Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость карбонатов

    Образующийся сероводород адсорбируют твердыми поглотителями или жидкими абсорбентами. В качестве твердых поглотителей для очистки от сероводорода применяют активированный уголь, гидроксид железа, оксид цинка. При жидкостной абсорбции используют аммиачную воду, этаноламины, мышьяково-содовый раствор, растворы карбонатов и т. п. В азотной промышленности наиболее часто применяют очистку при помощи оксида цинка (поглотитель ГИАП-10) при 350—400°С и объемной скорости до 2000 ч по уравнению реакции [c.86]


    VI-2. Плитка карбоната кальция покрыта сверху слоем образовавшейся при разложении окиси кальция толщиной 6,35 мм-, на поверхности этого слоя температура постоянна и составляет 982 °С. Принимая, что реакция протекает фактически мгновенно уже при 911 °С и скорость процесса определяется только скоростью подвода тепла, найти скорость разложения. Полученное значение сравнить с данными Слонима , который утверждает, что при 911 °С за 1 сек [c.198]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Химическая абсорбция не может происходить в режиме мгновенной реакции, потому что исчерпывание жидкого реагента (гидроксильных ионов) исключено при буферном действии карбонат-бикарбонатного равновесия. Поэтому скорость зависит только от разности между концентрацией с действительно растворенного,СОз и равновесной концентрацией с, определяемой уравнением (11.7). [c.127]

    На практике редко бывает, чтобы общий порядок реакции (т. е. т + п) превышал 3. Однако известно много реакций, важных для практики, кинетика которых значительно более сложна. Например, когда СОз абсорбируется смесью карбоната и бикарбоната калия, скорость прямой реакции пропорциональна отношению концентраций карбоната и бикарбоната, а скорость обратной — концентрации бикарбоната (как обсуждается ниже)  [c.38]

    Скорость карбонат-НЫХ отложений [c.10]

    Исследования реакции твердого серебра с серой с использованием частиц известного размера показали, что реакция описывается уравнением диффузии внутрь сферического объема. При этом получаются вполне приемлемые шачения различных параметров диффузии [94]. Однако в ряде других случаев, особенно в реакциях экзотермического распада твердых веществ, которые могут сопровождаться взрывом , и в эндотермических реакциях разложения гидратов солей и карбонатов (до окислов) [9G], наиболее медленными стадиями, по-видимому, являются процессы образования центров реакции. Вид зависимости скорости реакции для таких процессов [89], которые лимитируются образованием центров реакции, может быть очень сложным. [c.560]


    Продолжительность испытания 5 ч, после чего установку выключают, образцы сталей после остывания извлекают из обоймы и подвергают электрохимическому травлению в расплаве 40% карбоната натрия и 60% гидроксида натрия при температуре 480 и плотности тока 16 А/дм . Время травления образцов сплава до полного удаления с их поверхности продуктов коррозии составляет 6-8 мин и устанавливается визуально-по появлению характерного металлического блеска на всей поверхности образца. После травления образцы промывают, сушат и помещают на 1 ч в эксикатор, затем взвешивают с точностью +0,0002 г. Скорость коррозии [X, гДм ч)] рассчитывают по формуле  [c.180]

    Реакции истинно первого порядка в обоих направлениях, подчиняющиеся уравнению (11,5), вообще говоря, не обычны для абсорбционных процессов. Однако если прямая реакция имеет первый порядок по концентрации растворяемого газа, то для выражения общей скорости реакции обычно все же используют уравнение (11,9). Соответствующий пример, касающийся взаимодействия СОа с карбонатом, дан несколько ниже, а другие обсуждаются в главе X. [c.36]

    Пример 1У-7 [153]. Водная суспензия карбоната кальция разделялась на фильтре при постоянной скорости. Проведено два опыта, первый —при скорости фильтрования 0,54-10 м-с , второй — при скорости фильтрования 1,04-10-3 м-с-.  [c.167]

    Рассмотрение равновесных условий при протекании обратимой реакции показывает, что уравнение для общей скорости обратимой реакции может быть получено, если известна кинетика прямой реакции. Например, для реакции СОа с карбонатом можно записать [c.39]

    Катализаторы (N1 30%, Си 5% N1 30%, Си 10% N1 16%, Си 10%) готовились осаждением карбонатов путем предварительной пропитки диатомита 10%-ным раствором углекислого натрия и последующей обработкой 10%-ными растворами сернокислых солей никеля, меди с последующим восстановлением в токе водорода при 350 °С. Уменьшение времени восстановления катализатора с 20 до 10 ч практически мало сказывалось на активности катализатора содержание глицерина в гидрогенизате не менялось, содержание гликолей возрастало с 34% (20 ч) до 44% к сухим веществам (10 ч). Катализатор, выгруженный в токе азота и углекислого газа, дает практически одинаковые результаты. Уменьшение скорости подачи водорода с 12 до 6 т /не сказывается на активности катализатора. При восстановлении шихты катализатора в течение 20 ч получен катализатор, расщепляющий углевод с содержанием в катализате высших полиолов 24%, глицерина 28%, гликолей 30% к сухим веществам. При гидрогенолизе 10%)-ного раствора сахарозы в течение 153 ч непрерывной работы получен гидрогенизат с содержанием глицерина 29%, глико-лей 34%, высших полиолов 18% к сухим веществам. [c.24]

    Скорость реакции в присутствии катализатора составляет k [СО2] [ at], причем — константа, характерная для данного катализатора и зависящая от температуры, а [ at] — концентрация каталитической добавки. Реакция имеет, таким образом, первый порядок. В присутствии иона или молекулы, которая будет реагировать с ионом водорода, образующимся по реакции (Х,2), катализированная гидратация будет продолжаться вплоть до достижения равновесия. Так, в присутствии ионов карбоната (и при условии незначительного равновесного давления СОа над раствором) вслед за реакцией [c.243]

    Катализатором, наиболее широко используемым в промышленности, является ион арсенита, As(0H)a0 , который вводится в раствор карбоната калия, используемый для абсорбции СОа, в виде арсенита калия или AS2O3. Константа скорости для арсенита составляет около 5000 л1 моль -сек) при 25 °С, а энергия активации— около 5700 кал/моль. Так как каталитическим действием обладает лишь анион, а не недиссоциированная мышьяковистая кислота, то значение константы [ at] скорости реакции первого порядка будет уменьшаться при снижении pH до уровня, при котором диссоциация будет частично подавляться. Это может происходить в карбонат-бикарбонатных растворах при обычных температурах. Однако в промышленных условиях абсорбцию СОа растворами поташа проводят чаще всего при температуре около 100 °С. В таких условиях константа диссоциации, видимо, достаточно велика, чтобы обеспечить практически полную ионизацию арсенита во всех участках абсорбционного аппарата. Шарма и Данквертс дают информацию о влия- [c.243]

    Пример 1V-6. При проведении опыта по разделению на фильтре водной суспензии карбоната магния (при постоянной скорости процесса) получен ряд значений общей разности давлений ДР и количества фильтра q (табл. 8). При этом известно, что р.=0,9-10 Н-с-м- , Xq=0,013 7=0,5-10 м-с . Определить постоянные фильтрования Лф.п, s и Го. [c.166]

    Влияние концентрации суспензии на удельное сопротивление осадка исследовано путем сопоставления результатов расчета по уравнению фильтрования и экспериментальных данных, полученных при разделении водных суспензий карбонатов кальция и магния на барабанном фильтре диаметром 30 см [207]. Обнаружено, что увеличение скорости образования осадка при повышении концентрации суспензии в опытах происходит значительно интенсивнее по сравнению с результатами расчета по уравнению. Это объяснено тем, что при повышении концентрации суспензии пористость осадка возрастает, а его удельное сопротивление соответственно понижается это не отражено в уравнении фильтрования. Установлено, что при См более 0,2 кг-кг- скорость образования осадка пропорциональна с2, причем для осадка карбоната кальция л = 2,36 и для осадка карбоната магния я=3,64. [c.189]


    В координатах i—v Для различных наносят семейство кривых по уравнению (VI,54) (рис. VI-20). На лабораторном фильтре периодического действия проводят опыты по промывке водой осадка, например карбоната кальция, от растворимого вещества, например хлорида аммония, при различных толщине осадка и скорости промывной жидкости. При этом отмечают мгновенную концентрацию промывной жидкости в функции времени. Далее выполняют последовательные ступени подбора величин pi и Рг. [c.251]

    В опытах по разделению суспензии карбоната магния с концентрацией 0,5%, находящейся под фильтровальной перегородкой, найдено, что при оседании частиц скорость фильтрования уменьшается в зависимости от количества фильтрата быстрее, чем в процессах без оседания частиц. [c.337]

    В приводимых нами исследованиях эта методика была несколько изменена использовали не пластинку, а цилиндры из стекла и кварца, покрытые зернами кварца, карбоната или естественной дезагрегированной породой. Цилиндрическая форма твердой фазы позволяла получить постоянную скорость на границе пленки нефть — вода в любой точке поверхности. Шероховатость поверхности, близкая к природной, более полно моделировала процесс отмыва с учетом адсорбционных эффектов. [c.163]

    Введение щелочных металлов значительно ускоряет процесс выгорания углеродистых отложений по сравнению с образцом оксида железа без добавок. Количество СО2, выделяющееся в начальный период регенерации (см. рис. 2.24, б), возрастает с увеличением атомной массы щелочного металла соответствующим образом уменьшается и время полного выгорания углерода. Таким образом, скорость выгорания углерода с оксида железа, промотированного щелочными металлами, при 450 °С возрастает в ряду Li < Ыа < К < КЬ < Сз. В этих условиях образования ферритов не происходит, и щелочные металлы при регенерации существуют в виде самостоятельных фаз карбонатов металлов [108]. Известно [3], что карбонаты щелочных металлов существенно ускоряют [c.44]

    Ери рМ >10, т.е. при малых степенях карбонизации роль реакции (I) чрезвычайно мала и скорость абсорбции углекислоты раствором карбоната калия определяется в основном реакцией (2). При высоких степенях карбонизации, т.е. при pH < 8, возрастает роль 156  [c.156]

    Реакция эта идет со столь большой скоростью, что можно получить хорошие выходы этиленхлоргидрина, применяя хлорную воду, поэтому ранее применявшиеся методы смещения равновесия хлор — вода нейтрализацией для удаления соляной кислоты оказались излишними [29].-Методика Кариуса приготовления разбавленных растворов хлорноватистой кислоты состояла в обработке холодной хлорной воды окисью ртути. Хотя метод пропускания хлора в охлажденный раствор карбоната или бикарбоната был описан еще в 1845 г. в Gmelin s Handbu h [89], этот метод больше известен как метод Воля и Швейтцера, так как эти [c.370]

    ООО вес. ч. воды. Затем к раствору добавляется 170 вес. ч. 60%-ного гидрата окиси алюминия. Смесь при интенсивном перемешивании нагревают до 85° С. К нагретой смеси прибавляют раствор карбоната аммония со скоростью 5 г/мин до pH 7,2. Выпавший осадок фильтоу-ют, сушат, прокаливают при 400 С. Затем 200 г полученного порошка суспендируют в 200 вес. ч. дистиллированной воды. Смесь размалывают в шаровой мельнице на протяжении 18 ч. Полученную пасту наносят на сотовый носитель и сушат при 105° С. Потом на протяжении 5 мин температуру повышают до 125° С (до полной дегидратации нитрата) и до 150° С (до расплавления нитрата) и при этой температуре выдерживают 5 мин. Далее температуру повышают до 700° С с выдержкой в течение 3 ч [c.86]

    Данквертс и Мак Нэйл экспериментально определили к а для барботажной тарелки диаметром 15 см ири абсорбции СОз из воздуха карбонат-бикарбонатным буферным раствором в следующих условиях (состав жидкости относится к условиям на тарелке) температура 18 °С давление 775 мм рт. ст.-, У= 2000 сж -и = = 5,66 смУсек, расход газа 7000 см 1сек содержание СО во входящем газе 10 мол. % В" = 0,28 моль/л Р" = 0,54 моль/л общая скорость абсорбции Яа У= 0,67 X X 10 моль/сек, СОд = 0,28 моль/л НСО ] = 0,54 моль/л. [c.158]

    В ЭТОМ случае скорость абсорбции одинакова во всех точках колонны. Этот метод уже обсуждался ранее в разделах VI-1-2 и У1-2-3. Он практически использован Данквертсом и Гиллхэмом при исследовании абсорбции СО2 карбонат-бикарбонатным раствором. [c.214]

    Этот процесс обратим. Условия равновесия определяются соотношением между растворимостями гидроокиси и карбоната кальция. Степень каустификации возрастает с уменьшением концентрации оды в исходном растворе (рис. 68) и с понижением температуры. Однако на практике процесс осуществляют нри 80—100° С с целью увеличения скорости взаимодействия реагентов и получения крупнокристаллического осадка карбоната кальция. Обычно применяют 10—15% раствор Naa Og. При этом достигают превращения Naa Og в NaOH па 90—95% и получают щелок, содержащий 100— [c.580]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]

    N-aлкилиpoвaниe в классическом варианте проводится в двухфазной системе, содержащей карбонат натрия или щелочь. Для того чтобы вторичные или третичные аммониевые соли могли образоваться из аминов, последние должны подойти к поверхности раздела фаз. Скорость реакции будет определяться нуклеофильностью амина из этого следует, что МФ-катализатор не должен оказывать заметного влияния на реакции нормальных аминов. Водный раствор натриевой щелочи не является достаточно сильным основанием для депротонирования неактивированных аминов. Однако депротонирование становится возможным, если кислотность NH-гpyппы повышается под влиянием соседних электроноакцепторных групп  [c.160]

    Влиянием электрокинетических явлений на удельное сопротивление осадка объяснены [222] результаты опытов по фильтрованию воды, содержащей электролиты в незначительной концентрации, через слой заранее полученного осадка, состоящего из частиц карбоната кальция размером около 3 мкм. Опыты проводились в приборе, описанном на с. 58. Они заключались в определении проницаемости и пористости осадка после каждого сжатия его порщнем, нагрузка на который ступенчато увеличивалась. При различной степени сжатия осадка были получены значения его пористости V и скорости фильтрования (отнесенной к единице разности давлений W/AP), которая является величиной, прямо пропорциональной проницаемости осадка и обратно пропорциональной его удельному сопротивлению. Пористость осадка при различной степени сжатия вычислялась по уравнению (V,10). [c.198]

    Как известно, нефть вместе с сопутствующей ей пластовой водой залегает в геологических формациях, состоящих из таких пород, как песчаники, известняки, доломит и др. Породы, в которых залегает нефть и с которыми контактирует пластовая вода (хлориды, сульфиды, карбонаты и др.), определяют состав и концентрацию минеральных солей, содержащихся в ней. В процессе добычи нефти обычно сопутствующая пластовая вода своим напором вытесняет нефть из пористых пород пласта к скважинам. В зависимости от структурных свойств пласта, скорости отбора нефти, ее вязкости и по другим причинам приток воды к скважине вместе с нефтью может быть разным. В начальный период добычи на новом месторождении из скважин часто получают безводную или малооб-водненную нефть. Однако со временем обводненность добьшаемой нефти увеличивается с различной скоростью и на старых промыслах иногда достигает 80-90%. Средняя обводненность добьшаемой в нашей стране нефти в настоящее время превышает 50%. [c.5]

    Морфология образующихся частиц зависит от целого ряда факторов, но наиболее важным является соотношение скоростей их зарожд ения и роста, которые в свою очередь в значительной степени зависят от пересыщения системы. Окончательный размер частиц определяется числом центров кристаллизации и скоростью осаждения вещества. Умеренно растворимые вещества, например карбонаты, обычно осаждаются в виде очень мелких частиц. При медленном, регулируемом росте умеренно растворимых солей можно получать монодисиерсные осадки. При высоких степенях пересыщения первичный критический центр кристаллизации может быть меньше размера элементарной ячейки решетки и начинает расти, не имея упорядоченной кристаллической структуры. Таким путем можно получать аморфные или частично кристаллизованные осадки [И]. При низких степенях пересыщения образуется хорошо сформированный кристаллический осадок, причем форма частиц зависит от структуры кристалла и от процессов, преобладающих на поверхности раздела фаз в ходе роста. На морфологию осадка сильно влияет скорость роста кристаллов. При низких скоростях образуются компактные кристаллы, форма которых соответствует кристаллической структуре. Ионы в растворе вблизи поверхности раздела кристалл — жидкость играют важную роль в модификации формы кристалла. При высоких степенях пересыщения нередко образуются объемистые осадки с дендритными частицами. При еще больших уровнях пересыщения получаются очень мелкие частицы, способные к агломерации или образованию золей. [c.19]

    Важное технологическое значение имеет прочность частиц катализатора, особенно шарикового. Истирание шарикового катализатора ведет к его потерям в виде пыли. Для уменьшения истирания частиц катализатора и эрозии аппаратуры при трении катализатора в реактор вводят смеси окиси магния, карбоната и фосфата кальция, которые образуют на поверхности частиц катализатора липкую, устойчивую к истиранию оболочку, уменьшающую истирание катализатора в 10 раз. В качестве смазки вводяГ также порошок баритов с частицами диаметром менее 15—30 мкм. При концентрации бария от 5 10" до 2 10 г/г катализатора рас.ход последнего в результате истирания снижается в 5—6 раз, скорость эрозии — в 6—20 раз. [c.216]

    Гидрогенолиз глюкозы возможен при сравнительно низких температурах еще Иосикава и Ханаи [24] показали, что при добавлении гидроокисей и карбонатов бария, кальция, стронция гидрогенолиз углеводов ускоряется и снижается его температура — для глюкозы она составляет около 100 °С. При увеличении концентрации крекирующего агента температура начала заметного гидроге-нолиза моносахаридов может быть еще понижена. Описано получение 9,5% глицерина и 2% эритрита при 69°С и дозировке Са(ОН)г 4,5% к глюкозе [25]. Однако столь низкие температуры не имеют пока практического значения из-за малой скорости процесса увеличение времени реакции при температуре ниже 100°С может привести к образованию больших количеств высших полиолов, которые при температуре ниже 150°С вообще не расщепляются. [c.111]

    Проблемы, связанные с разделением фаз. На теплообменники могут воздействовать различные агрессивные вещества. Вместе с тем могут возникать другие виды воздействий, связанные с разделением фаз во время охлаждения или нагрева. Один случай уже ранее рассматривался образование и удар капель воды в газе с содержанием СОо. Аналогичная проблема может возникать в случае, когда газ содержит определенную долю НзЗ, что характерно для ряда нефтеперегонных процессов в таких случаях необходимо использовать аустенитную сталь для труб [10]. В некоторых процессах в результате синтеза в химических реакторах может образовываться небольшое количество органических кислот, таких, как муравьиная, уксусная и масляная, которые могут конденсироваться преимущественно при опускном течении жидкости в охладителях, а затем в дисцилляционных установках. Вниз по потоку от точки начала конденсации кислоты становятся все более разбавленными и менее коррозионными. Кроме основных компонентов потока в реакторах образуются небольшие количества агрессивных соединений, что способствует увеличению скорости коррозии. В качестве примера можно привести цианид водорода, который образуется в реакторах при каталитическом крекинге жидкости. Однако отложения, образующиеся вследствие выноса из дистилляционных установок, могут оказаться полезными. Ранее было отмечено, что углеродистая сталь обладает стойкостью при работе парциального конденсатора очистителя СОа, несмотря на то, что в газовой фазе концентрация СО2 высока. Это происходит отчасти вследствие выноса карбоната калия или раствора аминовой кислоты, из которых происходит выделение СО2, что значительно уменьшает кислотность конденсата. Кислород способствует ускорению ряда коррозионных процессов (а именно образованию сернистых соединений за счет НзЗ) и коррозии за счет СО2, а случайное загрязнение кислородом (например, из-за [c.320]

    Растворимость карбоната калия при обычной температуре в вод мала, поэтому поглотительная емкость раствора невелика. Скорость реакции при 20—40 °С также мала, что не позволяет вести процесс при обычной температуре. Для очистки применяют 20—30%-ный раствор КаСОд. Раствор с такой концентрацией стабилен нри температурах выше 60—70 °С с ростом температуры растет и скорость реакции. [c.119]

    Независимо от состава пластовых вод при отсутствии кислорода и сероводорода скорость коррозии трубопроводов при транспортировании воды практически не превышает 0,05 г/м ч. Довольно высокая экранирующая способность пленки карбонатов и окислов железа способствует поддержанию в течение длительного времени безаварийнсуй эксплуатации стальных трубопрово- [c.160]


Смотреть страницы где упоминается термин Скорость карбонатов: [c.49]    [c.99]    [c.90]    [c.371]    [c.389]    [c.65]    [c.248]    [c.277]    [c.393]    [c.45]    [c.238]    [c.324]    [c.100]   
Технология соды (1975) -- [ c.21 , c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Карбонат натрия, слеживаемость Константа скорости сорбции воды

Карбонаты, скорости разложения

Скорость карбоната кальция

Скорость растворами карбоната аммони



© 2025 chem21.info Реклама на сайте