Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение кобальта, свинца и магния

    При определении в аммиачной среде в присутствии винной кислоты и фторида калия титан, ниобий, тантал, вольфрам, алюминий, лантан анализу не мешают. При определении в кислой среде анализу не мешают алюминий, магний, цинк, кадмий, кобальт, свинец, РЗЭ при отношении их количеств к количеству молибдена не более 1 1. Ионы железа (III), циркония и гафния, образующие устойчивые комплексонаты в кислой среде, определению содержания молибдена мешают. [c.175]


    Для определения кобальта в присутствии свинца к слабокислому анализируемому раствору прибавляют ацетат натрия и мурексид, а затем разбавленный раствор гидроокиси аммония до перехода желтого окрашивания в красное. Затем приливают еще несколько капель аммиака и титруют комплексоном III до появления фиолетового окрашивания, определяя таким образом суммарное содержание обоих катионов. Затем к новой порции анализируемого раствора прибавляют винную кислоту, нейтрализуют раствором гидроокиси аммония и прибавляют твердый цианид калия до обесцвечивания раствора. Прибавляют буферный раствор и титруют свинец в присутствии эриохромчерного Т до перехода красной окраски в чисто синюю. Кобальт находят по разности. Его можно также определить в присутствии алюминия, кальция и магния, маскируя указанные катионы фторидом натрня [1205]. [c.126]

    С солями двухвалентного кобальта в аммиачном растворе комплексное соединение фиолетового или розового цвета. Фиолетовую окраску, образующуюся при взаимодействии реагента с гидроокисью аммония, устраняют прибавлением ацетата аммония и этанола. При определении кобальта к анализируемому раствору прибавляют 1,5 мл концентрированного раствора гидроокиси аммония, 2 мл 0,1%-ного этанольного реактива, 20 мл 95%-ного этилового спирта, мл N раствора ацетата аммония и измеряют оптическую плотность с синим светофильтром. Закон Бера соблюдается вплоть до концентрации кобальта ..мкг/мл, окраска устойчива 10 мин. Мешают магний, свинец, [c.152]

    Обнаруживаемый минимум 0,2 жкг/жл. Определению мешают железо (II и III), кобальт, свинец и марганец, если присутствуют в больших количествах. Соли цинка и магния мешают даже при малых концентрациях. [c.129]

    Пристли [7, с. 194] успешно титровал растворы (1/60-м.), содержащие один из следующих металлов кальций, никель, медь, кадмий, цинк, барий, серебро, кобальт (III), хром ОН), алюминий, магний, бериллий и растворы церия (IV) и олова (IV) концентрацией (1/120-м.). За исключением результатов анализа серебра, магния и бериллия точность определения содержания элементов составила 1% от теоретического. Кривые титрования имели обычную для экзотермических и эндотермических реакций форму. Теплота образования большинства хелатов относительно низкая (только. хе-лат свинец— ЕОТА имеет теплоту образования, приближающуюся к теплоте нейтрализации сильной кисло- [c.82]


    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Эриохром черный Т можно только до известной степени считать универсальным комплексометрическим индикатором. Некоторые металлы (кобальт, никель, медь, алюминий и т. д.) образуют слишком прочные комплексы, что проявляется в образовании необратимого окрашивания, на которое не оказывает влияния присутствие комплексона. Указанные катионы нельзя непосредственно титровать по этому индикатору, а также в их присутствии нельзя проводить определения других катионов. В таких случаях говорят, что индикатор блокирован . Тогда прибегают к косвенному определению. К исследуемому раствору прибавляют известный объем титрованного раствора комплексона и избыточное количество последнего определяют титрованием установленным раствором соли магния или цинка. Аналогичным образом поступают при определении катионов, образующих слабо-окрашенные комплексы с индикатором (свинец, ртуть, индий, галлий и т. п.). [c.287]

    Не оказывают мешающего влияния определению при концентрации до 100 мг/л следующие ионы, если они присутствуют поодиночке железо, медь, никель, кобальт и свинец, а при концентрации до 1000 мг/л кальций, магний, натрий, калий, сульфат и хлорид. [c.200]

    ИСО 11885 устанавливает метод определения растворенных и нерастворенных элементов, а также их общего количества в питьевой воде и в природных и сточных водах атомно-эмиссионной спектроскопией. Данным методом можно определять алюминий, барий, бериллий, бор, ванадий, висмут, вольфрам, железо, кадмий, калий, кальций, кобальт, кремний, литий, магний, марганец, медь, молибден, мышьяк, натрий, никель, олово, свинец, селен, серебро, серу, стронций, сурьму, титан, фосфор, хром, цинк, цирконий. [c.334]

    Препятствующие анализу вещества. Свинец, олово, медь, кадмий, никель, кобальт, серебро, сурьма, мышьяк, железо, хром, алюминий, магний, золото, марганец и молибден (VI) мешают определению ртути. [c.307]

    По приведенному ниже ходу анализа определение висмута можно выполнить в присутствии значительных количеств щелочных и щелочноземельных металлов, магния, марганца, цинка, кобальта, никеля, хрома, алюминия и т. п. Свинец и таллий не мешают определению, если они присутствуют в таких количествах, что не образуют осадков. В присутствии сурьмы, Меди, железа, серебра и т. п. вначале выделяют висмут, экстрагируя его дитизоном из аммиачно-цианидного раствора. [c.176]

    Определению мешают алюминий, галлий, таллий(1П), олово(И), висмут, медь, железо(1П), ванадий(У), молибден(У1), никель и кобальт (мало) при pH 3,5 они окрашивают экстракт. При этом pH не экстрагируются магний, кальций, стронций, цинк, кадмий, ртуть(П), олово(1 / ), свинец, марганец, хром(1П) и серебро. Показано, что индий можно определить в присутствии небольших количеств цинка, свинца и кадмия. [c.461]

    Установлено, что марганец в определенных условиях не образует отрицательно заряженных хлоридных комплексов и не сорбируется анионитами. Например, в 8-н. растворе соляной кислоты железо, кобальт, медь, цинк и свинец сорбируются на анионитах в l-форме. При этом основной компонент — марганец, а также алюминий, магний, кальций как не образующие отрицательно заряженных комплексов не сорбируются и переходят в раствор. [c.307]

    Нормальное состояние клеток находится в зависимости от определенного соотношения ионов натрия, калия, кальция и магния. К числу биоэлементов следует отнести также многие микроэлементы (кобальт, бром, иод, марганец, бор, мышьяк, фтор, свинец, ванадий, хром, никель, стронций, серебро, барий, рубидий) не только потому, что их присутствие доказано в организмах животных, но и потому, что ряд этих элементов имеет существенное значение в биохимических и физиологических процессах, они являются абсолютно необходимыми для жизни. К ним относятся металлопротеиды — медь, отчасти ванадий, являющиеся одними из основных составных частей кровяных пигментов и дыхательных компонентов различных животных. Сюда же относятся марганец, который имеет исключительное значение в ходе ферментативных процессов растительных клеток металлопротеиды, иод и бром, которые в соединении со сложными органическими веществами принимают участие в сложных физиологических процессах. Достаточно при этом сослаться на роль гормона щитовидной железы—тиреоглобулина, в молекуле которой иод играет важную роль. [c.417]


    Миграция и перенос элементов в первичной окружающей среде известны как процессы первоначального рассеивания. При этом элементы концентрируются в определенных геологических формациях, что приводит к образованию руд. С точки зрения геохимии элементы можно классифицировать на три группы сидерофильные элементы, которые концентрируются в железистых осадках и железо-никелевом ядре Земли (к ним относятся железо, никель, хром, кобальт и платиновые металлы) халькофильные элементы, концентрирующиеся в сульфидных осадках (сурьма, мышьяк, кадмий, медь, свинец, ртуть, серебро и цинк) и литофильные элементы (щелочные металлы, магний, кальций, хром и ванадий), имеющие сродство к силикатам. [c.372]

    Новый спектрофотометрический метод определения фторида [44] основан на его взаимодействии с хлоранилатом тория при pH 4,5 в водном растворе, содержащем метилцеллозольв. Метилцеллозольв ускоряет взаимодействие фторида с хлоранилатом тория (образуется ТЬр2С С1204) и значительно повышает чувствительность метода. Чувствительность варьируется путем измерения оптической плотности при 540 или при 330 ммк или путем изменения концентрации метилцеллозольва в растворе. Метод был проверен на водах и катализаторах. Ионы серебра, кальция, бария, магния, натрия, калия и аммония не мешают определению. Кадмий, олово, стронций, железо, цирконий, кобальт, свинец, никель, цинк, медь и алюминий мешают, и их следует удалять. При помощи ионообменной смолы удается удалить все катионы, за исключением алюминия и циркония. Если они присутствуют, фторид выделяют дистилляцией. [c.280]

    Так, ГОСТ 10398—71 позволяет комплексонометрическим методом определить содержание основного вещества большого числа химических реактивов, в состав которых входят 22 элемента адю-миний, барий, ванадий (V), висмут, галлий, железо (И1), индий, кадмий, кальций, кобальт, лантан, магний, марганец (II), медь, молибден (VI), никель, свинец, скандий, стронций, титан (IV), цинк и цирконий. Этот метод определения основан на мгновенном образовании малодиссоциированных комплексных соединений различных катионов с трилоном Б. [c.161]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Применяют для определения алюминия при pH 7—8 методом обратного титрования солью цинка в присутствии пиридина. Барий, кальций и ртуть титруют при pH 10 в присутствии комплексоната магния. Кадмий и кобальт при pH 10 определяют прямым титрованием. Магний, цинк, железо (III) и титан (IV)—методом обратного титрования солью цинка в присутствии пиридина. Галлий (III) при pH 6,5—9,5 определяют обратным титрованием солью цинка. Индий определяют при pH 8—10 в присутствии сегнетовой соли марганец при pH 10 —с добавлением гидроксиламина. Никель и свинец при pH 10—методом обратного титрования солью магния или цинка. Титан (IV) определяют при pH 10 обратным титрованием солью магния или с добавлением комплексоната магния. Ванадий (V) определяют при pH 10 методом обратного титрования солью марганца. Переход окраски от винно-красной к синей. [c.279]

    Анализируемый азотнокислый раствор, содержащий около 0,3 г висмута и свободный от соляной и серной кислот, осторожно йрибавляют при непрерывном перемешивании к 50 мл титрованного (1%-ного) раствора арсената калия KH2ASO4, находящегося в мерной колбочке на 100 мл, разбавляют водой до метки, хорошо перемешивают и отфильтровывают осадок арсената висмута. Для определения избытка арсената к 50 мл фильтрата прибавляют 40 мл 25%-ного раствора соляной кислоты и 1 г иодистого калия и титруют через 15—20 мин. выделившийся иод 0,1 н. раствором тиосульфата (без применения раствора крахмала). Титр раствора мышьяковокислого калия устанавливают таким же образом по тиосульфату. Кроме висмута, Валентин определял аналогичным методом магний, кальций, стронций, барий, цинк, кадмий, свинец, марганец, никель, кобальт, алюминий и хром. [c.97]

    Основные соли многочисленны и имеют определенное практическое значение. Основные соли образуют такие элементы, как бериллий, магний, алюминий, многие из переходных металлов А-подгрупп (например, титан, цирконий), Зс -элементы, такие, как железо, кобальт, никель, 4/- и 5/-элементы (церий, торий, уран) и большинство элементов Б-подгрупп, в частности медь(П), цинк, индий, олово, свинец н висмут. Образующиеся при действии кислорода и влаги иа сульфидные и другие руды, они входят в обширный класс вторичных минералов, а некоторые из них являются продуктами коррозии металлов. Минералы брошантит Си4(0Н)б504 и атакамит Си2(ОН)зС1 образуются в виде налета на меди под воздействием окружающей среды лепидокрокит 7-Ре0(0Н) образуется при ржавлении железа, а гидроцинкит 2п5(0Н)б(С0з)г является обычным продуктом коррозии цинка во влажном воздухе. Белый свинец РЬз(0Н)г(С0з)2 является представителем большого числа основных солей, используемых в качестве пигментов, в то время как М 2(ОН)зС1-4Н20 образуется при схватывании цемента Сореля. [c.373]

    Руды и промпродукты медно-никель-кобальтового производства. Определение массовых долей меди, никеля, кобальта, железа методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Руды, концентраты, промежуточные и отвальные продукты. Определение массовых долей кремния, алюминия, кальция, магния, железа, хрома, марганца, титана, ванадия, калия и натрия методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой (ИАЦ РАО Норильский никель ) Минеральное сырье, руды, продукты их переработки, содержащие свинец, цинк, кадмий и мышьяк. Определение массовых долей свинца, цинка, кадмия и мышьяка методами атомной спектрометрии (ИАЦ РАО Норильский никель ) Никель. Методы химико-атомноэмиссионного спектрального анализа [c.823]

    Второй метод — титрование индия комплексоном HI оказался весьма удобным благодаря высокой устойчивости комплексоната индия в кислой среде. Таким образом, индий можно титровать почти без предварительного отделения от других элементов. Трейндл применял для этого титрования ртутный капельный электрод и среду с pH 2, охлаждая раствор до 4° С, однако дальнейшие исследования показали, что титровать можно при обычной комнатной температуре. В. М. Владимирова установила, что титрование на ртутном капельном электроде по току восстановления индия лучше всего проводить при —0,7 в (Нас. КЭ) и при pH 1. В этих условиях метод обладает наилучшей избирательностью и индий можно титровать в присутствии очень многих элементов — магния, кальция, стронция, бария, цинка, кадмия, кобальта, марганца, хрома, алюминия. Железо (HI), также образующее весьма прочный комплексонат, надо восстанавливать до железа (II) аскорбиновой кислотой. Медь, свинец, мышьяк восстанавливаются на ртутном электроде при потенциале титрования индия и поэтому могут мешать, если будут присутствовать в относительно больших количествах. Однако при обычном разложении проб и подготовке раствора к анализу мышьяк и свинец удаляются при обработке соляной и серной кислотами, а медь переходит в комплексный аммиакат При осаждении полуторных окислов (вместе с которыми осаждается и индий). Этот метод был затем применен для определения индия в продуктах металлургического производства и в сфалери-товых концентратах с малым содержанием индия. В последнем случае индий приходится отделять экстракцией, при анализе же более богатых индием материалов отделять его обычно не требуется. [c.214]

    При проведении нами определения элементов, содержащихся в золе испытуемых проб, готовилась серия эталонных порошков, содержащих алюминий, медь, марганец, стронций, свинец, никель, кобальт и титан с последовательно убывающими их концентрациями. Они разбавлялись синтетической основой, состоящей из химически чистых сернокислых солей натрия, кальция и магния, т. е. элементов, составляющих основную массу золы анализируемых организмов. Изготовление эталонных порошков на указанной основе производилось путем введения в эту основу сернокислых соединений элементов из расчета получения начального эталона с 1%-ной примесью каждого элемента. Смешивание основы со взятыми солями осуществлялось в яшмовой ступке в течение 45 мин с добавлением небольшого количества этилового спирта для обеспечения более быстрого и равномерного перемешивания, солей. Получе1Нные смеси сушились при температуре 105° С и затем переносились для хранения в стеклянные бюксы. Эталоны с меньшими концентрациями элементов получали последовательным разбавлением 1%-ного порошка основой до концентрации второго, третьего и четвертого знаков (1,0 0,1 0,05 0,005 0,0025 0,001 0,0005 0,00025 0,0001%). [c.80]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    С бромпирогаллоловым красным можно также очень хорошо определять никель, кобальт и свинец — лучше, чем по пирокатехиновому фиолетовому. При определении кадмия, магния и марганца переход окраски индикатора не очень четок. Индикатор не пригоден для определения меди, так как образует с иен слишком устойчивое комплексное соединение. [c.361]

    Теоретически 1 мл 0,05 М раствора комплексона соответствует 13,49 мг А1. Однако лучше устанавливать титр раствора комплексона по раствору соли алюминия известной концентрации. Определению не мешают следы кальция, бария и магния. При титровании в присутствии марганца н кобальта переход окраски нечеткий. Остальные тяжелые металлы мешают определению (железо, висмут и никель в условиях определения реагируют количественно с комплексоном медь, свинец, цинк, кадмий реагируют только частично). Из анионов определению мешают фториды, фосфаты и оксалаты. хМешают также сульфаты вследствие образования ими комплексных соединений с торием, и поэтому их следует перед определением отделить в виде сульфата бария. [c.364]

    Атомно-абсорбциснными методами с повышенной чувствительностью определяют серебро, магний, кадмий, таллий, свинец, марганец, железо, кобальт, никель, родий и, кро-ме того, трудноопределяемые эмиссионными методами золото, ртуть, молибден, палладий, платину, цинк, сурьму, висмут, олово. Чувствительность определений элементов пламеннофотометрическими методами представлена в табл. 1. [c.310]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Хинализариновый метод определения бериллия был детально изучен Найдено, что небольшие количества магния, редкоземельных элементов, скандия, кобальта и никеля как в присутствии, так и в отсутствие тартратов дают с реагентом соединения, которые, подобно бериллию, окрашивают раствор в синий цвет. Другие металлы, например литий, щелочноземельные металлы, цинк, ртуть, свинец и торий, также дают синюю окраску, однако чувствительность реакции меньше. В щелочной среде, которая необходима для реакции с бериллием, многие тяжелые металлы осаждаются. Некоторые из этих металлов [железо (П1), титан, цирконий] дают более или менее интенсивную красноватую окраску, особенно при добавлении тартратов, удерживающих металлы в растворе. Алюминий в количестве менее 2 мг не дает окраски большие количества алюминия окрашивают раствор в красноватый цвет, причем интенсивность окраски заметно увеличивается в присутствии тартратов. [c.281]

    Окрашенный продукт экстрагируется высшими спиртами и сложными эфирами 2. Для этой цели можно рекомендовать смесь амилового спирта и этилацетата. Методом экстракции нельзя определить висмут в присутствии окрашенных ионов, таких, как никель, кобальт, хром и уран Раствор висмут-иодидного соединения в органическом растворителе подчиняется закону Бера. Висмут можно определять непосредственно в присутствии значительных количеств щелочных и щелочноземельных металлов, магния, марганца, цинка, кобальта, никеля, хрома, алюминия и т. д. Свинец и таллий не мешают определению, если присутствуют в таких небольших количествах, что не образуют осадков. В присутствии сурьмы, меди, железа, серебра и других элементов вначале выделяют висмут, экстрагируя егО дитизоном из аммиачноцианидного раствора Результаты приведены в табл. 47. [c.297]

    Все экстракционные методы основаны на экстракции посторонних металлов, а не самого магния магний при экстракции остается в водном растворе. При действии некоторых органических соединений одновременно осаждаются многие тяжелые металлы. Полученные осадки можно затем растворить в соответствующих органических растворителях. К числу таких реагентов относится диэтилдитиокарбаминовая кислота, которая была использована для удаления больших количеств никеля при этом соединения никеля экстрагировали хлороформом при pH 3—6 (ср. стр. 216). Растворы (10— 15 мл), содержащие никель (<100 мг Ni), имеющие pH 3—5, встряхивают с четырьмя— пятью порциями (по 10 мл) раствора диэтилдитиокарбаминс-вой кислоты в хлороформе . (Отделение никеля можно также проводить и другим путем — никель осаждают диэтилдитиокарбаматом натрия, а затем проводят экстракцию хлороформом.) Оставшийся водный раствор, который должен быть совершенно бесцветен, подкисляют серной кислотой и кипятят в течение нескольких минут для разрушения диэтилдитиокарба-миновой кислоты в сероуглероде и диэтиламине. Диэтиламин остается в растворе, но не мешает последующему определению магния титановым желтым. Среди других тяжелых металлов аналогично экстрагируются железо, кобальт, медь, цинк, свинец и марганец. [c.529]

    И ИНДИЙ. Среди других почти совсем не экстрагируются щелочноземельные металлы, бериллий, магний, титан, марганец, кобальт, никель, цинк, молибден и свинец. Иттрий и церий(П1,1У) экстрагируются слабо, лантан и неодим вряд ли вообще экстрагируются. Без сомнения, можно добиться хорошего отделения тория от иттрия и от всех редкоземельных элементов, применив метод фракционной экстракции. Простейшее решение этой задачи, по-видимому, заключается в применении экстракционного метода с промывками (ср. стр. 63), в котором органическую фазу последовательно встряхивают с порциями раствора нитрата алюминия. В действительности этот метод уже был использован более точное знание величин коэффициентов распределения редкоземельных элементов позволило бы легко выбрать оптимальные условия четкого отделения тория как от этих, так и от других плохо экстрагирующихся элементов. Наибольшее затруднение при экстракционном выделении тория посредством окиси мезитила связано с отделением циркония,, который плохо отделяется этим методом и обычно мешает определению тория колориметрическими методами. Поэтому перед экстракцией цирконий следует удалять осадительными методами. Обычно для этой цели лучше применять фторидное осаждение тория, но, как указывалось ранее, цирконий может загрязнять осадок. Ход анализа тория с выделением его окисью мезитила приведен на стр. 758. [c.756]

    Пока были затрачены лишь незначительные усилия, чтобы приспособить рассматриваемый метод к автоматическому определению ионов двухвалентных металлов (за исключением щелочноземельных металлов). Это, по-видимому, связано с существованием других мощных инструментальных методов анализа, таких, как атомноабсорбционная спектроскопия, рентгеноструктурный и спектрографический методы, с помощью которых многие годы проводят эффективный анализ металлов в широком интервале концентраций. Тем не менее попытки совершенствовать определение щелочноземельных и включить в число анализируемых двухвалентные переходные металлы путем видоизменения системы элюент — компенсационная колонка предпринимались. Например, Норд-мейер и сотр. [18] использовали элюенты, содержавшие солн бария и свинца. Электропроводность таких элюентов снижали осаждением Ва304 или РЬ504 в компенсационной колонке со смолой в сульфатной форме. Кроме того, между компенсационной колонкой и детектором помещали катионообменную колонку со смолой в Н+-форме. Благодаря этой колонке чувствительность метода увеличивалась в 5 раз и одновременно в результате уменьшения влияния pH повышалась стабильность нулевой линии. Эти усовершенствования позволили одновременно разделить магний, кальций и стронций и определить их содержание. Стало возможным раздельное определение магния(II), железа(II), кобальта(II), никеля (II), меди (II), цинка (II) или кадмия (И). Однако степень их разделения оказалась недостаточной, чтобы анализировать смеси металлов. Аналогичный прием использовали и при создании иодатной компенсационной системы для элюентов, включающих свинец [19]. Система позволила определять барий и увеличить чувствительность анализа меди. И в этом случае между компенсационной колонкой и детектором помещали специальную колонку. Но ее заполняли смолой в ОН -форме, благодаря чему чувствительность анализа возрастала. Одновременно в ней осаждались переходные металлы, которые иначе помешали бы определению кальция. [c.161]


Смотреть страницы где упоминается термин Определение кобальта, свинца и магния: [c.152]    [c.669]    [c.373]    [c.690]    [c.491]    [c.102]    [c.128]    [c.124]    [c.450]    [c.556]   
Хроматография неорганических веществ (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Магний определение

Определение свинца и кобальта



© 2024 chem21.info Реклама на сайте