной разности энергий активации б1 — е . Последняя определяет отношение скоростей реакций с молекулой К Х радикала й стандартного радикала (конечно, при равенстве предэкспоненциальных множителей)  [c.35]

    На основании прямых экспериментальных определений констант скоростей реакций типа Р-ЬМ—>-РН + Р и Н- -2РН— -Нг + Р в начале 50-х годов были сформулированы эмпирические правила, позволившие, по крайней мере для углеводородных радикалов, однозначно связывать активность радикала с его химической структурой. [c.18]

    Между полярными свойствами и защитной эффективностью различных маслорастворимых ПАВ имеется определенная зависимость. Для одного и того же класса химических соединений полярность ПАВ тем больше, чем ниже их молекулярная масса. Одновременно с этим при удлинении углеводородного радикала улучшается растворимость маслорастворимых ПАВ в нефтепродуктах и, согласно правилу П. А. Ребиндера, уменьшается их поверхностная активность на границе раздела нефтепродукт — вода. Таким образом, ингибиторы коррозии нефтепродуктов нужно выбирать из соединений, обладающих наибольшей полярностью в малополярных углеводородных средах и проявляющих наивысшую поверхностную активность в углеводородной среде на границе с водой. В общей шкале ПАВ, предложенной П. А. Ребиндером, указанные ингибиторы коррозии занимают место между водо- и маслорастворимыми ПАВ. [c.304]

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Такое определение ПАВ является весьма общим. Любое вещество в газообразном или растворенном состоянии может проявлять повер/ностную активность на подходящей поверхности разделав В более узком, обычно принятом смысле этого термина к ПАВ относят органические вещества, молекулы которых состоят из двух асимметрично расположенных частей, резко различающихся по молекулярной природе и свойствам, — полярной группы и неполярного (или слабополярного) углеводородного радикала. Таковыми являются, например, жирные спирты и амины, карбоновые кислоты и их соли, разнообразные по составу и строению синтетические ПАВ. [c.5]

    В мономолекулярной реакции превращению подвергается только одна частица — молекула, радикал или ион. К мономолекулярным реакциям относятся реакции изомеризации и распада. Превращению подвергаются только активные молекулы, обладающие внутренней энергией, большей некоторой пороговой величины — энергии активации. Превращение активных молекул в продукты реакции происходит через стадию активированной молекулы, в которой избыточная энергия сосредоточивается на определенных степенях свободы, что и приводит к реакции. [c.81]

    Комплексы, образованные монтмориллонитом и галлуазитом с различными спиртами, систематически изучал Мак-Юан . Он показал, как молекулы проникают в структуру глинистого минерала и расширяют всю решетку и как С помощью рентгенографического изучения можно наблюдать изменения расстояний между слоями. Молекулы сначала образуют двухмерный слой и ложатся насколько возможно плоско. Монтмориллонит и спирт образуют такие комплексы в виде одного, двух или трех слоев галлуазит же может удерживать только один такой слой. Исследованные спирты гвключали несколько моногидратных или полигвдратных типов, а также алкиловые эфиры, углеводороды и другие простые соединения. Этот тип адсорбции лишь действие вторичной валентности, а не обмен оснаваниями. Таким образом, объясняется, почему галлуазит, который обмённо не активен, также образует такие соединения. Эти последние служат непосредственным подтверждением связи ионов кислорода в структурных слоях глинистых минералов сопряженной группы ОН —О. Длина органических групп, несущих активный радикал СН — О, выводится из расстояний между базальными слоями в галлуазите. По величине длины определяется сила влияния усиливающейся электроотрицательности в адсорбируемом атоме и множественности связей, усиливающих электроотрицательность атомов углерода. Таким образом, можно использовать опыты по адсорбции для определения молекулярных построек, если, например, вводить циклогексановое кольцо с его угловатой структурой или [c.337]


    Строение и величина бокового радикала нафтеновых кислот оказывает существенное влияние на их активность. Высокомолекулярные кислоты менее активны по отношению к металлам, чем низкомолекулярные. Поэтому наряду с общим количеством нафтеновых кислот целесообразно оценивать их активность. Наиболее быстрое и точное определение активности и общего коли-чоства карбоксильных групп в нафтеновых кислотах можно проводить методом осциллографической полярографии. [c.55]

    Для прогнозирования межфазной активности водорастворимых ПАВ удобно пользоваться правилом Дюкло - Траубе, согласно которому с увеличением числа углеродных атомов в гидрофобном радикале гомологических рядов таких ПАВ данная характеристика возрастает в 3,2 раза на каждую -СН -группу. Это вытекает из вь(игрыша энергии от перевода каждой метиленовой группы молекул ПАВ из объема на межфазную границу. Однако свойствами типичных ПАВ будут обладать лишь гомологи, начиная с определенной длины цепи в молекуле. Нэпример, в гомологическом ряду щелочных солей насыщенных карбоновых кислот типичными ПАВ будут гомологи с числом углеводородных атомов в молекуле 11 и более. При достижении определенной длины радикала ПАВ (в зависимости от вида полярной группы она находится в пределгх С14.18) их межфазная активность стабилизируется, а затем постепенно снижается. [c.13]

    Значительную роль при этом отводят окислительной деструкции (работы Чупки). Как известно, капиллярно-пористый материал древесины содержит определенное количество кислорода воздуха, который, взаимодействуя в щелочной среде с компонентами древесины, образует такие активные формы, как супероксид-аниои-радикал и гидроксил-радикал ОН. Кислород и, в особенности, его активные формы окисляют полисахариды. Окисление спиртовых групп полисахаридов до карбонильных в щелочной среде приводит к статистической деструкции гликозидных связей по механизму реакции Р-элиминирования (см. ниже схему 11.32). Следовательно, одной из причин повышения выхода целлюлозы при использовании антрахинона и его аналогов в щелочных варках может также являться подавление их восстановленными формами окислительной деструкции полисахаридов. [c.350]

    Таким образом, доминирующая роль в ингибировании пламени порощками, по нашему мнению, принадлежит процессу гетерогенной рекомбинации радика лов и атомов. Именно это обстоятельство обусловливает повышенную эффективность и универсальность порошков. В отличие от летучих ингибиторов, действие -которых связано с преимущественной гибелью определенных активных центров и может ослабляться конкурирующими (в частности, обратными) реакциями, гетерогенные ингибиторы универсальны по отношению ко всем активным центрам, а процесс рекомбинации носит необратимый характер. [c.117]

    Сополимеры этилакрилата с простыми виниловыми эфирами описаны в литературе в качестве продуктов промышленного использования (эластомеры и клеи). Например, приводятся способы получения сополимеров этилакрилата й Р-хлорэтилового эфира [1], этилакрилата с дивиниловым эфиром [21, этилакрилата с винилизобутиловым эфиром [3]. Однако изучение процесса сополимеризации этилакрилата с простыми виниловыми эфирами не проводилось, не определены константы сополимеризации. Мы полагали, что полезно частично восполнить существующий пробел, и на смеси этил-акрилат — винил-к-бутиловый эфир проверить возможность использования точного уравнения состава сополимера Гиндина, Абкина и Медведева [41 для определения относительной активности радикала винил-к-бутилового эфира. [c.343]

    Арильные радикалы обладают высокой реакционной способ- ностью. Определение абсолютных скоростей взаимодействие фенильного радикала с бензолом, толуолом, хлорбензолом в. СЬРССРгС (фреон 113) при 25 С показывает, что по активности он йревосходит такой высокоактивный радикал, как трет-ВиО [1032]. При взаимодействии с толуолом в газовой фазе-(400—450 Х) отношение скоростей арилирования в. кольцо и отрыва атома водорода от метильной группы для фенильного if и -нафтильного радикала (0,2—0,25) примерно на поряДок боль-[ ше, чем для а-нафтильного и 9-антрильного радикалов (0,05. к 0,01 соответственно), но отношение скоростей арилирования в. [c.447]

    Практическое использование схемы Q — е для предсказания значений и г г для новых пар сомономеров ограниченно. Причина этого состоит в том, что значения Q е для каждого мономера неоднозначны как с экспериментальной, так и с теоретической точки зрения. Точность вычисленных значений Que часто очень мала вследствие неточности экспериментально определенных констант сополимеризацип мономеров. Это можно видеть по данным табл. 6.8, где приведены значения е, вычисленные для акрилонитрила по различным значениям и Гз, полученным для одной и той же пары сомономеров (акрилонитрил — винилацетат или акрилонитрил — винилхлорид). Далее, значения Q тк е мономера значительно изменяются в зависимости от того, с каким мономером он сополимеризуется (табл. 6.8). Это связано с недостатками самой схемы Q — е, которая плохо учитьтвает стерические факторы, влияющие на активность мономеров при определенных комбинациях радикал — мономер. В этом отношении показательно, что значения Q — е часто бывают бессмысленными при соцолпмериза-пии 1,1-дизамещенных мономеров или вообще всех замещенных [c.372]

    Способ стабилизации путем соединения свободных радикалов связан с определенными трудностями, так как при этом должно быть исключено возбуждение реакции передачи цепи с отрывом атомов водорода от подвергаемых стабилизации полимеров. Радикал, обрывающий цепную реакцию за счет соединения с макрорадикалом, должен быть достаточно стабильным и вместе с тем довольно активным по отношению к макрорадикалам R и ROO , образовавшимся при инициировании термоокислительной деструкции полимеров. Следовательно, задача подыскания радикала-акцептора активных свободных радикалов связана с тщательной оценкой активности соответствующих препаратов. В этом отношении интересными свойствами обладает, например, довольно широко применяемый в работах по изучению поведения свободных радикалов в растворах устойчивый свободный радикал а,а-дифенил-13-пик-рилгидразил [c.129]

    Энергия связи азот—металл должна зависеть от межатомного расстояния в решетке металла, так как это расстояние влияет на деформацию связей в молекуле при адсорбции радикала. Действительно обнаружена определенная корреляция между каталитической активностью и межатомным расстоянием в кристаллической решетке металлов. Кривая зависимости скорости реакции от межатомного расстояния имеет вулканообразный характер с вершиной, приходящейся на кобальт. Интересно отметить, что межатомное расстояние в кристаллах кобальта (0,2507 нм) близко к расстоянию между атомами водорода у разных атомов азота молекулы гидразина в точке касания с плоскостью (0,2515 нм). Отсюда моя но предположить, что промежуточный радикал адсорбируется на двух атомах катализатора, при этом на кобальте молекула гидразина деформируется минимально и, соответственно, энергия связи радикала с поверхностью металла близка к оптимальной. Можно принять длину 0,2515 нм близкой к оптимальному межатомному расстоянию в кристаллической решетке электрода для электроокнсления гидразина. Отклонение от оптимального межатомного расстояния увеличивает деформацию связей при адсорбции радикала и соответственно изменяет энергию адсорбции. Как видно из рис. 26, энергия связи радикала с металлом снижается, а потенциал электроокнсления гидразина растет с увеличением разности между межатомным расстоянием в решетке металлического электрода и оптимальным расстоянием. [c.87]

    Согласно данным H. H. Семенова , активность радикала определяется тепловым эффектом его реакции с какой-либо определенной молекулой однако сопоставлять таким образом можно только радикалы, имеющие свободную валентность при атоме одного и того же элемента. Следовательно, активность радикалов типа R- трудно сравнивать с активностью радикалов типа R0- и RO,-, но активности R0 hRO.j- можно сравнивать между собой. К сожалению, непосредственных данных по этому вопросу нет. Основываясь на кинетических данных, H.H. Семенов пришел к заключе- [c.10]

    Изложенный выше способ расчета мгновенного состава и строения сополимеров, образующихся по предконцевой модели, был впервые предложен Прайсом [57]. Им же был указан общий алгоритм аналогичного расчета с помощью цепей Маркова для случая, когда активность полимерного радикала в сополимеризации определяется произвольным числом п концевых звеньев. При этом исходная цепь Маркова п-го порядка с двумя состояниями сводится к цепи Маркова первого порядка с 2" состояниями, каждое из которых отвечает определенной выборочной последовательности С/ . Пронумеровав все эти последовательности, можно, исходя из кинетической схемы типа (9.124), написать матрицу переходов 2 -го порядка, аналогичную (9.134). Каждая строка этой матрицы Q будет содержать только два ненулевых элемента, сумма которых вследствие условия стохастичности Q, равна единице. Определение матричных элементов в общем случае останется тем я е, что н в формуле (9.1. 5), однако число параметров г будет равно 2". После того как матрица Q выписана, но формулам (Д.1У.И), (Д.IV. 12) находится стационарный вектор, каждая компонента которого я, (i — 1,. 2") равна вероятности 288 [c.288]

    В связи с определенным значением антиокислител .пого эффекта при торможении полимеризации можно принять, что обрг в цепи под влиянием ингибиторов происходит в результате отдачи водорода ингибитором для насыщения свободной валентности активного радикала. Однако подобное представление не оправдывается в случае фенолов, так как, например, гидрохинон, повидимому, не обладает ингибирующим действием в отсутствии кислорода [114]. Эффект ингибирования, следовательно, обусловлен присутствием хинона, который представляет собой активный ингибитор. Длительность индукционного периода при термической полимеризации стирола при 120° зависит от количества хинона [115]. [c.221]

    Знание относительных констант сополимеризации различных систем само по себе, однако, не позволяет сопоставить активности различных радикалов количественно и дают нам лишь относительную активность радикала по отношепню к двум мономерам. Экспериментальное определение абсолютных констант сонолимеризации и до настоящего времени С1це не разработано. Однако знание и Гд, а также абсолютных констант нолимеризации мономеров и позволяет шлчпслить и константы Ко и К . [c.309]

    Адсорбция. Различают два вида адсорбции дифильных молекул. На границах раздела вода — неполярная фаза (вода — воздух, вода — углеводород) адсорбция имеет, по определению П. А. Ребиндера, пассивный характер, так как происходит путем , выталкивания углеводородных радикалов нз водной фазы вследствие интенсивного взаимного притяжения полярных молекул воды. Носителем поверхностной активности при адсорбции из воды на границе с неполярной фазой служит углеводородный радикал. Уменьщение энергии Гиббса в этом процессе достигается такой ориентацией молекул ПАВ в адсорбционном слое, при которой гидрофобная часть молекулы в большей или меньшей степени переходит в неполярную ф аз у, полярная группа остается в воде (йр я м а я ориентаЙ . Такая адсорбция является неспецифической, для нее характерно подчинение правилу Дюкло — Траубе. [c.6]

    Однако на первый взгляд такое простое объяснение явления замедления встречает затруднение. Ведь при реакции радикала цепи с молекулой примеси вновь появляется радикал, который, реагируя с исходным веществом, может возродить радикал цепи и, таким образом, действие примеси сведется к нулю. Так оно и бывает во многих случаях. По ведь замедлителями являются не все вещества, а лишь строго определенные. Эти вещества, очевидно, обладают тем свойством, что в результате реакции с нйми радикала цепи образуется радикал, весьма мало активный, который успевает раньше исчезнуть путем рекомбинации, чем войти в реакцию с иход-ным веществом и возродить цепь.  [c.20]

    При определении kts исключительно важно знать ие только ПХ абсолютные значения, но и соотношение кТб/к в, поскольку конкуренция между реакциями 16+ и 18+ фактически есть конкуренция продолжение — обрыв, так как в первом случае образуются два новых радикала, а во-втором — устойчивые молекулярные продукты. Замена двух радикалов Н и НОа на два радикала ОН в тех случаях, когда реакция 16 сдвинута вправо, весьма благоприятна для развития и продолжения цепей в целом, так как это — замена двух долгожителей на ко-роткоживущпе активные радикалы. Поскольку местоположение второго предела воспламенения, как указывалось, определяется конкуренцией между разветвлением по 5 и обрывом по 11 -> 15, 11 18, то это обстоятельство и было положено в основу экспериментов для пахож- [c.283]

    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    Обьгано высшие алкилзамещенные галоидфенолы обладают более высокой активностью, чем низшие алкилгалоидфенолы или алкилфенолы и галоидфенолы [7]. Особенно высокими бактерицидными свойствами против определенных бактерий обладают такие алкилгалоидфенолы, у которых углеводородный радикал (алкил, или аралкил) находятся в пара-положении, а атом хлора в ортоположении по отношению к гидроксильной группе [7]. Например, активными в отношении бактерий 31арка1геп8 являются 4-амил-2- [c.198]


Смотреть страницы где упоминается термин Радикалы, определение активность радикалов: [c.133]    [c.308]    [c.190]    [c.220]    [c.102]    [c.274]    [c.385]    [c.269]    [c.84]    [c.229]    [c.164]    [c.263]    [c.275]    [c.278]    [c.63]    [c.110]    [c.165]   
Введение в радиационную химию (1967) -- [ c.146 , c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Определение ХПК активного ила

Радикалы, определение активность



© 2024 chem21.info Реклама на сайте