Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт соли, гидролиз

    Основные соли могут быть получены различными методами, которые обычно включают — непосредственно нли косвенно — гидролиз обычной соли. Гидролиз может быть проведен в условиях контролируемой температуры, кислотности и концентрации ионов металла либо (косвенно) путем нагревания гидрата соли. Многие гидроксосоли получаются в результате последнего процесса вместо обычных безводных солей, например Си2(ОН)зЫОз образуется при нагревании гидрата нитрата меди. Осадки, образующиеся при добавлении раствора карбоната натрия к растворам солей металлов, как правило, представляют собой гидроксокарбонаты. Некоторые металлы не образуют нормальных карбонатов (например, медь см. разд. 25.7) другие (такие, как свинец, цинк, кобальт и магний) в зависимости от условий осаждения могут образовывать нормальные солн или гидроксосоли. Свинец, например, образует гидроксосоли [c.373]


    Кобальт можно вытеснить из раствора, переведя его предварительно в трехвалентную форму. Соли трехвалентного кобальта легко гидролизуются с образованием гидрата окиси кобальта. Реакция идет до конца, если нейтрализовать свободную кислоту, образующуюся при гидролизе. [c.376]

    Последовательность выполнения работы. 1. Приготовить 0,1М раствор соли кобальта. Для предотвращения гидролиза растворение следует производить в воде слабо подкисленной серной кислотой. [c.73]

    Примечание. Характерное для комплекса [Со ( NS),] синее окрашивание хорошо видно, если комплекс находится в органическом растворителе. Поэтому к раствору [ o( NS)5 + NH NS] добавляют небольшое количество амилового спирта (или смесь равных частей амилового спирта с этиловым эфиром) и затем всю смесь взбалтывают. Амиловый спирт извлекает комплексное соединение кобальта из раствора, и вследствие этого сам раствор обесцвечивается, а слой амилового спирта окрашивается в красивый синий цвет. При подкислении раствора концентрированной соляной кислотой (при взбалтывании) посинение верхнего слоя увеличивается вследствие образования (частично) кислоты H2[ o( NS)4], которая в нем лучше растворима, чем ее соль. Большое разбавление раствора водой обусловливает исчезновение (при встряхивании) синей окраски вследствие гидролиза полученного комплекса. [c.292]

    Эта соль, гидролизуясь при нагревании, превращается в Со(ОН)2 (розового цвета) Гидроокись кобальта Со(ОН)2 окисляется на воздухе с образованием Со(ОН)з. [c.36]

    Соли кобальта несколько гидролизованы и потому воднь растворы их имеют слабокислую реакцию. [c.292]

    Гидроокись Fe(OH)a — более сильное основание, чем Fe(OH)a, соли железа (II) обладают более ионным характером, чем соли железа (III). Последние заметнее гидролизуются, чем соли Fe(II), Комплексные соединения трехвалентных железа и кобальта бс ее устойчивы, чем двухвалентных. Простые ионы Со и Ni совсем неустойчивы. N1 — сильный окислитель. [c.345]

    В безводном состоянии соли Ре + способны присоединять аммиак, однако водой подобные комплексы полностью гидролизуются. Напротив, аммиакаты трехвалентного кобальта отличают- [c.441]

    Хорошие результаты получают при отделении индия от марганца, никеля, кобальта, цинка, меди и кадмия гидролизом при помощи пиридина в присутствии аммониевых солей [62, 63]. [c.19]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]


    Кобальт при содержании его в титане ЬЮ —2-10 %1 определяют фотометрическим методом, описанным на стр. 42, аналогичным методу для анализа сталей В основу его положена реакция образования комплекса кобальта с 2-нитрозо-1-нафтолом в слабокислом растворе (pH 5). Комплекс экстрагируют бензолом и определяют содержание кобальта измерением оптической плотности окрашенного экстракта. Для предотвращения гидролиза солей титана при pH 5 в раствор вводят фторид-ион в качестве комплексообразующего агента. [c.40]

    Непрямым способом окисления углеводородов до спиртов является введение в субстрат ацетоксигруппы, поскольку последующим гидролизом полученного соединения можно легко получить спирт. Этот подход часто дает лучшие результаты, чем прямое введение гидроксигруппы в молекулу углеводорода, так как ацетоксигруппа менее чувствительна к вторичному окислению. Типичными реагентами являются соли переходных металлов обычно в уксусной или трифторуксусной кислоте. Так, триацетат кобальта способен селективно окислять алканы в мягких условиях с образованием алкилацетатов. Например, н-геп-тан окисляется триацетатом кобальта в смеси трифторуксусной и уксусной кислот при 25 °С в атмосфере азота до ацетата [схема (8.9)] при этом селективность составляет 81% [26]. [c.328]

    Таким же образом можно проводить титрование ферроцианидом при помощи ртутного капельного электрода по току восстановления кадмия 2 . Авторы этих работ не обсуждают вопрос о влиянии цинка, они указывают лишь, что на фоне цитрата калия можно, определять кадмий в присутствии никеля, кобальта, висмута, в отсутствие же цитрата (комплексообразователя) эти элементы мешают - определению кадмия (это совершенно понятно, так как никель и кобальт также дают осадки с ферроцианидом, а соли висмута, кроме того, легко гидролизуются). [c.223]

    Этот метод применим в присутствии меди, кобальта, никеля, марганца, цинка, магния и ртути. Хорошие результаты получаются также в присутствии щелочноземельных металлов, алюминия, урана и кадмия, если осаждение проводить медленным добавлением ацетата аммония к горячему солянокислому раствору молибдена, содержащему небольшой избыток свинца. Соли щелочных металлов не препятствуют определению, за исключением сульфатов, которые должны быть удалены в случае наличия в растворе щелочноземельных металлов. В отсутствие последних небольшие количества сульфатов, такие, какие могут образоваться при растворении сульфида молибдена, не оказывают влияния на осаждение. При наличии в растворе сульфатов и хлоридов следует избегать введения в раствор большого избытка свинца. Свободные минеральные кислоты и винная кислота препятствуют количественному осаждению молибдена, а железо, хром (П1), алюминий, ванадий, вольфрам и кремний, если присутствуют в значительных количествах, загрязняют осадок. Фосфор, хроматы и арсенаты должны отсутствовать. К элементам, мешающим определению, относятся также олово, титан и другие элементы, соли которых легко гидролизуются. [c.366]

    Положение семейства железа в периодической системе элементов Д. И. Менделеева и строение их атомов. Валентность элементов в их соединениях. Положение металлов семейства железа в ряду напряжений и отношение их к различным кислотам. Окислы металлов, гидратные соединения и их свойства. Соли этих металлов, их окислительно-восстановительные свойства и гидролиз. Ферриты и ферраты. Комплексные соединения металлов семейства железа. Принцип работы щелочного аккумулятора. Основные реакции доменного процесса. Применение железа, кобальта и никеля. Коррозия. [c.176]

    Вычисленные концентрации ионов аммония, подобно соответствующим концентрациям в табл. 78в, вообще выще, чем концентрации ионов аммония, установленные при помощи стеклянного электрода. Расхождение может, конечно, обусловливаться систематической экспериментальной ошибкой при определении концентрации иона аммония. Но оно может быть также вызвано тем, что часть имеющейся аммонийной соли адсорбируется углем, или, скорее, тем, что предположение, на котором основаны расчеты, а именно, что уголь связывает весь осаждающийся кобальт в виде гидроокиси кобальта, оказывается необязательно правильным. pH изучаемых равновесных растворов непосредственно не определяли, а вычисляли на основании найденных концентраций аммиака и аммонийной соли. При этом было принято, что показатель константы кислотной диссоциации иона аммония при 30° и рассматриваемых ионных силах (0,172 и 0,173 соответственно, см. стр. 287) равен 9,10. При рассчитанном значении pH 10,55 не только аквопентаммин-, но также и диаквотетраммин-ионы полностью превращаются в гид-роксо-комплекс. Поэтому можно было вычислить константы гидролиза прямо из уравнений [c.282]

    Были изучены влияние содержания муравьиной кислоты в продукте на образование формиата кобальта, возможность гидролиза бутилформиатов в этих условиях, термостабильность и растворимость формиата кобальта, а также возможность превращения последнего в маслорастворимые соли при повышеппых температурах .  [c.102]


    Р1атрий сернистокислый (25—30%) + кобальта соли (0,01—1,0%) - --f лигнина производные (20—30%). Используются водорастворимые соли кобальта. Производные лигнина получаются при щелочном гидролизе [c.89]

    Нейтральная суспензия полифталоцианина кобальта сливается для защелачивания в емкость 5, снабженную мешалкой и паровой рубашкой. Туда же заливается в расчетном количестве раствор гидроксида натрия. Растворы суспензии и щелочи перемешиваются при нагревании до 100°С в течение 2...3 ч. При этом амидно-имидные концевые функциональные группы полифталоцианинакобальта гидролизуются до карбоксильных с одновременной нейтрализацией последних гидроксидом натрия. В конце обработки полифталоцианин кобальта находится в вцде натриевой соли. Полученную в емкости для защелачивания горячую пасту натриевой соли полифталоцианина кобальта направляют через нижний штуцер в выпарную емкость 6, в рубашку которой подают водяной пар. Выпаривание воды ведут до требуемого остаточного влагосодержания в конечном продукте - катализаторе. Его можно также проводить при температуре 50...60°С и остаточном давлении [c.147]

    Так же, как и при электролизе цинка, первой стадией очистки марганцевого электролита является гидролитическая очистка. Раствор после выщелачивания нейтрализуют аммиаком или избытком огарка до pH = 6,5. При этом сульфаты железа и алюминия, присутствующие в растворе, гидролизуются и дают осадок гидроокисей. Одновременно частично удаляются из раствора за счет адсорбции или образования основных солей ионы мышьяка и молибдена. Гидролиз соли марганца происходит при более высоком значении pH (>8,5), вследствие чего марганец в осадок не выпадает. После гидролиза электролит очищают от меди, никеля, кобальта и других тяжелых металлов. Для этого раствор обрабатывают газообразным сероводородом или сульфидом аммония. В осадок выделяются сульфиды этих металлов. Осадок отфильтровывают. В фильтрате содержится некоторое количество коллоидальной серы и сульфидов. Чтобы избавиться от этих примесей, в электролит добавляют железный купорос Ре304 до содержания в растворе 0,1 г л железа. При pH = 6,5—7,0 железо окисляется кислородом воздуха и выпадает в виде гидроокиси, адсорбируя коллоиды при этом удаляются также остатки мышьяка и молибдена. [c.103]

    Известно большое число комплексных соед. К., напр, аммины. Молекулы ЫНз в амминах могут замещаться молекулами ННзОН, орг. аминов (этилеидиамин, пропилен-диамин, пиридин и др.). Аммины Со(П), содержащие катионы [Со(ЫНз)й (Н20) ]красные или розовые кристаллы при нагр, разлагаются водой гидролизуются их р-ры устойчивы только в присут. ЫНз легко окисляются, в т. ч. О2 воздуха к-тами разлагаются. Получают их действием избытка 1ЧНз на р-ры солей или кристаллич, соли кобальта(П). [c.415]

    Бензойная (бензолкарбоновая) кислота является составной частью различных смол. Растительноядные млекопитающие выводят ее из организма с мочой в виде гиппуровой кислоты (Ы-бензоилглицина). Бен зойную кислоту получают щелочным гидролизом бензотрихлорида или, преимущественно, окислением толуола воздухом при 130—150 °С и давлении 3—10 кгс/см (л 0,3 10 —ЫО Па) в присутствии солей кобальта. [c.401]

    Соли двухвалентного кобальта гидролизуются ступенчато, с промежуточным образованием ионов Со(ОН)+. Для этого иона определена константа нестойкости 4 10 [367, 557, 752]. Для реакции гидролиза Со + + Н20 = Со(ОН+)+Н также найдена соответствующая константа равновесия, равная 10 [1184]. Кислотная константа диссоциации Со(ОН)г=НСо07 Ч-Н+ равна 8-10-20 [75]. [c.12]

    Кобальт определяют фотометрическим методом, который основан на реакции образования комплексного соединения кобальта с нитро-зо-К-солью ° при pH 6. Для поддержания pH 6 рекомендуется либо ацетатный буферный раствор -, либо раствор, содержащий цитрат-, фосфат- и борат-ионы Но в связи с тем, что ортофосфаты титана мало растворимы в воде, лучше использовать ацетатный буферный раствор. Гидролиз солей титана предотвращается добавкой фторида аммония в качестве комплексующего агента, а чтобы избежать осаждения малорастворимого фтортитаната натрия, вместо ацетата натрия в качестве буферного раствора применяют раствор ацетата аммония. [c.39]

    Щелочная кислая соль и кислая кислая соль Изобретение Швейцера 36 Странные реакции нейтрализации 36 Вот так родственники 37 Гидроксиды Кронстедта 37 Неправильный электролиз 37 Фокусы старого профессора 38 Кто виноват 38 Двуличный гидроксид 38 Брандт и кобальт 39 Проделки гидролиза 39 Бабушкин рецепт 39 Приманка для протонов 39 Непригодный способ 40 Как правильно высушить 40 Сгорает бесследно 40 Непредвиденная опасность 41 Кроссворд 30 слов 41 [c.416]

    Отсюда видно, что формулы (1) и (2) не совсем отвечают экспериментальным результатам при концентрациях аммонийной соли больше 2 н., но они, однако, применимы как к растворам хлорида аммония, так и к растворам нитрата аммония до этой концентрации. В сущности такой результат неудивителен. Дело в том, что как исследования светопоглощения, проведенные Хаустоном [16], так и измерения активности хлор-иона Хасса и Еллинека [17] показывают, что в 1 н. растворах хлоридов кобальта (II) и никеля не образуются хлоро-комплексы. Только при более высоких концентрациях хлорида или при более высоких температурах будет происходить образование комплексов, которое сопровождается изменением окраски разбавленного водного раствора кобальта (II) от красного до синего и соответствующих растворов никеля — от зеленого до желтого. Наконец, можно упомянуть, что образование гидроксо-комплексов не может мешать образованию амминов, так как тенденция акво-ионов кобальта (II) и никеля к гидролизу слишком мала (указание на литературу см. табл. 9, стр. 77). [c.192]

    Вследствие общих закономерностей влияния соли константа равновесия, подобная к ,,, с увеличением ионной силы уменьшалась бы, так как эта константа равна произведению концентраций двухзарядного и однозарядного ионов, деленному на концентрацию трехзарядного иона. Соответственно вычисленное значение константы гидролиза в 1 н. водном растворе аммиака уменьшается не только с увеличением концентрации аммонийной соли, но также с увеличением концентрации кобальта при постоянной концентрации аммонийной соли. Аммиак не входит в выражение для йл,, и поэтому наблюдаехмое изменение кн, с концентрацией аммиака следует рассматривать как влияние среды, так как другие формы комплексообразования исключены (см. стр. 286). У аммиака меньшая диэлектрическая проницаемость, чем у воды, и поэтому следовало бы предположить, что добавление аммиака независимо от величины ионного заряда присутствующих ионов увеличит активность всех ионов почти одинаково [И, стр. 44]. кн, действительно уменьшается — даже значительно — с увеличением концентрации аммиака, что видно из опытов ДЬ 10-—18. [c.273]

    Другой общий препаративный метод — алкилирование цианидных комплексов. Метилирование может быть осуществлено обработкой серебряных солей иодистым метилом, натриевых или калиевых солей— диметилсульфатом, а также обработкой свободной кислоты, например Н4ре(СЫ)е, эфирными растворами диазометана. Хотя эти методы широко применялись к комплексным цианидам хрома, молибдена, вольфрама, железа и кобальта, но выделить чистые продукты не всегда удавалось, так как реакция осложняется гидролизом, а так же тем, что алкилирО вание не идет до конца. [c.594]

    В практике только одно отделение проводят действием сероводорода в почти нейтральном раст)зоре — это отделение кобальта и никеля от марганца в отсутствие железа. Таллий и индий также осаждаются полностью, железо осаждается не вполне, если присутствует большое количество уксусной кислоты, а газелий в присутствии некоторых элементов осаждается частично. Конечно, этот метод следует применять после отделения предшествуюп(ей группы элементов и элементов, соли которых гидролизуются или образуют в этих условиях осадки другйх соединений. Подходящую кислотность получают прибавлением органических кислот вместе с их солями обычно применяется уксусная кислота вместе с ацетатом натрия или аммония, главным образом по причине предварительного применения их при отделении железа. В этой группе труднее получить полное осаждение, чем в предыдущих группах, и потому приходится дополнительно извлекать осаждаемые элементы из фильтрата. Для этого фильтрат обычно доводят почти до нейтральной реакции и осаждают последние следы вместе с б5льшим или меньшим количеством элементов следующей группы, например марганца, а затем проводят повторное разделение, повышая кислотность, чтобы растворить сульфид марганца и оставить никель или кобальт в осадке. Осаждение сероводородом обычно проводят в растворе, нагретом до 70—80° С и содержащем уксусную кислоту и по крайней мере 5 г ацетата натрия на 1 г осаждаемого никеля или кабальта. [c.86]

    И МЫШЬЯК (V) не дают окраски с хинализарином. Цикель, кобальт и др. мешают окраской своих ионов. Серебро, ртуть (I), висмут, ниобий и пр. осаждают гидролизом их солей или в виде хлоридов, а те количества этих металлов, которые остаются в растворе, не влияют на реакцию галлия с хинализарином. Цитраты, оксалаты и тартраты препятствуют реакции, а фосфаты понижают ее чувствительность. [c.557]

    Алюминий может быть количественно осажден в виде основного сукцината (соль янтарной кислоты) при добавлении к слабокислому анализи- руемому раствору мочевины и янтарной кислоты и кипячении . При этом происходит отделение алюминия от ряда элементов. Успешность разделения обусловлена сочетанием четырех факторов плотности осадка, медленного и постепенного повышения pH раствора (в результате гидролиза мочевины, который сопровождается выделением аммиака), однородности раствора и небольшой величины pH раствора в конце реакции. Однократным осаждением таким способом достигается удовлетворительное отделение 0,1 г алюминия от такого же количества никеля и кобальта, или от 1 г кальция, бария, магния, марганца и кадмия, или же нескольких [c.562]

    Фторо-(IV) титанаты могут быть приготовлены в водной среде в чистом виде и -их можно перекристаллизовать из разбавленной плавиковой кислоты. Соль состава KaTiPe Н2О, получаемую кристаллизацией при температуре ниже 50 °С, можно дегидратировать при 100 °С кро.ме того, безводное соединение может быть приготовлено путем кристаллизации при температуре выше 50 °С. Однако дегидратация простым нагреванием возможна лишь в исключительных случаях гораздо чаще она сопровождается частичным или полным гидролизом, как, например, в случае фторидов цинка, меди и кобальта(III). Иногда можно дегидратировать нагреванием в струе фтористого водорода или в присутствии значительного избытка бифторида аммония, но при этом для получения безводного соединения часто значительно проще пользоваться сухим методом. В самом деле, доступность в настоящее время генераторов фтора сделала излишними большинство методов, сопровождающихся дегидратацией. [c.86]

    Более активен как ацилоксилирующий реагент тетракис (трифторацетат) свинца, при действии которого при 20°С с последующим гидролизом из бензола образуется фенол (вы-ход 50%), из грег-бутилбензола — л-трег-бутилфенол (64% [688]. Наряду с маршрутом через плюмбирование допускается механизм, состоящий из стадий одноэлектронного окисления в арильный катион-радикал, присоединения ацилат-аниона и переноса второго электрона, более типичный для ацилоксилирова-ния солями других металлов переменной валентности [702] например трифторацетата кобальта(П1). [c.302]


Смотреть страницы где упоминается термин Кобальт соли, гидролиз: [c.449]    [c.438]    [c.138]    [c.395]    [c.416]    [c.48]    [c.64]    [c.11]    [c.60]    [c.263]    [c.246]    [c.247]    [c.262]    [c.477]    [c.67]    [c.537]    [c.402]   
Справочник по общей и неорганической химии (1997) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Гидролиз солей



© 2024 chem21.info Реклама на сайте