Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения связывание

    Комплексные соединения винной кислоты с металлами применяют для связывания мешающих ионов во многих случаях. Для отделения железа от алюминия и титана последние переводят в виннокислые комплексы и затем прибавляют сернистый аммоний. Виннокислый комплекс железа недостаточно устойчив к действию сернистого аммония. Таким образом, железо осаждается в виде сульфида, а титан и алюминий (которые вообще не осаждаются из водных растворов в виде сульфидов) остаются в растворе в виде виннокислых комплексов из этого раствора алюминий и титан можно осадить оксихинолином. [c.107]


    Существуют и другие способы выделения твердой фазы из раствора, например путем добавления в раствор какого-либо специально подобранного вещества, которое снижает растворимость выделяемого вещества этот способ получил название высаливания. При проведении так называемой аддуктивной кристаллизации в исходный раствор вводится реагент, образующий с выделяемым веществом менее растворимое комплексное соединение — аддукт. Здесь мы имеем пример проведения процесса кристаллизации в сочетании с химической реакцией. Для полноты извлечения вещества из раствора процесс иногда осуществляют в противоточном варианте раствор подается в один конец колонного аппарата, а реагент вводится в другой конец этого аппарата. Кристаллы полученного аддукта отфильтровывают и подвергают разложению и очистке (термораспад с последующей перекристаллизацией выделяемого вещества из специально подобранного растворителя, перегонка с водяным паром и т. д.). Способ комплексообразования применяется и для химического связывания примесей в соединения, легко отделяемые от основного вещества образование осадка при этом не обязательно. [c.151]

    Выполнение реакции. 2—3 капли исследуемого раствора помещают в пробирку, прибавляют 1 мл ацетатного буферного раствора (составленного из равных объемов 2 н. растворов уксусной кислоты и ацетата натрия), 4—5 капель I н. раствора тиосульфата натрия для связывания в комплексные соединения Ag -, Bi +-, Pb -, u -ионов и 1—2 мл 10%-ного раствора дитизона (приготовленного иа хлороформе). В присутствии Zn -ионов слой органического растворителя окрашивается в красный цвет. [c.66]

    Нежелательное действие солей металлов переменной валентности можно подавить связыванием ионов металлов в виде недиссоциирующих или нерастворимых в полимере соединений, например образованием комплексных соединений металлов (медь, кобальт, никель) с некоторыми кислотами (дитиокарбаминовая и некоторые другие). Это позволяет вывести ион металла из сферы реакции и ослабить или подавить его вредное каталитическое действие на радикальный распад пероксидных соединений в полимере (рис. 18.8). Но это только часть общей задачи защиты полимеров от окислительной деструкции. Вторая, не менее, а часто более важная задача состоит в подавлении развития цепного процесса окисления с целью существенного удлинения индукционного периода. [c.266]


    Так, М. Леблан (1910 г.) предполагал, что скорость разряда ионов на катоде затруднена из-за связывания их в комплексные соединения с молекулами растворителя или комплексообразователя. Разряд комплексного или сольватированного соединения происходит не сразу, а с некоторой кинетической задержкой и таким образом определяет собой течение всего электродного процесса. Однако эта точка зрения не была подтверждена какими-либо экспериментальными данными. Кроме того, ближайшее рассмотрение этой гипотезы показывает ее несостоятельность, поскольку, например, процесс дегидратации протона водорода вряд ли вообще возможен как самостоятельная стадия, так как энергия связи протона с молекулой воды очень велика (около 282 кал на 1 г-ион), а константа диссоциации гидроксония [c.303]

    Понижение величины окислительно-восстановительного потенциала, достигаемое в щелочной среде, делает кобальт (П1) достаточно стабильным — вода его уже не восстанавливает. Такого же эффекта стабилизации неустойчивого валентного состояния можно достичь путем введения, в систему с Со (1П) азот- и кислород-донорных лигандов. Благодаря связыванию нона Со + в прочное комплексное соединение, в соответствии с уравнением Периста [3] и в этом случае величина оказывается значительно более низкой, чем в системе с незакомплексованным Со (П1)  [c.140]

    Рассмотрим этапы исследования фотометрических реакций с органическими реагентами, в результате которых образуются комплексные соединения. Оптимальные условия проведения реакции требуют возможно более полного связывания определяемого элемента в комплекс. Большинство органических реагентов обладает кислотно-основными свойствами. Если предполагается, что ион элемента вступает в реакцию с органическим реагентом, являющимся одно-, двух- или многоосновной кислотой (т. е. реакция протекает по типу замещения протона кислоты ионом металла), то в общем виде реакцию образования комплексного соединения можно представить уравнением (а) (см. стр. 36). Следовательно, условия образования комплексного соединения будут зависеть не только от избытка реагента, но также от pH раствора. Особое значение указанные факторы приобретают, [c.40]

    При окислении марганца (И) перйодатом добавляется фосфорная кислота для связывания железа (III) в комплексное соединение и предотвращения осаждения перйодата или иодата марганца. [c.170]

    В отличие от дигалогенпроизводных 8-оксихинолина, 7-иод-8-оксихинолин-5-сульфокислота и ее комплексы растворимы в воде. Комплексные соединения оптимально образуются в щелочной среде (pH 8—И). В этих условиях полоса поглощения иод-оксин-сульфо-кислоты претерпевает сильный гипсохромный сдвиг, в результате чего поглощение реагента оказывается незначительным в области максимумов поглощения комплексов редкоземельных элементов, расположенных в видимой области спектра. Для достижения максимальной чувствительности следует использовать такое количество окислов редкоземельных элементов, которое соответствует предельной растворимости комплексов в объеме воды, необходимом для проведения анализа. Предельная растворимость реагента в воде равна 1,4 10 моль/л, а поскольку для полного связывания иона редкоземельного элемента необходим четырехкратный избыток реагента, то максимальная концентрация суммы редкоземельных элементов не должна превышать [c.209]

    В области, прилежащей к значениям коэффициента активности насыщенного раствора около 1 или 1п у1 - -О, могут располагаться величины у1 растворенных соединений первой группы взаимодействий, которые в молекулярной и ионной формах не образуют каких-либо устойчивых структур с компонентами раствора (кривая 1). Для соединений этой группы значение коэффициента активности практически постоянно во всем диапазоне концентраций раствора. Остальные группы соединений характеризуются более существенной связью между значениями коэффициента активности и концентрации часто наблюдается плавный перелом хода изменения градиента коэффициента активности (А 1п у /Атг) вблизи зоны концентраций, где в соответствии с константами устойчивости степень связывания исходных веществ становится весьма высокой. В области со значениями коэффициента активности 0,2—0,8 могут быть ионные пары — второй тип взаимодействий, отражаемый кривой 2. Для комплексных соединений (кривая 3) — третьего типа взаимодействий — значения коэффициента активности даже при небольшой степени достижения равновесия составляют менее 0,2. Ионные пары и комплексы характеризуются значительной устойчивостью, и содержание в растворе первичных форм молекул и ионов, образующихся при диссоциации,становится заметно меньшим, чем содержание растворившегося вещества в пересчете на исходную его молекулярную форму. [c.75]


    Маскирование — связывание мешающих ионов в малодиссоциированные, в основном комплексные соединения, или перевод их в другую форму (например, изменением степени окисления) без удаления из анализируемого раствора [c.439]

    Отмеченное разнообразие комплексных соединений хрома и его аналогов проявляется и в существовании своеобразных комплексных соединений, не характерных для изученных ранее элементов, а именно карбонилов. Все три металла подгруппы хрома образуют однотипные гексакарбонилы Ме(СО)в, в которых степень окисления металла формально равна нулю. Все эти карбонилы представляют собой бесцветные ромбические кристаллы, устойчивые на воздухе до 180—200 °С, сублимирующиеся в вакууме. Их можно получить прн непосредственном соединении мелкодисперсных металлов с СО, но для этого требуются высокие давления (порядка 20—30 МПа). В карбонильных комплексах атомы металлов выступают в аномально низких степенях окисления, и лиганды, подобные СО, способствуют стабилизации этого состояния. Такие лиганды, помимо неподеленных электронных пар, имеют вакантные л-орбитали, которые являются акцепторами электронов с заполненных орбиталей комплексообразователя . Путем л-связывания часть электронной плот- [c.347]

    Причина увеличения кислотности — диссоциация молекул воды вследствие связывания ионов кислорода во внутренней координационной сфере сульфат-иона, образующегося из сульфит-иона. Вода здесь участвует в образовании комплексного соединения — одного из продуктов окислительно-восстановительного процесса. [c.389]

    Окислительный потенциал системы зависит не только от pH раствора или от образования малорастворимых соединений с одним из участников реакции, но также от связывания исходных веществ или продуктов реакции в комплексные соединения. Так, ионы железа (III) окисляют ионы иода, выделяя свободный иод  [c.382]

    Связывание мешающего определению вещества V в комплексное соединение с М. При этом реагент К не должен вступать в реакцию с продуктом реакции между V и М. С другой стороны, М не должен затруднять или устранять взаимодействие определяемого вещества X с реагентом К. Для выполнения этих условий необходимо соблюдение определенного соотношения между константами, характеризующими протекающие при маскировании процессы. [c.530]

    Комплексные соединения. Одним из основных свойств элементов 1В-группы в любых степенях окисления является способность образовывать комплексные соединения. Большинство растворимых соединений меди, серебра и золота являются комплексными соединениями. Комплексообразовательная способность элементов 1В-группы объясняется дефектностью (п — 1) /-оболочек (при степенях окисления +2 и больше), а также тг-связыванием спаренных электронов тех же орбиталей с лигандами. Поскольку последний фактор играет доминирующую роль, при переходе от меди к золоту комплексообразовательная способность возрастает вследствие лабильности -электронных пар у более тяжелых. элементов. [c.313]

    Независимо от намечаемого использования водорода, будет ли это прямое восстановление железных руд, синтез аммиака, метанола, гидрирование нефтяных фракций или производство топлив высокой теплотворности, для решения вопроса об экономике процесса необходимо предварительно выбрать оптимальный способ получения водорода. В будущем значительные усилия должны быть затрачены на разработку еще более дешевых источников получения этого ценного сырья. Для этого потребуется детальный анализ возможных методов разделения газовых смесей как абсорбция, адсорбция, диффузия, ректификация, связывание в виде комплексных соединений или при помощи химических реакций. [c.168]

    Большие количества меди, кобальта и цинка замедляют осаждение никеля. Присутствие многих других элементов не препятствует применению гравиметрического метода. Перед осаждением диметилглиоксимата никеля к кислому раствору добавляют винную кислоту для связывания в прочные растворимые комплексные соединения элементов, дающих гидроксиды в аммиачной среде. Ионы алюминия, марганца, железа, титана, хрома и других металлов замещают атомы водорода карбоксильных и гидроксильных групп винной кислоты  [c.78]

    Из формулы О — 5)/5 следует, что чем выше будет растворимость образующегося осадка и чем ниже концентрация осаждаемого веш ества, тем меньше будет относительное пересыщение, тем ченьшее число первичных кристаллов будет возникать и тем круптее они будут. Таким образом, для получения крупнокристаллических осадков необходимо в процессе осаждения повышать растворимость осадка и понижать концентрации осаждаемого и осаждающего ионов. Существует ряд способов понижения концентрации реагирующих ионов при формировании осадков. Самым простым из них является разбавление растворов перед осаждением и медленное (по каплям) при постоянном перемешивании прибавление раствора осадителя к исследуемому раствору (перемешивание нужно для того, чтобы в отдельных местах раствора не повышалась концентрация осадителя, т. е. не возникало так называемое местное пересыщение). Очень эффективным способом понижения концентрации осаждаемого иона является связывание его в комплексное соединение средней прочности. В этом случае достаточно низкая концентрация осаждаемого иона в растворе создается за счет частичной ионизации комплексного соединения. При добавлении иона-осадителя из-за образования малорастворимого соединения равновесие ионизации комплекса будет сдвигаться, но концентрация осаждаемого иона все время будет оставаться низкой. Например, если связать Со2+ в комплексное [c.101]

    Знакомясь с элементами подгруппы меди, мы видели, что нопы этнх элементов способны присоединять к себе другие ионы или нейтральные молекулы (например, NH3), образуя более сложные комплексные ионы. Прп связывании последних ионами противоположного знака получаются различные комплексные соединения. [c.582]

    Многие хорошо растворимые комплексные соединения можно разрушить действием других электролитов или растворителя, если и результате этого образуются малорастворимые соединения или новые комплексные ионы, диссоциация которых меньше диссоциации комплексного иона исходного вещества. Например, прибавлением к раствору [Ag( N)2]- сульфида натрия можно полностью разрушить комплексное соединение, осаждая ион серебра в виде труднорастворимого осадка Ag2S. Здесь ионы серебра более толно удаляются из раствора, чем при связывании их в комплексный ион. [c.264]

    Из фосфатов для связывания ионов кальция наиболее широко используются полифосфаты — триполифосфат и гексаметафосфат натрия (ГМФН), Комплексные соединения фосфатов с кальцием также не [c.58]

    Следует заметить, что живые организмы имеют механизмы детоксикации в отношении тяжелых металлов. Так, в ответ на токсическое действие РЬ , С(1 и печень и почки человека увеличивают синтез ме-таллотионинов - низкомолекулярных белков, в состав которых входит цистеин. Высокое содержание в последнем сульфгидрильных 8Н-групп обеспечивает связывание ионов металлов в прочные комплексные соединения. [c.103]

    Расчеты растворимости осадков при условии связывания катиона в комплекс несколько затруднены, так как для многих комплексных ионов неизвестны точные величины констант диссоциации (констант нестойкости). Кроме того, комплексные ионы, содержащие несколько координированных групп (обычно 4 или 6), образуются и диссоциируют ступенчато, подобно многоосноБным кислотам. Наконец, состояние равновесия образования многих важных групп комплексных соединений, как цианиды, виннокислые и другие комплексы, зависит от кислотности раствора (см. 22). [c.43]

    Открытие Bl -ионов. 3—4 капли раствора 2 помещают в пробирку, приливают каплю 3%-ного раствора KNa H O для связывания Fe -ионов в комплексное соединение. [c.54]

    Цирконий с комплексоном III и /г-нитробензолазопирокатехином образует комплексные соединения различной устойчивости, обладающие поглощением в разных областях спектра. Область максимального поглощения комплексного соединения циркония с /г-питробеизолазопи-рокатехином лежит при X 510 нм, комплексного соединения циркония с комплексоном III — при>. 375 нм. Если индикатор добавлен в количестве, недостаточном для связывания всего циркония в комплексное соединение, то при титровании раствором комплексона сначала титруются свободные ионы циркония, а затем связанные в комплексное соединение с индикатором (см. рис. 24). [c.228]

    Приемы смещения равновесия реакций окисления — восстановления путем связывания одного из компонентов оксред-системы в осадок или комплексное соединение будут рассмотрены в гл. 4. [c.79]

    Комплексные соединения. Одним из основных свойств З лемснтов 1В-группы в любых степенях окисления является способность образовывать комплексные соединения. Большинство раствор1шых соединений меди, серебра и золота являются комплексным) соединениями. Комилексообразовательная способность элементов IB-группы объясняется дефектностью (н—1)й-оболочек (при степенях окисления больше +1), а также я-связыванием спаренных электро- [c.122]

    Часто при получении лекарствен1ллх препаратов на основе фармако логически активных комплексных соединений удается понизить токсичность как металла, так и лигандов, связанных в комплексе, и модифицировать в желаемом направлении и> биологическую активность. Так, весьма ядовитый цианид калия теряет свою токсичность при связывании в ферроцианид (желтая кровяная соль) или в феррицианид (красная кро-вяная соль) калия. [c.179]

    Условия проведения реакции. 1. Реакцию следует проводить в нейтральной среде (pH = 7). В щелочной среде выпадает окись серебра. В аммиачной среде не образуется осадка вследствие связывания серебра в комплексное соединение (должны отсутствовать также и другие комплексобразующие реагенты). В уксуснокислой среде выпадает осадок бихромата серебра. В сильнокислой среде осадок не образуется. [c.301]

    Из табл. 19.2 в гл. 19 видно, что лучше титровать с N-фенилантраниловой кислотой, стандартный потенциал которой ( о=1,08В) не очень сильно отличается от потенциала точки эквивалентности и, как показано в 4 гл. 19, находится в допустимых пределах. Однако можно взять и дифениламин с Ео = = 0,76 В. В этом случае необходимо снизить потенциал точки эквивалентности. Этого можно достичь связыванием ионов Fe + в какое-либо комплексное соединение — тогда концентрация свободных ионов Ре + становится очень небольшой и потенциал пары Fe +/Fe + значительно снижается. Удобнее всего применять для этой цели фосфорную кислоту, которая образует с ионами железа(П1) устгойчивый фосфатный комплекс [c.434]

    Индикаторные электроды методов оваждения и комплексообразования. Принцип этих методов состоит в переводе определяемых ионов в малорастворимые соединения или в связывании их в устойчивые растворимые комплексные соединения. В обоих случаях при титровании изменяется концентрация ионов металла в растворе. [c.462]

    Ион Сг ", особо активный в момент восстановления, образует с реагентом комплексные соединения, выпадающие в осадок или растворимые, прочно связывающиеся с глиной. Возможны и прямые связи Сг" с глиной. Сначала Сг входит в обменный комплекс, вытесняя другие катионы, а затем при нагревании необменно закрепляется на криста.члической решетке. Это ингибирует глину и создает предпосылки для связывания с закрепившимся хромом макромолекул реагента. Подобный механизм в том или ином [c.109]

    При взаимодействии комплексного соединения алкилтет-рахлорфосфина и хлористого алюминия с алкиленоксидами в присутствии хлористого калия, вводимого в реакцию для связывания хлористого алюминия, образуются алкилдихлорфосфиноксиды с выходом до 75% и 1,2-дихлоралканы с выходом до 98% РЮ]. [c.9]

    Аналогичным путем можно получить и другие алкилдихлорфосфинсульфиды при нагревании соответствующих комплексных соединений с серой, а также с сульфидами алюминия, калия, сурьмы, фосфора в присутствии хлористого калия. Хлористый калий применяется для связывания хлористого алюминия. [c.21]

    Нами разработан [3] способ получения диалкилхлорфос-финсульфидов с хорошим выходом из доступных реагентов— комплексных соединений диалкилтрихлорфосфинов с хлористым алюминием и серы или роданистого калия. Метод основан на нагревании указанных реагентов в присутстоии свеже-прокаленного хлористого калия для связывания хлористого алюминия. (При нагревании комплексного соединения с роданистым калием хлористый калий для связывания хлористого алюминия не используется, так как он образуется в процессе реакции). [c.57]

    Маскировка (в аналитической химии) — связывание мешающих ионов в малодис-социированные комплексные соединения при обнаружении, определении и отделении каких-либо компонентов анализируемого объекта. Напр., железо (П ) мешает определению никеля (II) при осаждении диметилглиоксимо.м, так как железо (III) одновременно осаждается в виде Ре(ОН)з. Но если в раствор ввести винную кислоту, образующую с железом (III) малодиссоциирующий растворимый комплекс, то оно не будет осаждаться и мешать определению никеля. Для М. широко применяются органические кислоты (лимонная, винная, уксусная, щавелевая и др,), комплексоны, а также неорганические соединения, напр, фториды, цианиды и др. [c.80]

    В третьем слагаемом уравнения (6) следует обратить внимание прежде всего на множитель у2ж/уик- Предлагались различные способы уменьшения этого отношения избирательное связывание катионов микропримесей в комплексные соединения [346], использование органических растворителей [347] и т. д. Между тем правильный выбор для кристаллизационной очистки исходных соединений позволяет избежать введения дополнительных реагентов в систему. В частности, в насыщенных растворах аннонгалогенаатов и гексагалогентеллуратов отношение у2т/У1т является небольшой величиной вследствие различия в составе ассоциатов макро- и микрокомпонентов. [c.355]

    Определению титана мешает присутствие окисного железа вследствие желтой окраски его ионов. Однако железо легко замаскировать, переведя его в бесцветную комплексную кислоту Нз[Ре(Р04)2] при взаимодействии с фзсфорной кислотой. Мешает также присутствие значительных количеств элементов, ионы которых интенсивно окрашены (хром, кобальт, никель). Фтор, вследствие связывания титана в комплексное соединение HsiTiFel, которое уже ие реагирует с перекисью водорода, тоже мешает реакции. [c.158]

    Комплекс с Ре (111). При введении в лигносульфонаты Ре (1П) наблюдаются явления, отсутствующие при таком же введении одно- и двухзарядных катионов. Резко снижается — с 5 до 2 — величина pH раствора, падает скорость электрофореза коллоидных частиц, вплотную приближаясь к изоэлектри-ческому состоянию, наступает коагуляция наиболее полимерных фракций лигносульфонатов с сильно растянутой во времени скрытой стадией. Эти особенности являются следствием связывания Ре (1П) с лигносульфонатом в комплексное соединение и проявление астабилизирующего действия, приводящего к нарушению устойчивости лиофильных коллоидов. [c.310]

    В солянокислом растворе выделяющийся мелкораздробленный висмут восстанавливает четырехвалентное олово до двухвалентного, при этом висмут снова переходит в раствор. Т1С1д непосредственно, повидимому, не восстанавливает четырехвалентного олова. Прибавление фторидов для связывания в устойчивый комплекс не привело к удовлетворительным результатам при определении висмута (ионы фтора также образуют комплексные соединения с трех- и четырехвалентным титаном). [c.267]

    Ион Au " " мешает определению ртути в любых количествах, поэтому его следует отделить. В работе [1026] при определении ртути экстракцию золота дитизоном также предотвращают добавлением сульфит-иона. Ионы Си мешают определению ртути в 17V растворе H2SO4, если концентрация меди в 1000 раз больше концентрации ртути [789]. Предложено устранять мешающее влияние Си " " связыванием ее в прочное комплексное соединение с КзСо(СК)в. В работах [944, 1026, 1075, 1077, 1299, 1316] предложено использовать этилендиаминтетрауксусную кислоту или комплексон III для маскирования ионов Си + при определении Hg(II) дитизоном. [c.108]


Смотреть страницы где упоминается термин Комплексные соединения связывание: [c.93]    [c.207]    [c.62]    [c.260]    [c.216]    [c.173]    [c.5]    [c.54]    [c.96]   
Неорганическая химия (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте