Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мак-Бэн адсорбция метод измерения

    Методы измерения поверхности катализаторов, осно ванные на адсорбции из жидкой фазы..... [c.4]

    Цель работы оценка работы смачивания и работы адгезии изучение влияния адсорбции ПАВ на смачивание твердых поверхностей методом измерения краевых углов. [c.20]

    Об изменении характера взаимодействия твердой поверхности со смачивающей жидкостью в результате адсорбции ПАВ можно судить но работе смачивания И7(. . Работа смачивания определяется как разность ат-г — сгт-ж- Поскольку достаточно надежных методов измерения поверхностного натяжения на границе с твердыми телами нет, для расчета удобнее использовать следующее уравнение  [c.22]


    Теоретическое пояснение. При поглощении растворенных веществ твердыми адсорбентами удельная адсорбция не может быть рассчитана по уравнению Гиббса, так как нет приемлемых методов измерения поверхностного натяжения на границе раздела твердое тело жидкость. Количество адсорбированного вещества (адсорбата) определяют по изменению его концентрации в растворе. Величина удельной адсорбции А для твердых адсорбентов (количество вещества, моль, адсорбированного 1 кг адсорбента) и равновесная концентрация в растворе при постоянной темпера- [c.172]

    Итак, метод измерения дифференциальной емкости позволяет определять п. н. 3., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с постоянной ионной силой. Метод применим как к жидким, так и к твердым электродам и является чрезвычайно чувствительным к любым изменениям в строении двойного электрического слоя. Последнее обстоятельство предъявляет очень высокие требования к чистоте исследуемых этим методом металлов и растворов. Существенным препятствием для использования метода измерения емкости является возможность протекания электрохимических реакций на границе электрод — раствор. [c.60]

    Итак, метод измерения дифференциальной емкости позволяет определять т. н. з., находить зависимость заряда поверхности от потенциала, а также рассчитывать величины адсорбции органического вещества и специфической адсорбции ионов в растворах с по- [c.66]

    Метод измерения С, -кривых может быть применен для расчета адсорбции органических соединений на жидких и твердых электродах. Расчеты адсорбции проводятся с использованием соотношений (3.92) и (3.49). В случае жидких электродов при этом можно использовать ао, полученные в ходе электрокапиллярных. измерений. Однако для расчетов по уравнению (3.49) необходимо знание не абсолютных величин пограничного натяжения, а лишь их изменений, обусловленных изменением концентрации адсорбата. Поэтому для твердых электродов, когда невозможно измерить пограничное натяжение, вначале с точностью до константы интегрирования рассчитывают а.Я-кривую в растворе фона. Далее, а, -кривые в растворах, содержащих поверх-ностно-активное органическое вещество, строят таким образом, чтобы они совпадали с исходной кривой в области потенциалов, в которой сливаются соответствующие С.Я-кривые, вследствие отсутствия на поверхности электрода адсорбированных органических молекул. [c.179]


    Как следует из вышеизложенного, метод измерения дифференциальной емкости применим к жидким и твердым идеально поляризуемым электродам, от метод позволяет определить п. н. з. электродов, получить зависимость плотности заряда электрода, а также пограничного натяжения (или понижения пограничного натяжения) от потенциала. С его помощью можно рассчитать адсорбцию органических молекул и поверхностно-активных ионов, а также скачки потенциала в двойном электрическом слое. Вследствие высокой чувствительности метода к изменению строения и свойств межфазной границы электрод/ раствор необходима высокая тщательность проведения эксперимента. [c.179]

    Определение адсорбции анионов серной кислоты на платинированной плати-тине методом измерения электропроводности. Образование двойного электрического слоя сопровождается переходом ионов из объема раствора на границу раздела электрод/раствор или, наоборот, от границы раздела в объем жидкой фазы. [c.204]

Рис. 3.37. Ячейка для изучения адсорбции кислоты на платиновой сетке методом измерения электропроводности Рис. 3.37. Ячейка для <a href="/info/1489217">изучения адсорбции кислоты</a> на <a href="/info/420502">платиновой сетке</a> <a href="/info/3778">методом измерения</a> электропроводности
    О-II-Щ]-О Применение метода измерения емкости двойного слоя для количествен-Рис. 1.9. Эквивалентная схе- ного изучения адсорбции органиче-ма идеально поляризуемого ких веществ ограничено системами [c.22]

    Для оценки зависимости свободной поверхностной энергии от потенциала окисленного платинового и родиевого. электродов были иопользованы методы измерения твердости (Я) и гидроабразивного износа (убыли веса электрода при истирании его абразивом). Соответствующие кривые характеризуются наличием нескольких максимумов и минимумов (площадок). Положения экстремальных точек на кривых зависимости (дН/дЕг) от Вт коррелируют с потенциалами областей максимальной и минимальной адсорбции некоторых органических веществ. Однако имеют место и отклонения этого можно было ожидать, поскольку правомерность сопоставления указанных зависимостей предполагает ряд упрощающих допущений, которые далеко не всегда выполняются. [c.123]

    Основной особенностью адсорбции на поверхностях раздела жидких фаз является возможность измерения поверхностного натяжения. Надежных методов измерения поверхностного натяжения твердых тел нет, так как обратимое изменение их поверхности встречает ряд трудностей. [c.311]

    В работе исследуют влияние концентрации растворенного вещества на величину адсорбции при постоянных температуре и количестве адсорбента, одном и том же растворителе (Н2О). Для исследования используют водные растворы карбоновых кмслот, например щавелевой, янтарной, малеиновой, глутаровой и др. Величина адсорбции при достижении адсорбционного равновесия устанавливается методом измерения электрической проводимости растворов по времени. [c.436]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    Наибольшей диффузностью двойной слой обладает вблизи точки нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в двойном электрическом слое, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. Сравнительное изучение поведения ряда металлов в водных растворах показало, что строение ионного двойного слоя относительно мало зависит от природы металла. Вместе с тем определение значения емкости двойного слоя помогает судить о строении и истинной поверхности металлического электрода. Измерения емкости в разбавленных растворах позволили, например, непосредственно проверить на опыте теорию диффузионного строения двойного слоя и определить величину потенциала l3], создаваемого частью двойного слоя, находящейся на расстоянии одного ионного радиуса от поверхности электрода. [c.225]


    Тонину помола контролируют анализом проб. Существуют следующие методы анализа ситовой, седиментационный и метод измерения адсорбции. [c.137]

    Интегральные теплоты адсорбции позволяют разграничить процессы физической и химической адсорбции. Основной метод определения интегральных теплот адсорбции — калориметрические измерения. [c.45]

    И здесь наблюдается хорошее, поистине удивительное, согласие четырех, совершенно независимых методов измерения во. Таким образом, можно считать, что современные теории, акцентируя внимание на тех или иных особенностях, в целом правильно, и в основном, количественно отражают сложный процесс адсорбции, позволяя получить достоверные данные о количестве вещества, адсорбированного при данных значениях р и Т, а также о [c.168]

    Наибольшей диффузностью двойной слой обладает вблизи потенциала нулевого заряда. Метод измерения емкости двойного слоя позволяет исследовать изменения, происходящие в нем, в частности кинетику адсорбции поверхностно активных веществ, деформацию ионов под влиянием электрического поля, изменение толщины двойного слоя при адсорбции атомов и молекул. [c.237]

    Метод измерения поверхностного натяжения основан на термодинамическом соотношении (уравнение Гиббса) и наиболее надежен, хотя по точности уступает другим методам. Измерение а в зависимости от концентрации адсорбата С дает возможность определить поверхностную концентрацию Г, а изучение зависимости а от потенциала позволяет найти границы адсорбируемости ПАВ. При этом необходимо учитывать, что ири прохождении фарадеевского тока через ячейку на электроде образуются продукты реакции, которые также адсорбируются на ртути. В этих условиях измерение а позволяет оценить адсорбцию смеси реагирующего вещества и продукта реакции. [c.374]

    Не потеряли своего значения и электрохимические методы измерения адсорбции. Хемосорбированный на металле кислород, равно как и возникающие при окислении слои оксидов, могут быть электрохимически восстановлены в электролитах при соответствующих потенциалах электродов [39]. Процесс восстановления кислородсодержащих поверхностных соединений металла осуществляется при пропускании тока определенной плотности через электрохимическую ячейку, в которой исследуемый образец является катодом. При фиксируемой плотности тока исследуется изменение потенциала электрода во времени, причем потенциал отсчитывается по отношению к потенциалу одного из стандартных [c.32]

    Более поздние опыты [8] по адсорбции водорода на вольфрамовых пленках со значительно большими поверхностями, чем поверхности нитей Робертса, привели к заключению, что за быстрой хемосорбцией следует медленная адсорбция метод измерения адсорбции по изменению коэффициента аккомодации газообразного неона на нитях не обнаружил эту медленную адсорбцию. Ридил и Трепнел [8] считают, что она представляет хемосорбцию в виде атомов в монослое, а не во втором слое адсорбированных молекул. Так как эта медленная хемосорбция имеет низкую теплоту адсорбции (рис. 37, кривая 3), оказывается возможным протекание реакций конверсии и обмена на этих хвостах пленки, на которых десорбция идет много быстрее, чем при малых заполнениях. По-видимому, оценка заполнения поверхности нитей, использованных Робертсом, была при больших заполнениях завышенной это предположение возникло и по другим соображениям (см. разд. 6 гл. VI). [c.273]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]

    Сушествуют также методы измерения удельной поверхности катализаторов, основанные на адсорбции из жидкой фазы, например, чистого вещества или двухком-понентиого раствора. В случае применения в качестве адсорбата индивидуальной жидкости удельную поверхность вычисляют по количеству выделяющейся теплоты смачивания, а в случае адсорбции компонентов растворов— ио уменьшению концентрации наиболее сильно адсорбирующегося компонента. [c.86]

    Белов с сотрудниками [132], определяя характер граничного слоя, образуемого высшими эфирами тиодивалериановой кислоты на поверхности металла методом измерения контактной разности потенциалов, установили, что исследуемые ими соединения образуют в процессе адсорбции на стали электроположительные слои. Это связано с преобладающим влиянием сложноэфирных фрагментов по сравнению с сульфидными в процессах, протекающих на границе раздела фаз. -,  [c.133]

    Экспериментальное определение точек изотермы является очень продолжительным процессом. Адсорбция на твердых адсорбентах измеряется, как правило, двумя методами 1) объемным (измеряется изменение количества адсорбируемого вещества в пространстве над адсорбентом) 2) весовым (осуществляется непосредственное измерение количества адсорбированного вещёства на адсорбенте, при этом используются установки с весами Мак-Бена или электробалансом). На практике предпочтение отдается весовому методу. Этот метод измерения адсорбции имеет то преимущество, что в весовых установках не нужно знать объемы всех емкостей и достаточно термоста-тировать только пространство, в котором находится адсорбент. Измерение величин адсорбции в каждой точке не зависит от предыдущих измерений. В объемном же методе совершенно необходима точная калибровка объемов и термостатирование всей установки. Величина адсорбции в данной точке изотермы определяется как сумма всех предыдущих измерений, и в связи с этим погрешность отдельных измерений неизбежно влияет на все последующие. [c.21]

    Уравнение Гиббса часто применяют для вычисления адсорбции на межфазных поверхностях эмульсий М/В. Благодаря значительной межфазной поверхности, эмульсии являются удобными системами для определения адсорбции посредством измерения падения концентрации эмульгирующего агента. Кокбейн (1954) успешно измерил поверхностные концентрации додецилсульфата натрия на межфазной поверхности эмульсии типа М/В и показал применимость уравнения Гиббса. Трудности возникают, когда замедляется достижение постоянного значения поверхностного или межфазного натяжения, например, в случае сильно разбавленных растворов, следов высоко поверхностно-активных примесей или при наличии макромолекул. Во-первых, все методы, связанные с увеличением межфазной поверхности — например, метод счета капель или метод дю Нуи — дают завышенные результаты (Педдэй и Расселл, 1960). Во-вторых, применение равновесной формулы к системе, поверхностное натяжение которой все еще медленно уменьшается (например, протеины), является сомнительным, так как скорость понижения а может быть [c.85]

    Однако предположение о том, что фарадеевский процесс не изменяет емкость двойного слоя, оправдывается лишь при отсутствии специфической адсорбции разряжающегося вещества. В противном случае емкость двойного слоя зависит от его поверхностной концентрации, а следовательно, от фарадеевского тока и псевдоемкости. Таким образом, процессы заряжения двойного электрического слоя и электрохимические реакции оказываются в общем случае взаимосвязанными. Это осложняет трактовку результатов измерений емкости в условиях протекания на электроде электрохимической реакции. В связи с этим изучение строения двойного электрического слоя методом измерения емкости проводят обычно в системах, где электрод ведет себя как идеально поляризуемый. [c.166]

    Проведенное в середине 60-х годов я работах М. Я. Фиошина, А. А. Миркинда и сотр. систематическое исследование влияния ряда органических -веществ, существенно отличающихся по своему строению (1,3-бутадиена, бензола, циклогексена и др.), на скорости реакций выделения кислорода, окисления спиртов и карбоксилатов, а также на фарадеевскую псевдоемкость при потенциалах разряда воды позволило авторам сделать вьгвод, что во всех случаях наблюдаемые эффекты могут быть объяснены только в предположении хемосорбции исследуемых органических веществ в области высоких анодных потенциалов. Этот вывод был подтвержден непосредственными измерениями величин адсорбции методом меченых атомов (В. Е. Казаринов, Л. А. Миркинд и сотр.). Важный вклад в развитие представлений об адсорбции органических веществ при высоких анодных потенциа- [c.117]

    Для исследования зависимости теплот адсорбции и от температуры, соответствующей вторым производным по температуре d пК 1АТ и, соответственно, дЧпс/дТ ) или (дЧпр/дТ ), нужны прямые калориметрические измерения либо самих теплот адсорбции при разных температурах, либо теплот адсорбции при одной температуре и теплоемкости адсорбционной системы. Следует отметить, что калориметрические измерения теплот адсорбции ограничены во времени из-за некоторого неизбежного теплообмена калориметра с окружающей средой даже в случае дифференциального и изотермического метода измерения. [c.159]

    Такая теория, объединяющая адсорбционные и электростатические точки зрения, была развита А. И. Рабиновичем с учениками и сотрудниками. Методом измерения электропроводности и потенциометрического титрования Рабинович на примере золя AS2S3 (наружная обкладка двойного слоя которого образована ионами водорода) показал, что при введении в раствор КС1, ВаСЬ или AI I3 сначала происходит обменная адсорбция с вытеснением в эквивалентных количествах из диффузного слоя ионов Н" " ионами К" ", Ва" или А1 +. Коагуляция наступает только при введении избытка электролита тем более значительного, чем ниже валентность катиона. Аналогичная закономерность наблюдалась и на других золях. На основании опытов был сделан вывод, что коагуляция про- [c.340]

    Таким образом, эксперпметальное изучение адсорбции из раствора на твердых веществах, заключается, прежде всего, в измерении начальной и равновесной концентраций. Методы измерения концентрации могут быть любыми, но, измеряя равновесную концентрацию, надо иметь в виду, что адсорбци онное равновесие наступает очень быстро лишь на гладких поверхностях, где можно ускорить процесс перемешиванием. Большинство же твердых адсорбентов, (например, активированный уголь, силикагель) пористы, и скорость адсорбции на них зависит от скорости диффузии вещества в порах (капиллярах). Поэтому адсорбционное равновесие для мелкопористых адсорбентов устанавливается иногда в течение нескольких суток. Для крупнопористых углей равновесие устанавливается быстрее— менее чем за час. [c.65]

    См. например, Осмоловский Г. М. Автореф. канд. дисс., ЛГУ, 1953. Менее строгий, но широкоприменяемый метод измерения 4 о по адсорбции из растворов ПАВ, см. в [2, с, 107]. [c.176]

    Радиоактивный метод измерения адсорбции основан иа уста-новленпп адсорбционного равновеспя между адсорбентом п раствором, в котором находится меченый адсорбтнв. Пользуясь тем, что малое колпчество радпоактивного вещества легко измеряется, величину адсорбции можно определить по убыли его в растворе илп по наличию пепосредственно на адсорбенте. [c.125]

    Физико-химическое взаимодействие различных компонентов дымовых газов, по всей вероятности, в значительной степени влияет на процесс отпотевания низкотемпературных поверхностей нагрева. Этот процесс безусловно зависит от температуры и протекает в определенном интервале изменения ее от максимально возможной в данных условиях и до минимальной. Поэтому понятие температура точки росы , принятое для двухкомпонентной системы, состоящей из чистого газа и водяных паров, не точно отражает существо процесса. В связи с коррозионной активностью дымовых гаэоч правильней было бы говорить о предельной температуре, начиная с которой при ее понижении проявляются явления влажного или жидкостного характера, вызываемые конденсацией, а возможно и адсорбцией, и об интервале температур, в котором жидкость и дымовые газы могут находиться в состоянии равновесия. В зависимости от характера этого явления по-разному могут сказываться и вызываемые ими следствия и не обязательно во всех случаях при предельной температуре будут обнаруживаться коррозионные явления. Коррозионный процесс, вероятно, может начинаться и при другой температуре, приводящей к конденсации серной кислоты, солей или каких-либо других активных соединений в необходимом для начала коррозии количестве и соответствующей концентрации — такой температуре, при которой совокупность химических процессов приводит к усилению взаимодействия с металлом поверхностей нагрева. Это обстоятельство следует иметь в виду при анализе методов измерения температуры точки росы. [c.285]

    К третьей группе методов Д. а. относятся, во-первых, все методы седиментационного анализа. Эти методы основаны, напр., на регистрации кинетики накопления массы осадка (седиментометр Фигуровского позволяет определять размеры частиц от 1 до 500 мкм) или изменения оптич. плотности суспензии. Применение центрифуг позволяет снизить предел измерения до 0,1 мкм (с помощью ультрацентрифуг можно измерять даже размеры крупных молекул, т.е. 1-100 нм). Во-вторых, широко используют разнообразные методы рассеяния малыми частицами света (см. Нефелометрия и турбидиметрия), в т. ч. методы неупругого рассеяния, а также рассеяния рентгеновских лучей, нейтронов и т.п. В-третьих, для определения уд. пов-сти применяют адсорбц. методы, в к-рых измеряют кол-во ад-сорбир. в-ва в мономолекулярном слое. Наиб, распростраиен метод низкотемпературной газовой адсорбции с азотом в качестве адсорбата (реже аргоном или криптоном). Уд. пов-сть высокодисперсной твердой фазы часто определяют методом адсорбции из р-ра. Адсорбатом при этом служат красители, ПАВ или др. в-ва, малые изменения концентрации к-рых легко определяются с достаточно высокой точностью. [c.78]

    Уд. пов-сть порошков можно находить также по теплоте адсорбции (или смачивания). Поточные микрокалориметры ПОЗВОЛ5ПОТ проводить измерения как в газовой, так и в жидкой средах. Адсорбц. методы Д. а., весьма разнообразные по технике эксперимента, позволяют определять уд. пов-сти порядка 10-10 м /г, что примерно соответствует размерам частиц от 10 до 1000 нм. [c.79]


Смотреть страницы где упоминается термин Мак-Бэн адсорбция метод измерения : [c.290]    [c.181]    [c.22]    [c.26]    [c.118]    [c.34]    [c.6]    [c.61]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте