Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольный момент электрический его измерение

    Основные характеристики электрических свойств молекул, т. е. их поляризуемость и дипольный момент, определяются на основе измерения диэлектрической проницаемости, которую называют также диэлектрической постоянной Измерение показателя преломления вещества позволяет определять мольную рефракцию исследуемою вещества и делать на основе этой величины выводы о возможном строении молекул. [c.50]


    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]

    Дипольный, или электрический момент л = el, где е — заряд электрона, равный 4,8- Ю эл. стат. ед., а / — длина диполя в см. Единица измерения дипольного момента — дебай ( >) Ш = [c.55]

    Опыты по микроволновой спектроскопии позволяют найти точные значения дипольных моментов молекул. При наложении на исследуемый образец электрического поля происходит расщепление вращательных линий (эффект Штарка). Величина расщепления зависит от произведения дипольного момента (подлежащего измерению) и напряженности электрического поля (известной величины). [c.234]

    Основные характеристики электрических свойств молекул — поляризуемость и дипольный момент — определяются на основе измерения диэлектрической постоянной. [c.534]

    Среди методов исследования магнитных и электрических свойств наибольшее применение в химии получили измерения магнитной восприимчивости и дипольного момента молекул. [c.187]

    Если внешнее электрическое поле Е известно, переход с достоверностью идентифицирован, то из измерения сдвига частоты линии, обусловленного эффектом Штарка, можно определить дипольный момент молекулы. Измерения проводятся методами микроволновой спектроскопии. Подробные описания методики измерения, расчетные формулы и обширная библиография приведены в монографиях [16, [c.13]

    Сказанного уже достаточно, чтобы сделать очевидным, что измерения дипольных моментов дают важные сведения относительно полярности связей. Величина момента может быть найдена на основании измерения диэлектрической постоянной вещества. Диэлектрическая постоянная D вещества определяется следующим образом. Допустим, что имеется плоский конденсатор с некоторым зарядом на обкладках. Положим, что разность потенциалов между обкладками конденсатора в вакууме равна Ф. Если в промежуток между обкладками, не меняя их заряда, вносят вещество с диэлектрической постоянной D, то разность потенциалов падает до Ф/D. Диэлектрическая постоянная вещества является, таким образом, как бы мерой его способности противодействовать электрическому полю это происходит благодаря образованию в диэлектрике противоположно направленного электрического поля или в результате смешения электрических зарядов в молекулах, т. е. вследствие поляризуемости молекул, или вследствие ориентации постоянных диполей, присущих молекулам. Имеется одно существенное различие этих двух эффектов, которое позволяет разделять их. Эффект, вызванный смещением зарядов, не зависит от температуры, а вызванный ориентацией зависит от нее, так как чем сильнее тепловое движение, тем больше тенденция к беспорядочному распределению направлений диполей и тем труднее приложенному полю ориентировать их. Для нахождения дипольного момента производят измерения диэлектрической постоянной при различных температурах .  [c.198]


    Измерение дипольного момента может дать представление о симметрии равновесной конфигурации молекулы. Так, полярность молекулы Н3О указывает на ее изогнутость, а неполярность молекулы СО2 — на линейность. Дипольный момент многоатомной молекулы можно условно пред-Рис. 32. Электрический ставить как векторную сумму дипольных [c.86]

    Предположение о подобии изотерм, относящихся к различным потенциалам, лежащее в основе вывода уравнения (27.24) (или эквивалентное предположение о линейной зависимости е от в), может быть подвергнуто экспериментальной проверке. Такая проверка показывает, что в первом приближении это предположение является справедливым. Предположение о подобии изотерм, измеренных при различных потенциалах, соответствует тому, что эффективная величина дипольного момента Хэф, отнесенная к средней толщине двойного электрического слоя б р, не зависит от заполнения поверхности органическим веществом  [c.140]

    Когда проводят количественные измерения в физике, то регистрируют факты, подобные показаниям самописца или щелчкам счетчика Гейгера. Это и есть наблюдения. Термин наблюдаемые в квантовой механике означает не только то, что действительно можно видеть, а обозначает любую величину, которая в принципе может быть измерена. Существует важное различие между волновой функцией, вид которой зависит от выбора координат (переменных), описывающих систему, и которая сама не является наблюдаемой, и, например, дипольным моментом, принимающим значение, не зависящее от того, какой метод используют для его расчета или измерения. Поэтому дипольный момент называют наблюдаемой, хотя в действительности для его определения экспериментально можно измерять электрическую емкость. [c.67]

    Оригинальное направление в электрооптических исследованиях развито Толстым с сотр. , использовавшими вращающееся электрическое поле. Поскольку электрическое поле ориентирует частицу,. последняя вращается вслед за полем с отставанием по фазе ввиду вязкого сопротивления, оказываемого средой. Измерения угла между вектором вращающегося поля и осью вращающейся частицы В зависимости от величины напрял<енности электрического поля позволяют рассчитать дипольный момент частицы. Оказалось, что в сильных полях вращающий момент пропорционален квадрату напряженности поля, при значительно меньшей величине поля зависимость становится линейной. Как известно из электростатики, пара сил, действующих на диполь в электрическом поле, пропорциональна произведению величин поля и диполя. Так как ИДМ также пропорционален полю, [c.226]

    Оригинальное направление в электрооптических исследованиях развито Толстым с сотр. , использовавшими вращающееся электрическое поле. Поскольку электрическое поле ориентирует частицу, последняя вращается вслед за полем с отставанием по фазе ввиду вязкого сопротивления, оказываемого средой. Измерения угла между вектором вращающегося поля и осью вращающейся частицы в зависимости от напряженности электрического поля позволяют рассчитать дипольный момент частицы. Оказалось, что в сильных полях вращающий момент пропорционален квадрату напряженности поля, при значительно меньшей величине поля зависимость становится линейной. Как известно из электростатики, пара сил, действующих на диполь в электрическом поле, пропорциональна произведению величин поля и диполя. Так как ИДМ также пропорционален полю, это приводит к квадратичной зависимости момента от поля. Обнаруженная линейная зависимость указывает на существование постоянного дипольного момента, не зависящего от поля В сильных полях основным является квадратичный член, отражающий роль ИДМ, в менее сильных — преимущественно проявляется линейный член, отражающий существование постоянного диполя. [c.249]

    Особое место в характеристике растворителей занимает диэлектрическая проницаемость. Преимущества последней по сравнению с другими критериями связаны с простотой электростатических моделей сольватации, и поэтому диэлектрическая проницаемость стала полезной мерой полярности растворителей. В этой связи важно четко представлять себе, что именно отражает макроскопическая диэлектрическая проницаемость растворителя (называемая также относительной диэлектрической проницаемостью Ег = е/ео, где ео — диэлектрическая проницаемость вакуума, т. е. постоянная величина). Диэлектрическую проницаемость определяют, помещая растворитель между двумя заряженными пластинами конденсатора. В присутствии растворителя напряженность электрического поля между пластинами Е снижается по сравнению с напряженностью Ео, измеренной в вакууме, и отношение Ей Е представляет собой диэлектрическую проницаемость растворителя. Если молекулы растворителя не обладают собственным постоянным дипольным моментом, то под влиянием внешнего поля внутримолекулярные заряды разделяются, индуцируя диполь. В электрическом поле молекулы с постоянным или индуцированным диполем ориентируются определенным образом это явление называют поляризацией. Чем выше степень поляризации, тем сильнее падение напряженности электрического поля. Следовательно, диэлектрическая проницаемость непосредственно связана со способностью растворителя к разделению зарядов и ориентации собственных диполей. Диэлектрическая проницаемость органических растворителей изменяется приблизительно от 2 (в случае, например, углеводородов) до примерно 180 (например, у вторичных амидов) (см. приложение, табл. А.1). Растворители с высокой диэлектрической проницаемостью способны к диссоциации (см. разд. 2.6), и поэтому их называют полярными — в отличие от неполярных (илп аполярных) растворителей с невысокой диэлектрической проницаемостью. Диэлектрическая проницае- [c.99]


    В системе сорбент — сорбированная вода реактивное поле по мере увлажнения сорбента растет, что обусловливает увеличение дипольного момента комплекса даже в том случае, когда дополнительно сорбированные молекулы непосредственно не взаимодействуют с комплексом. При этом изменение е может происходить не только за счет роста е , но и за счет увеличения бос. В наибольшей мере это должно проявиться тогда, когда приращения Дея и Деоо в результате увлажнения материала отличаются незначительно. В этом случае увеличение е системы обусловлено протонной поляризацией в большей степени, чем ориентационной. Можно предположить, что при включении слабого электрического поля при измерении диэлектрических характеристик системы сорбент — сорбат происходит ориентация диполей, которая способствует переносу протона вдоль Н-связи. Последнее вызывает переход КВС из молекулярной в ионную форму. Вероятность такого перехода в системе сорбент — сорбат зависит от диэлектрической проницаемости среды, окружающей КВС она резко увеличивается при определенной для данной системы критической величине йо- [c.247]

    Такие индуцированные растворителем сдвиги полос поглощения и испускания использовались для расчета дипольных моментов возбужденного электронного состояния молекул [32, 33, 47, 303]. Дипольные моменты возбужденного состояния молекул определяли также путем измерения поляризации флуоресценции под воздействием внешнего электрического поля [32, 33]. [c.438]

    ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКИХ ДИПОЛЬНЫХ МОМЕНТОВ [c.42]

    Таким образом диэлектрическая постоянная показывает, во сколько раз сила взаимодействия и, следовательно, напряжение поля в данной среде меньше, чем в пустоте. Очевидно, измерение этой величины для диэлектриков легко осуществимо. С другой стороны, ослабление электрического поля в диэлектрике обусловлено возникновением наведенных дипольных моментов в молекулах диэлектрика и, следовательно, непосредственно связано с поляризуемостью молекул и молекулярной поляризацией Р . [c.171]

    Определение ц возможно по МВ-спектрам (см. ФХ 2.2.5.S), а также по ориентации дипольных молекул в неоднородном электрическом поле (метод молекулярных пучков). У многоатомных молекул с известными углами между связями ц приближенно разлагается с помощью векторов на отдельные моменты связей или моменты групп для определенных атомных группировок. Измерение ц служит вспомогательным средством структурных исследований (например, при различении щс- н гранс-форм). Значения дипольных моментов молекулы ц имеют порядок 10" единиц СГСЭ (или [c.418]

    Микроволновые спектры. Исследования дипольных моментов (электрических моментов), а также магнитных моментов можно проводить посредством измерений высокочастотных электромагнитных колебаний. ВысокочастЛ-ные колебания в области 10 —10 герц (длина волны от 3 см до 3 мм) можно также с успехом использовать для определения моментов инерции, межъядерных расстояний и других факторов, обусловливающих структуру молекул. В то время как в инфракрасной области вращательные [c.348]

    Таким образом, электрическое поле в мосте расположения молекулы растворенного вещества зависит от свойств растворителя. /Келая выразить поляризацию растворителя в виде функции его объемных свойств, т. е. в виде функции диэлектрической про-ницае.мости и показателя преломления п, мы сделаем определенные приближения, которые используются так/ке в теории Онзагера, позволяющей находить постоянные дипольные моменты из измерений диэлектрической постоянной [23, 24]. Указанные приближения состоят в следующем (1) растворитель рассматривается как однородная изотропная среда (2) молекула растворенного вещества считается помещенной в полость, вырезанную в растворителе (3) нолость считается сферической радиуса а (4) дипольный момент молекулы анпроксимируется точечным диполем, помещенным в центре сферы. [c.279]

    Экспериментальные измерения показывают, что если молекулы обладают несимметричным расположением атомов, то они характеризуются также несимметричным распределением электрического заряда. У таких несимметричных молекул имеются дипольные моменты. Единицами измерения дипольных моментов являются либо произведение электростатической единицы заряда на расстояние, либо дебай — едивица, которая больше первой в 10 раз. Таким образом, записывают, например, что дипольный момент НС1 равен 1,07-10 эл.-ст. ед.Хсм, или 1,07 Д. Экоперимбнтальная методика измерения дипольных моментов обсуждается в следующей главе. [c.422]

    Перед измерениями химически чистые вещества подвергались перегонке, осушались хлористым кальцием и снова перегонялись. Степень чистоты объектов исследования контролировалась хроматографически. Результат анализа показал, что содержание исследуемых изомеров в обравгхах не ниже 99%, концентрация полярных примесей незначительна. Из всех полярных 1фимесей особого внимания заслуживают следы воды, так как вода обладает сравнительно малым молекулярным объемом и большим электрическим дипольным моментом молекул. Это приводит к тому, что небольшие примеси воды могут заметно влиять на величину " образцов. Анализ на присутствие следов воды в исследованных жидких алканах проводился по методу Фишера, Концентрации воды оказались ниже концентраций, соответствующих насыщенным растворам. Учитывая это, можно полагать, что вода находится в растворенном состоянии, а не в виде эмульсии /6/. Следовательно, [c.126]

    Для выяснения структур некоторых межгалоидных соединений и, в частности, трифторида брома определены диэлектрические константы и электрические дипольные моменты [47]. Измерения проведены на многократно дистиллированном в монелевой аппаратуре трифториде брома методом биения гетеродина. Контроль температур осуществлялся с точностью + 0,05° С. Измерения давлений проводили с точностью +1 мм при помощи прибора Бур-дона, изготовленного из монель-металла и калиброванного по ртутному манометру. Измерительную ячейку калибровали на очищенных образцах аммиака и двуокиси углерода. Диэлектрические константы газов при давлении в одну атмосферу рассчитывали по изменению емкости АС измерительной ячейки. [c.139]

    В начале шестидесятых годов О. Р. Лайд, определяя дапольный момент с помощью эффекта Штарка, нашел, что его величина для изобутана равна 0,132 В /88/, а для н-пропана - 0,0830/89/. Следует отметить, что определение электрического дипольного момента по Штарк-эффекту дает возможность измерять значения дипольного момента порядка 0,1-0,21) с высокой точностью (до 0,2%). Важно, что дпя метода Штарка несущественно даже значительное загрязнение газов, так как дпя измерения выбираются лишь те линии поглощения, которые принадлежат исследуемой молекуле /90/. Стало ясно, что молекулы алканов обладают постоянным электрическим дЬпольным мо-мштом. Постоянный дипольный момент молекул алканов существует благодаря неполной взаимной компенсации дипольных моментов отдельных С-С-и С-Н-связей /87/. [c.142]

    Микроволновые спектры. Исследования дипольных моментов (электрических моментов), а также магнитных моментов можно проводить посредством измерений высокочастотных электромагнитных колебаний. Высокочастотные колебания в области 10 —10 герц (длина волны от 3 сж до 3 мм) можно также с успехом использовать для определения моментов инерции, межъядерных расстояний и других факторов, обусловливающих структуру молекул. В то время как в инфракрасной области вращательные спектры в общем налагаются на линии колебательных спектров и чистые вращательные спектры в инфракрасной области можно получить только для молекул с особенно малыми моментами инерции, имеется большое число молекул, дающих чистые вращательные спектры в области электрических микроволн. Это имеет место, например, для молекулы Н2О. Далее, в электрическую микроволновую область попадает также так называемый инверсионный спектр молекулы NH3 (см. стр. 572). Микроволновая абсорбционная спектрография является одним из точнейших и наиболее доступных методов для определения структур молекул газа. С ее помощью Вильсону (Wilson, 1950) удалось окончательно установить приводимую на стр. 326 структуру диборана ВгНе- [c.312]

    Если распределение зарядов в системе не идеально сферическое, то даже при отсутствии дипольного момента оно обладает так называемым электрическим квадрупольным моментом. Квадрупольные моменты поддаются экспериментальному измерению, однако здесь незачем останавливаться на этом подробнее. Такие исследования обнаружили, что многие ядра сферичны, а большая часть несферичных ядер имеет продолговатую форму, подобную мячу для игры в регби, причем отношение большего диаметра к меньшему никогда не превышает 1,2. [c.407]

    Согласно методу МО, переход к ионным связям сопряжен с тем, что в зависимости от коэффициентов С и сг вероятность нахожде ия электронов у одного из ядер оказывается выше, чем у другог . Вследствие этого в молекулах электрический заряд распределен неравномерно, и в них появляется так называемый дипольный момент (произведение расстояния между центрами зарядов на заряд х = е/). При измерении дипольного момента всегда надо иметь в виду, что существует различие между постоянным и индуцированным (наведенным) дипольным моментом. [c.99]

    Однако в рефрактометрических измерениях определяют лишь среднее значение электронной поляризуемости молекулы. В самом общем случае электронная поляризуемость молекулы различна в различных направлениях, что выражается в тензорных свойствах поляризуемости. Количественное описание поляризуемости дается через три главных значения тенз ор а электронной поляризуемости ( 1, 2 и з)> которые соответствуют определенным направлениям главных осей. Только вдоль этих осей совпадают направления векторов напряженности электрического поля 8 и индуцированного дипольного момента ц. На этих трех значениях можно построить эллипсоид, который называется эллипсоидом поляризуемости. При этом величины 1, Й2 и Ьз составляют половины главных осей эллипсоида поляризуемости. [c.228]

    Приближенное соотношение между разностью электроотрицатель ностей Ха—Хв (или Хв—-> а) и долей частично ионного характера (степенью ионности) связи между атомами А и В известно из значений электрических дипольных моментов (распределения электрического заряда) в двухатомных молекулах, а сами дипольные моменты рассчитывают на основании измерения диэлектрической проницаемости веществ. Эти соотношения приведены в табл. 6.4 и на рис. 6.23. [c.158]

    Дипольные моменты групп - Hj и связей -С=С- невелики, например для связей -С=С- они составляют примерно 0,3 - Дипольные моменты полярных групп значительно больше, например для группы -0-Н IJD, а для группы —С=0 - 1,1D. Содержание полярных групп незначительно, поэтому резонансная и дипольная электрическая поляризуемости макромолекул ПЭВД крайне малы и практически вся поляризуемость его является электронной. В результате этого значения диэлектрической проницаемости е и квадрата показателя преломления, измеренные при одной и той же частоте, близки в соответствии с уравением Максвелла. Например, в [58, с. 406] указаны следующие значения этих величин =2,28 0,01 ( Г =2,295. [c.152]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]

    Гексафторид урана в газообразном состоянии парамагнитен. Как показывают точные измерения диэлектрической проницаемости е, проделанные Магнусоном [3.189], гексафторид урана ие имеет постоянного электрического дипольного момента  [c.118]

    Эти формулы относятся только к магнитным частицам. Дискриминация электрического аналога в этих и других формулах будет проводиться и в дальнейшем. Для этого есть ряд веских причин. Первая состоит в том, что имеющаяся во многих случаях идентичность магнитных и электрических эффектов делает излишним дублирование формул. Раз-тичие заключается в вычислении энергии и момента сил, которое иллюстрировано приведенными выше формулами, в частности формулами (3.11.9) и (3.11.10). Вторая причина — различие в досту пности для экспериментирования ориентационного структурирования в электрическом и магнитном полях. Структурирование электрическим полем достигается только в специальных случаях, а возможность измерения электрической поляризации также сопряжено с рядом трудностей. Измерение статической электрической поляризации и вовсе неосуществимо. Магнитное поле в этих отношениях является предпочтительным. Единственное, о чем необходимо позаботиться, — это подбор дисперсной фазы. Она должна быть магнитной. Никаких других ограничений, в том числе отностельно природы среды, не существует. Это может быть диэлектрическая жидкость или раствор электролита высокой концентрации, это может быть даже расплавленный металл, что, кстати, позволяет достичь температуры Кюри магнитного материала и поставить сравнительный эксперимент с одной и той же системой при магнитном и немагнитном состояниях дисперсной фазы. Все эффекты магнитной поляризации и структурирования могут быть реализованы и исследованы экспериментально, тогда как с электрической поляризацией это вряд ли возможно. Наконец, третья причина, по которой далее будет отдаваться предпочтение ферромагнитным системам, — отсутствие трудностей с вычислением и с измерением величины магнитного дипольного момента частиц в случае однодоменных частиц шш в состоянии насыщения многодоменных частиц их магнитный момент легко вычисляется по формуле [c.683]

    Другой метод, разработанный Мак-Интошем с сотрудниками [112—117], состоит в измерении электрических свойств адсорбатов во время их адсорбции найдено, что изменения в кривых электростатической емкости имеют место в точке образования монослоя. Однако интерпретация данных с целью, например, получить сведения о поляризуемости адсорбированных частиц представляет трудность. Для двуокиси серы, адсорбированной на рутиле, кажущийся дипольный момент оказался равным бесконечности. Таким образом, удовлетворительный способ получения кажущихся электрических свойств адсорбированного вещества пока не разработан, и нельзя сделать сколько-нибудь важных выводов, исходя из сделанных наблюдений [115]. [c.276]

    Если в соответствии с мнением Косселя, Фаянса и других принять, что химические силы между ионами металла, молекулами аммиака и воды обусловлены лишь электрическим притяжением между электрическими зарядами иона металла и постоянными я индуцированными диполями молекул, то можно объяснить многое в образовании и устойчивости амминов. Следует отметить только два интересных момента. Известно, что постоянный дипольный момент воды несколько больше постоянного дипольного момента аммиака , но зато аммиак больше поляризуется, о чем свидетельствуют рефрактометрические измерения и, вероятно, поэтому молекулы аммиака обычно связаны с ионами металла сильнее, чем молекулы воды. Различие в поляризуемости проявляется меньше в случае больших ионов щелочных и щелочноземельных металлов с электронной оболочкой инертного газа. Этим объясняется то, что в водных растворах этих ионов не образуются аммины (исключение составляют только очень концентрированные растворы). Этого не наблюдается в случае ионов металлов побочных групп, которые вследствие своей электронной конфигурации имеют значительно большую энергию поляризации и где соответственно происходит значительное образование амминов даже при малых концентрациях (если только радиус не очень велик и мал заряд). [c.76]


Смотреть страницы где упоминается термин Дипольный момент электрический его измерение: [c.66]    [c.15]    [c.248]    [c.487]    [c.440]    [c.161]    [c.81]    [c.76]    [c.332]    [c.226]   
Строение неорганических веществ (1948) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Момент измерение

Электрические измерения



© 2025 chem21.info Реклама на сайте