Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продольная кристаллизация

    Наиболее высокие значения предела прочности, достигающие 4 ГПа, и удлинения при разрыве порядка 5,2 % присущи волокнам, выращенным при 118°С, когда скорости приема нити и движения ротора составляли 12,6 и 600 см/мин. Сравнение реальных прочностных характеристик волокон с оценками, сделанными с помощью квантово-механических расчетов (19 ГПа и 33 %), свидетельствует о том, что пока не удается достичь идеального расположения цепей ПЭ в орторомбической решетке и что концентрация напряжения в области дефектов может способствовать разрушению на ранней стадии деформирования. Тем не менее, разработанные нами условия проведения процесса продольного роста позволяют получать волокна из ПЭ со сверхвысокими значениями модуля упругости и предела прочности. Лучшее понимание процесса продольной кристаллизации растянутых полимерных молекул может со временем позволить достичь еще более высоких значений прочностных характеристик материала. [c.102]


    Здесь VI — средняя скорость движения среды в осевом направлении С с х, I), Т х, г)] — скорость роста кристаллов как функция концентрации раствора с и температуры Г Ф ( ) — скорость роста кристаллов как функция размера 1 В [с (х, 1), Т х, )] — скорость зарождения центров кристаллизации как функция с и Г ф 0) — скорость кристаллообразования как функция 1-, X — координата в продольном направлении. [c.75]

    На границе этих вихрей в потоке вместо деформации сдвига возникает деформация растяжения. Изложенное выше показывает, что продольное течение является необходимым условием для проявления вызванной течением кристаллизации, при которой в слабоконцентрированных растворах формируются структуры типа шиш-кебаб . [c.51]

    Продольному течению противодействуют силы поверхностного натяжения и обратимые компоненты деформации поэтому реализовать его возможно лишь во вполне определенном диапазоне скоростей растяжения и температур. В кристаллизующихся полимерах осуществить продольное течение можно лишь при высоких температурах (выше температуры плавления) обычно это течение приводит к ориентационной кристаллизации (см. гл. VI). [c.7]

    Закристаллизованная пачка обладает избыточной поверхностной энергией, благодаря которой пачки приобретают способность складываться в ленты (рис. 4), ленты — в пластины (рис. 5), а уже пластины наслаиваются друг на друга, образуя кристаллы. Пластины и ленты могут укладываться со сдвигами ленты имеют большое число поворотов, в связи с чем кристалл полимерного соединения не является абсолютно правильным, имеет много дефектов, чем отличается от кристаллов низкомолекулярных соединений. Наряду с пластинчатой формой образования кристаллов кристаллизация может протекать по так называемому фибриллярному типу, когда пачки располагаются продольно друг к другу (вдоль фибрилл). Одна из промежуточных форм в процессе кристаллизации — с ф е р о л и т ы, т. е. структурные шарообразные образования размером от десятых долей микрона до нескольких милли- [c.15]

    Процесс сродни рассматриваемому ниже ориентационному стеклованию или даже механической кристаллизации. Условие стационарности, связанное с угловой скоростью барабана или зависящим от нее продольным градиентом скорости у — общее для всех систем, которые можно описывать методами релаксационной спектрометрии, т. е. в самом грубом приближении при введении в рассмотрение релаксационного спектра с некоторым характеристическим временем релаксации х] и стрелки действия. Условие стационарности в данном случае имеет вид  [c.131]


    Растяжение само по себе еще не обязательно форсирует ориентационную кристаллизацию (см. гл. XVI), но ускоряет нуклеацию, ибо сближение участков цепей делается в поперечном растяжению направлении более вероятным. Но сами сферолиты по мере увеличения продольного напряжения и градиента скорости не вытягиваются, как можно было бы ожидать, а сплющиваются, т. е. в соответствующих эллипсоидах вращения совпадает с осью растяжения именно малая ось (рис. XIV. 8). Дело в том, что на самом деле сферолиты и не могут вырастать как вытянутые эллипсоиды, ибо рассматриваемый эффект никакого отношения к деформации готовой морфозы не имеет. Здесь снова надо пользоваться критерием Тсу 1, где Тс — время роста симметричного шарообразного сферолита. [c.346]

    Это сходство подтверждается также образованием продольных треш,ин при экспозиции в озоне резин из НК и наирита, растянутых до 500—600% (рис. 156). Ориентация и кристаллизация при растяжении приводит, как известно, к упрочнению резин, прорастание трещин перпендикулярно направлению ориентации затрудняется, а образование трещин путем роста параллельных сколов облегчается. Аналогичное явление—образование продольных трещин серебра наблюдалось при вынужденно-эластической деформации ряда волокон и пластиков в условиях их кристаллизации и ориентации пачек- . [c.283]

    Затвердевание центральной зоны отливки происходит в принципиально иных условиях, так как после заполнения формы продольный градиент давлений сильно уменьшается или полностью исчезает 5. Поэтому кристаллизация центральной зоны происходит при практически полном отсутствии продольных ориентационных напряжений. В этой зоне существенную роль играют температурные градиенты и остаточное гидростатическое давление, сохраняющееся в форме для компенсации температурной усадки. [c.437]

    Для непрерывной контактной кристаллизации часто применяют аппараты колонного типа с противотоком хладоагента и кристаллизующейся смеси. По конструкции такие кристаллизаторы идентичны жидкостным экстракторам. На рис. 4.4 показан колонный кристаллизатор роторного типа [146, 147], где кристаллизация осуществляется ы дисперсной фазе. Кристаллизующаяся смесь имеет более низкую плотность чем хладоагент. В аппарате проходит вал 2, на котором размещены лопастные мешалки 3. Для снижения продольного перемешивания фаз аппарат по высоте секционирован кольцевыми перегородками 4. Внизу кристаллизатора расположены секции эмульгирования 8 и отстаивания 9 отработанного хладоагента, а вверху — приемник 6 кристаллической суспензии. Скорость вращения мешалок-составляет 1,2—2,0 м/с. [c.127]

    Эффективность работы контактных кристаллизационных колонн, как и других массообменных аппаратов, существенно зависит от интенсивности продольного перемещивания. Однако, это явление в кристаллизационных колоннах исследовано пока недостаточно. Для анализа работы секционированных колонн (роторные кристаллизаторы) обычно используют ячеечную модель. Для таких аппаратов установлено [146], что с увеличением скорости вращения мешалок интенсивность межсекционной рециркуляции возрастает, а с увеличением числа секций снижается. Для анализа продольного перемешивания в распылительных колоннах чаще используют диффузионную модель. Некоторые данные о продольном перемешивании в сплошной фазе при кристаллизации мирабилита в колонне распылительного типа приведены в работе [148]. [c.136]

    Модели внешнего массопереноса. При кристаллизации смесей, образующих твердые растворы, согласно моделям первой группы, изменение концентрации жидкой фазы на элементарном участке колонны < 2 определяется продольной диффузией в жидкой фазе и передачей массы от кристаллической фазы к жидкости главным образом в результате перекристаллизации. Процесс массообмена на элементарной высоте колонны 2( см. рис. 6.2, а) описывается уравнением [c.197]

    Результаты экспериментальных исследований, проводимых обычно с помощью скоростной киносъемки [21], позволяют установить некоторую общую картину движения дисперсной фазы при относительно малых ее концентрациях (пневмотранспорт при сушке в трубах-сушилках, кристаллизация в циркуляционных аппаратах). Основное направление движения частиц— продольное, совпадающее с направлением движения несущего потока сплошной среды, и лишь отдельные частицы сравнительно медленно перемещаются в поперечном направлении. Имеет место различная скорость продольного движения частиц по сечению двухфазного потока, при этом эпюра скорости частиц приблизительно аналогична эпюре скорости потока сплошной среды. На участке равномерного движения частиц их скорость практически равна разности между скоростью несущего потока и скоростью витания частиц, а на участке разгона дисперсной фазы скорость частиц изменяется от нулевого значения в точке их ввода до стационарного значения, при этом длина участка разгона увеличивается для крупных частиц, обладающих большой инертной массой. Частицы вращаются, в основном, вокруг горизонтальной оси с угловой скоростью, увеличивающейся по мере возрастания степени несферичности частиц и скорости сплошной среды. [c.69]


    Если бы усадка была одинаковой по всем направлениям, то изделие и форма были бы геометрически подобны, а усадку можно было бы полностью скомпенсировать за счет соответствующего увеличения размеров формы. В действительности этот способ неприменим, поскольку во всех (или почти во всех) отливаемых изделиях усадка неоднородна. Неоднородность усадки возникает из-за наличия продольной ориентации и неравномерного-охлаждения изделия, толстые части которого охлаждаются значительно медленнее тонких. Различие в скорости кристаллизации приводит к формированию разных надмолекулярных структур и к разной степени кристалличности. Поскольку скорость кристаллизации в тонких частях изделия выше, степень кристалличности и плотность материала в тонких частях увеличивается быстрее, и в форме создается перепад гидростатических давлений, вызывающий перетекание некоторого количества полимера из толстой части изделия в тонкую. Это внутреннее течение и различия в степени кристалличности и являются основными причинами неоднородности усадки. [c.439]

    Рассмотренные характерные черты плавления сополимеров обусловлены, главным образом, широким распределением длин кристаллизующихся последовательностей в статистических сополимерах с вытекающим отсюда распределением возможных продольных размеров кристаллитов. При определенной температуре лишь те последовательности могут принимать участие в процессе кристаллизации, длины которых превосходят , причем [c.89]

    У сополимеров, особенно у кристаллизующихся из разбавленного раствора, прирост числа цепей в поперечном направлении кристаллитов ограничен, так как нерегулярная структура цепей не позволяет им вновь возвратиться в кристаллит, из которого они вышли. Без этого возвращения поперечный рост не может быть очень интенсивным (подробнее см. гл. 9). Рассматриваемый эффект, сопровождающийся также запаздыванием развития кристаллитов в продольном направлении, неизбежно ограничивает число звеньев, участвующих в кристаллизации. [c.119]

    Кристаллизацию, или развитие трехмерно упорядоченной структуры, можно рассматривать как процесс, протекающий в два этапа. Первый этап заключается в кооперативном упорядочении системы в результате внутримолекулярного процесса, описанного выше. Для завершения кристаллизации необходимо уже развитие продольного порядка. В системе гомополимеров или полимеров, обладающих достаточной регулярностью структурных единиц цепи, оно осуществляется небольшим (порядка периода вдоль цепи) смещением параллельно ориентированных молекул относительно друг друга. В результате смежные радикалы занимают взаимные положения, соответствующие структуре кристаллической решетки. В этом и состоит второй этап кристаллизации, управляемый уже межмолекулярными взаимодействиями и сопровождающийся соответствующим уменьшением свободной энергии. [c.141]

    Изучение кристаллических сеток полиэтилена и натурального каучука методом рассеяния рентгеновских лучей под большими углами [11, 12] указывает на то, что увеличение плотности сшивки влечет за собой прогрессирующее расширение рефлексов от различных кристаллических плоскостей. Это может быть связано с уменьшением размеров кристаллитов, дальнейшим нарушением кристаллического порядка или с возникновением внутренних напряжений. Независимо от того, какой из этих эффектов вызывает расширение полос рентгеновской дифракции, каждый из них может понижать температуру плавления. Следовательно, главной причиной такого большого снижения температуры плавления является сильное ограничение возможности установления совершенного кристаллического порядка в системе даже после тщательного отжига. Совершенно очевидно, что это ограничение вызвано наличием сшивок. Постоянные сшивки препятствуют установлению поперечной упорядоченности при упаковке полимерных цепей, необходимой для образования достаточно больших кристаллитов. Участие в кристаллизации звеньев, смежных со сшитыми, также может быть затруднено или невозможно. Поэтому и развитие продольной кристаллической упорядоченности ограничивается в большей степени, чем это следует из простого учета концентрации сшивок. [c.159]

    Следовательно, в любом реальном процессе кристаллизации при поверхностной нуклеации такого типа для образования устойчивого кристаллита продольные размеры ( ) должны превышать критическую величину Сг. Этим двумерная нуклеация отличается от трехмерной, где устойчивость может быть достигнута без превышения [c.242]

    Кристаллизация в текущем растворе. Как правило, любое сдвиговое течение, т. е. течение при наличии поперечного и продольного градиентов скоростей (ух и уО. вызывает растяжение и вращение молекулярных клубков, находящихся в растворе. В традиционных опытах по двойному лучепреломлению (ДЛП) в текущем растворе компоненты сил, вызывающие растяжение и вращение, примерно одинаковы. Такое течение приводит, как известно, лишь к искажению статистического клубка. Для больших молекулярных растяжений, определяющих характер зародышеобразования, необходимо, чтобы растягивающие компоненты тензора напряжения превышали ротационные. Кроме требований к соотношению компонент скоростей поля течения, для реализации устойчивого растяжения молекул очень важны молекулярные характеристики самого раствора, в частности, время конформационной релаксации. Степень растяжения молекулярных цепей в потоке (при условии, что устойчивая растягивающая сила действует на элемент объема достаточно долго, чтобы создать требуемое растяжение) зависит от баланса двух сил трения, которое и разворачивает цепи, и упругой возвращающей силы К энтропийного происхождения. Количественная характеристика этого баланса — время конформационной релаксации т, пропорциональное отношению ЦК и (/ — коэффициент трения). Показатель степени [c.51]

    При переработке ПП для формования рукава требуется двухступенчатый ориентационный процесс. Это является следствием низкой прочности расплава. Для того чтобы иметь возможность провести кристаллизацию, пленку необходимо сначала охладить. Затем она вновь нагревается почти до температуры плавления и рукав раздувается перед прохождением через охлаждающее кольцо. Сравнение ориентации пленки в поперечном и продольном направлениях дает одинаковые показатели, если растяжение происходит одновременно в обоих на- [c.23]

    Одновременно с расширением пленки за счет раздува она вытягивается усилием, направленным вдоль оси экструзии. Это дает продольную ориентацию. Вновь основная продольная вытяжка происходит между выходом полимерного расплава из экструдера и его кристаллизацией (линией кристаллизации). На линии кристаллизации пленка имеет максимальный диаметр и сопротивляется дальнейшему раздуванию или вытяжке в большей степени, чем непосредственно перед линией кристаллизации. Внешне этот процесс сопровождается помутнением рукава. Изменение прозрачности зависит от степени кристалличности конкретного полимера. [c.28]

    Портер с сотр. воспользовались сочетанием сверхвысоких гидростатических давлений и продольной вытяжки при течении для управления процессом кристаллизации ПЭВП [34]. Полимеры экструдировали при 134 °С через коническую фильеру, обеспечивающую 46-кратную продольную вытяжку. В связи с тем что при этой температуре ориентационная кристаллизация начиналась уже в фильере, для экструзии полимера приходилось применять давление около 200—250 МПа. [c.62]

    Влияние ориентации на коэффициент теплопроводности очень велико для гибкоцепных кристаллизующихся полимеров типа ПЭВП. Суммарная анизотропия, несмотря на наличие упорядоченности, не наблюдается, если складчатые цепи уложены в сферолитную структуру, однако при условиях кристаллизации, аналогичных описанным в разд. 3.6, влияние ориентации цепей на коэффициент теплопроводности становится значительным. Хансен и Берни [18] наблюдали двадцатикратную разницу в значениях к, измеренных в поперечном и продольном направлениях относительно ориентации (рис. 5.9). Такой эффект достаточно велик, чтобы иметь практическую значимость. [c.120]

    Все синтетические волокна получают формованием из расплава, который выдавливают из сосуда через многоручьевую фильеру. Выходящий экструдат вытягивают и одновременно охлаждают. Затем не полностью отвержденные волокна подвергают продольной вытяжке, наматывая на тянущие барабаны при этом их диаметр уменьшается в 10—15 раз, что стимулирует процесс кристаллизации. Кроме того, перед использованием волокна подвергают дополнительной холодной вытяжке, чтобы увеличить степень кристалличности (см. разд. 3.7). На этой окончательной стадии обработки (структурообразования) существенно увеличивается прочность волокна. Обычно волокна получают из полиамида 6 и ПЭТФ. [c.479]

    В свете полученных данных вполне объяснимы результаты, опубликованные Кантцем [38], Кларком [39] и другими авторами, исследовавшими кристаллическую структуру полимеров, перерабатывавшихся литьем под давлением. В поверхностном слое молекулярные цепи, вытянутые в направлении продольного течения, образуют зародыши кристаллизации, на которых растут ламели в плоскости, перпендикулярной направлению потока. В слое, лежащем непосредственно под поверхностным, продолжается образование зародышей кристаллизации, но растущие здесь ламели перпендикулярны поверхности формы и по отношению к направлению течения ориентированы случайным образом. Морфология образующейся при этом структуры определяется, по-видимому, совместным влиянием ориентации за счет сдвигового течения и значительного перепада температуры. Напомним, что как сдвиговое течение, так и растяжение расплава способны привести к значительной ориентации цепей, вызывающей зародышеобразование (см. разд. 3.6). В центре изделия наблюдается сферолитная морфология, характеризующаяся отсут- [c.539]

    Согласно самому общему определению, вязкостью именуется свойство оказывать сопротивление необратимому изменению Стормы системы. Изменение формы может быть связано со сдвиговыми воздействиями, растяжением, всесторонним сжатием и т. д. Соответственно говорят о сдвиговой, продольной, объемной вязкости и т. д. По установившейся традиции, восходящей к Ньютону, обычно имеется в виду сдвиговая вязкость, и в этой главе мы будем касаться преимущественно ее. Некоторые специальные вопросы, связанные с продольной вязкостью, очень кратко будут затронуты в гл. VI. Объемной вязкостью полимеров практически не занимались — и напрасно, ибо по аналогии с тем, как продольная вязкость может вызвать переход первого рода (ориентационную кристаллизацию), объемная вязкость может быть обходным механизмом реализации перехода второго рода, упоминавшегося в гл. II. [c.162]

    Соответственно, рассматриваемая аномалия продольного течения представляет собой истинный изотермический или неизотермический переход типа жидкость — твердое тело, причем если жидкость эта была раствором, то спинодальное разделение фаз сопровождается выжиманием растворителя из струи. Поэтому жидкая фаза выдергивается из фильеры не твердоподобной жидкой струей, а на самом деле отвердевшим волокном. В работе [22] описан более эффектный вариант такого опыта, также названный ориентационной катастрофой, при котором гонкое затвердевающее волоконце выдергивает из сосуда весь раствор в виде набухшего студня. В этом случае аномалия обусловлена тем, что характерный для спинодального разделения фаз фронт гигантских флуктуаций состава распространяется в направлении, противоположном течению, и со скоростью, большей средней скорости течения поэтому соответствующее линейное возмущение по достижении основного объема раствора приобретает объемный характер, вызывая застудневание или кристаллизацию раствора. [c.221]

    Маклаклан считает, что координирование роста шести лучей можно объяснить существованием термических и акустических стоячих волн в кристалле. По мере того как снежинка растет путем наслаивания молекул воды на первоначальный зародыш кристаллизации, она совершает тепловые колебания в температурном интервале 250-273 К. Движущиеся молекулы воды ударяют по зародышу, и некоторые отскакивают от него, а те, которые остаются, способствуют его росту. Разветвление происходит в местах с высокой концентрацией молекул воды. Если изначальный зародыш льда имеет гексагональную форму, показанную на рис, 2-38, <з, и условия благоприятствуют росту дендри-тов, го шесть угловых позиций будут получать больше молекул воды и будут выделять больше скрытой теплоты кристаллизации, чем остальные участки. Развитие дендрита, вытекающее из подобных условий, показано на рис. 2-38,6. Следующая стадия развития снежинки-это образование нового набора дендритных ветвей (или лучей), которые определяются характером колебаний вдоль иглообразных лучей снежинки. Считается, что длинные иглы, показанные на рис. 2-38, й, состоят из совокупности молекул, которые соответствуют структуре льда. Молекулы совершают колебания, и распределение энергии между колебательными модами находится под влиянием граничных условий. Когда одна из игл становится сильно перегруженной в некотором месте, в ней индуцируются продольные колебания, В узловых точках таких колебаний будут выбрасываться дендритные ветви, которые оказываются равноудаленными, как показано на рис. 2-38,г е. Как же стоячие волны в одной из ветвей взаимодействуют с себе подобными в других Такое взаимодействие осуществляется через центральную часть снежинки, в которой сходятся все лучи и через которую проходит ось симметрии. Это место сочленения ретранслирует все частоты колебаний, индуцируя те же самые узлы во всех лучах. Таким образом, Маклаклан утверждает, что дендритное развитие идет идентично во всех ветвях и оно не зависит от какой-либо выбранной ветви, для которой произошло изменение условии. [c.45]

    При пол>чении ориентир, гибкоцепных полимеров двухступенчатым методом вначале осуществляют ориентацию р-ра или расплава полимера. Этого достигают созданием потоков с градиентами скорости (поперечньпи или продольным), в результате чего длинные цепные молекулы ориентируются преим. вдоль направления потока. Прюисходящая при этом кристаллизация фиксирует достигнутое состояние, что приводит к образованию ориентир, полимера. Послед, вытягивание в твердой фазе доводит полимерный материал (или изделие) до сверхвысокоориентир. состояния. [c.408]

    Как мы увидим в гл. XVI, в собственно ориентационную кристаллизацию вовлекается относительно небольшое число цепей— от 10 до 20%, и они образуют сплошной пространственный каркас КВЦ. Напряжение [или дополнительная энергия,, расходуемая на создание продольного градиента скорости у. который непосредственно повинен (см. гл. IV) в переходе струя — волокно] локально сбрасывается вблизи образующегося каркаса, падает и градиент у и поэтому рядом с каркасом могут образоваться как бы нанизанные на него КСЦ, и возникнет так называемая структура типа шиш — кебаб ( шашлыкоподобная — как переводит этот термин Андрианова [61]) с довольно совершенными КВЦ, но сильно дефектными КСЦ, что и видно на топограмме. Впрочем, топограмма понимает и другие вещи. Как мы недавно убедились, коротким цепям (с высокими р) труднее образовать КСЦ, чем длинным. Поэтому, если большие-Р связаны с малыми М, то Тпл КСЦ тоже должна убывать, такл 108 [c.108]

    Схема соответствующих опытов изображена на рис. XVI. 9, а сущность происходящих процессов понятна из разд. XVI. 1. Фиброин растворялся в смешанном растворителе и из раствора стеклянной палочкой вытягивали струйку и наносили ее конец на вращающийся барабан. Возникает типичная стационарная диссипативная структура регулируя частоту вращения барабана и длину струи, можно обеспечить стационарность продольного течения. Но по достижении критического градиента скорости макромолекулы разворачиваются до критических значений р, система в целом претерпевает бифуркацию, и происходит динамический фазовый переход струя — волокно (рис. XVI. 10), сопровождающийся кристаллизацией фиброина. В сухом виде при этом образуются фибриллы типа Стэттона, но без пучностей, ибо каждая молекула фиброина состоит из 18 аминокислот, которые распределены по двум типам блоков кристаллизующемуся в р-форме и некристаллизующемуся, обеспечивающему гибкость нитей. [c.382]

    Прочность и модуль волокон из простых и смешанных параароматических полиамидов без особых ухищрений сразу получаются соответственно 2—5 и 100—150 ГПа. Однако, так же, как и суперволокна из малополярных полимеров, полученные с помощью (правильно проведенной ) ориентационной вытяжки или ориентационной кристаллизации, они обладают одним существенным дефектом их прочность в поперечном направлении ничтожна по сравнению с продольной. Волокна и пленки претерпевают сильную фибриллизацию, т. е. самопроизвольно или при деформации (особенно кручении) распадаются на чрезвычайно тонкие фибриллы, которые при дальнейшей деформации образуют еще более тонкие линейные монокристаллы типа усов , столь хрупкие, что манипулирование ими практически невозможно. Они обнаружены уже достаточно давно, но детально до сих пор не исследованы. По-видимому, именно они образуют упоминавшийся каркас в ориентационно закристаллизованных волокнах. [c.389]

    Несмотря на кажущуюся простоту противоточной кристаллизации, процесс разделения имеет довольно сложную природу. Размер кристаллов может изменяться в результате частичного подплавления, а наличие продольного перемешивания в еще большей степени усложняет рассматриваемую картину [26]. Особенности массообмена зависят от типа фазовой диаграммы разделяемой системы. Кристаллы твердых растворов, как правило, нестабильны с изменением температуры и не являются чистыми, а содержат определенное количество примесей. Состав жидкости, окружающей кристаллы, близок к составу флегмы. Кристаллы эвтектикообразующих смесей стабильны к изменению температуры, но захватываемая ими жидкость значительно отличается по составу от флегмы. [c.107]

    Рассмотрен [148, 158—159] процесс нестационарного теплообмена в движущихся слоях дисперсной фазы с учетом продольного перемешивания в сплошной фазе. Теплота кристаллизации учтена путем перенормировки уделыгпй тсгтлосмкостн сплошпоа фазы, в которой происходит кристаллизация. Полученные уравнения позволяют рассчитать профиль температур в фазах по высоте кристаллизационной колонны. [c.136]

    Известно, что за твердой частицей, помещенной в поле течения (даже однородное), скорость потока равна нулю и возрастает до среднего значения на некотором расстоянии от нее. Таким образом создается продольный градиент скорости, благодаря которому микромолекулы разворачиваются. По-видимому, аналогичный эффект возникает и при обтекании сетки парами растворителя. Образование шиш-кебабов связывают с существованием именно этих локальных продольных градиентов, вызывающих существенное уменьшение степени свернутости молекулярных клубков. Пеннингсу удалось провести непрерывный продольный рост кристаллов ПЭ, помещая кусок волокна ПЭ, полученного в прежних опытах, или у входа в капилляр, через который протекал переохлажденный раствор, или прикрепляя его к поверхности внутреннего вращающегося цилиндра, причем в обоих случаях поле течения было чисто сдвиговое. Однако, кристаллизация фибриллярного ПЭ и здесь, очевидно, происходит в локальном растягивающем поле за кончиком затравки, наличие которой, как было показано выше, модифицирует поле течения вокруг себя. [c.55]

    Переход из высокоэластического в стеклх)образное состояние, т. е. стеклование, является характерным для полимерных материалов, и многие прозрачные (аморфные) пластики находятся в обычных условиях в стеклообразном состоянии. Если же от полимерных материалов (нанример, волокон, пленок н т. п.) требуется высокая прочность, и стабильность размеров и формы, применяют кристалли-зуюш иеся полимеры. В частности, в случае волокон для достижения высокой прочности одной кристаллизации оказывается недостаточно, поскольку прочность волокна в продольном направлении возрастает благодаря молекулярной ориентации. Как уже отмечалось ранее, возможность регулирования физических свойств полимерных материалов в широких пределах наряду с легкостью их переработки в изделия обусловливает широкое применение таких материалов в различных отраслях промышленности. [c.167]

    П. п. получают экструзией с раздувом пленочного рукава (см. Пленки полимерные). Материал экструдируется через кольцевую щель головки при 150 —180 °С в виде тонкостенной трубки, к-рую для предотвращения кристаллизации сонолимера быстро охлаждают в ванне водой при 10—20 "С или водными растворами солей с темп-рой 2—7 °С. Затем трубку из аморфного сополимера раздувают воздухом под давлением 7 кн/м (0,07 кгс/см -), что приводит к ориентации иленки в поперечном наиравлении. Образовавшийся пленочный рукав диаметром ок. 30 см растягивают в продольном направлении тянущими валками, складывают и наматывают в рулоны. Для иредотвращения слипания пленочного рукава внутрь него иногда вводят эпоксидированное масло или этиленгликоль. Описанный способ производства дает возможность получить аморфную илп частично кристаллич. П. п. [c.393]

    Ориентация кристаллов определяет направление их осей и, соответственно, связанные с кристалличностью свойства вдоль направления ориентации или вытяжки. Обычно пленки ориентируются или вытягиваются в двух взаимноортогональных направлениях это называется двухосной вытяжкой — сначала продольном, а затем в поперечном направлениях (ходу экструзии). Вытягивание в продольном направлении включает в себя охлаждение расплава до кристаллизации, а затем пропуск пленки между валками с возрастающим градиентом скорости. Поперечная вытяжка зависит от способа переработки. [c.20]


Смотреть страницы где упоминается термин Продольная кристаллизация: [c.43]    [c.119]    [c.254]    [c.386]    [c.188]    [c.204]    [c.210]    [c.352]    [c.416]    [c.701]    [c.63]   
Сверхвысокомодульные полимеры (1983) -- [ c.90 , c.102 ]




ПОИСК







© 2025 chem21.info Реклама на сайте