Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция свойств раствора

    Влияние на адсорбцию из растворов химической природы поверхности, размеров пор адсорбента и свойств раствора [c.535]

    На величину адсорбции из растворов влияют свойства адсорбента (химическая природа поверхности, размер пор), свойства раствора и составляющих его компонентов. Влияние природы поверхности адсорбента па адсорбцию иллюстрирует рис. XIX, 10. На нем представлены экспериментальные изотермы гиббсовской [c.535]


    При адсорбции из растворов, наряду с поглощением нейтральных молекул, может происходить и адсорбция ионов, содержащихся в растворе. Это приводит к некоторым своеобразным явлениям. Например, основной (по своим химическим свойствам) краситель, у которого окрашенный ион заряжен положительно, адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, и наоборот. Подобные процессы называются полярной адсорбцией и обычно сопровождаются явлением обмена ионами ионного обмена) между адсорбентом и раствором — явле нием, называемым обменной адсорбцией. Так, метиленовая синяя — основной (по химическим свойствам) краситель, адсорбируется отрицательно заряженными гелями, в частности гелем кремневой кислоты. При этом, однако, на кремневую кислоту переходит лишь положительно заряженный ион красителя, а отрицательный ион (ион хлора) остается в растворе. Компенсация зарядов этих анионов достигается тем, что из кремневой кислоты переходит в раствор ион натрия, который в небольшом количестве почти всегда содержится в геле кремневой кислоты при обычных способах его приготовления. [c.372]

    М. В. Ломоносов правильно объяснил природу теплоты, сформулировал закон сохранения, изучал растворы и их свойства. На развитие физической химии и термодинамики оказали влияние работы Ловица Т. Е., К- Шееле (1773) и Фонтане (1777) в области адсорбции из растворов и газовой среды, работы Ф. Рауля и Я. Вант-Гоффа в области изучения свойств растворов. Значительное влияние на изучение свойств растворов оказали работы Д. И. Менделеева. [c.13]

    Адсорбция из раствора может происходить на поверхности углерода в сплошном материале и на поверхности мелких частиц. В первом случае процесс называют пропитыванием углеродистых материалов с последующим обжигом с целью улучшения физикохимических (прежде всего механических) свойств изделия путем сокращения пористости и изменения соотношения пор различных размеров. Во второ.м случае назначение процесса — сцепление за счет вяжущих свойств связующего частиц друг с другом сначала физическими (первая стадия), затем химическими (вторая стадия) связями (спекание). В обоих случаях в качестве пропитывающего и связующего материала используют органические вещества (неф- [c.65]

    На величину адсорбции, а следовательно, и на константу адсорбционного равновесия оказывают существенное влияние как свойства твердой фазы—адсорбента (его химическая природа, размеры пор, состояние поверхности), так и свойства раствора, т. е. составляющих его компонентов. Что касается температуры, то ее влияние яа величину адсорбции из растворов значительно меньше, чем при адсорбции на твердой поверхности газов. Однако изменение температуры может влиять на величину и характер адсорбции из растворов в связи с изменением растворимости, если компоненты раствора ограниченно взаимно растворимы. [c.145]


    Учитывая свойства энтропии, выясните характер ее изменения в результате адсорбции. В каком случае энтропия изменится больше при адсорбции из газа или при адсорбции из раствора Ответ обоснуйте. [c.130]

    Легко видеть, что уравнения (76) и (77) аналогичны уравнению (39), выражающему правило Дюкло — Траубе. Это указывает на связь объемных и поверхностных свойств растворов ПАВ и подчеркивает общность явлений адсорбции и мицеллообразования. Действительно, в гомологических рядах ПАВ величина ККМ изменяется примерно обратно пропорционально поверхностной активности, так что отношение ККМ соседних гомологов соответствует коэффициенту правила Дюкло — Траубе  [c.59]

    Влияние свойств адсорбента и адсорбтива. На адсорбцию из растворов сильно влияют полярность и пористость адсорбента. Неполярные адсорбенты, как правило, лучше адсорбируют неполярные адсорбтивы, а полярные адсорбенты — полярные адсорбтивы. [c.139]

    В гидроэлектрометаллургии важную роль играют процессы совместного выделения или растворения нескольких металлов, совместного выделения металлов и молекулярного водорода на катоде и адсорбции компонентов раствора на электродах. Электролиз используют также для приготовления металлических порошков, причем в этом процессе необходимо выяснение условий и механизма образования порошков с заданными свойствами. [c.227]

    При ионной адсорбции частично протекает и хемосорбция, и образующиеся соединения преимущественно остаются в поверхностном слое, не проникая в состав внутренних слоев твердой фазы. Следует учитывать, что ионная адсорбция, как и любой вид адсорбции, имеет избирательный характер с преимущественной адсорбцией одного из ионов, находящихся в растворе. Это явление определяется как природой поверхности адсорбента, так и свойствами растворов электролитов, т. е. зарядами и радиусами катионов и анионов. [c.187]

    Первые исследования адсорбции из растворов на твердом адсорбенте были выполнены в 1792 г- русским химиком Лови-цем, который очистил растворы от примесей твердым адсорбентом— углем. В 1809 г. профессор Московского университета Рейсс обнаружил электрические свойства коллоидных систем, открыв явления электроосмоса и электрофореза в суспензиях глины. [c.7]

    Адсорбция из растворов на границе между двумя жидкостями и жидкости с твердым адсорбентом имеет важное практическое значение в самых различных областях техники, природных процессах и широко используется в лабораторной практике. Многие вопросы, связанные с управлением свойствами дисперсных систем с помощью адсорбционных слоев, рассматриваются в по- [c.112]

    Широко распространенное явление адсорбции частиц на электроде заметно влияет на изменение двойного электрического слоя и свойства электродной поверхности. Это значит, что в цепи ряда последовательных стадий, осуществляемых с одинаковыми скоростями, энергия, затрачиваемая на преодоление адсорбционных слоев, возникающих на электроде, становится настолько значительной, что в конечном итоге именно эта стадия оказывается наиболее замедленной, лимитирующей скорость всего электродного процесса. Вместе с тем, электрохимические процессы с участием органических или коллоидных ПАВ чрезвычайно сложны по своей природе. Скорость электродного процесса и механизм его протекания определяются природой ионов, находящихся в растворе и разряжающихся на электроде, свойствами раствори- [c.385]

    Особенностью адсорбции на металлах является то, что далеко не все участки их поверхности обладают одинаковыми адсорбционными свойствами. Так, грани кристаллов, места выхода на поверхность дислокаций и т. п. обладают более высокой адсорбционной способностью, чем остальные участки поверхнос ти. Эти места называются активными адсорбционными центрами. Они занимают лишь незначительную часть поверхности, но именно они определяют адсорбцию компонентов раствора на поверхности твердого тела. [c.25]

    При закачке в пласт поверхностно-активных веществ важную роль будет играть их адсорбция из растворов. Многочисленные теоретические и экспериментальные исследования неоспоримо доказывают, что вследствие адсорбции фронт ПАВ будет неизбежно отставать от фронта вытеснения. В результате перед фронтом ПАВ будет образовываться слой воды, потерявшей свои высокие отмывающие свойства. [c.45]

    Попытки разделения сильных кислот и оснований методом подавления ионов оказываются неудачными из-за плохого удерживания веществ и асимметрии пиков. Соединения, остающиеся ионизированными в интервале рН=2—8, удовлетворительно разделяются методом ион-парной хроматографии, когда в подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, и создается ион-парный комплекс, обладающий свойствами неполярного вещества. Если к ионному соединению, растворимому только в воде, добавить противоион, то образуется ионная пара, которая, обладая свойством растворяться в органической фазе, распределится между водным и органическим слоем. Возможна также адсорбция липофильной части противоиона в углеводородной фазе наполнительного материала. Очевидно, что катионы будут хорошо экстрагироваться анионами, и наоборот. [c.74]


    Вряд ли необходимо говорить о том, что ни один из буровых растворов не поможет сохранить устойчивость ствола, если не обеспечить поддержания заданных свойств раствора. Именно поэтому так важно проводить частые проверки свойств бурового раствора и на их основе — его исправительные обработки. При бурении с использованием полимерных буровых растворов очень важно, чтобы концентрация полимера поддерживалась на требуемом уровне. Снижение концентрации полимера вследствие адсорбции на частицах бурового шлама происходит очень быстро, особенно при высоких скоростях бурения. По мере снижения концентрации полимера увеличивается скорость диспергирования шлама, что еще больше увеличивает скорость адсорбции полимера. Адсорбция полимера продолжается до тех пор, пока концентрация полимера не приблизится к нулю, что ведет к серьезной дестабилизации ствола скважины. [c.332]

    Варьируя исходными компонентами при синтезе пористых материалов, можно получать адсорбенты с заранее заданными свойствами гидрофобными или гидрофильными. Наиболее гидрофобными адсорбентами являются материалы, полученные на основе стирола и дивинилбензола. Сополимеры метилметакри-лата и стирола, винилпиридина и фенолоформальдегида, ви-нилпиридина и дивинилбензола более гидрофильны и поэтому, вероятно, особенно пригодны для адсорбции из растворов гидрофильных соединений. [c.172]

    Сопоставление результатов исследования поверхностной и фазовой активностей НПАВ, сорбции на карбонатной поверхности показывает, что рост минерализации и концентрации растворов НПАВ приводит к резким изменениям в свойствах изучаемых растворов НПАВ. Концентрация НПАВ и минерализация раствора, при которых происходят изломы на изотермах сорбции и межфазного натяжения, а также наблюдается лучшее фазовое поведение, достаточно близки, что особенно заметно при сопоставлении изотерм адсорбции и МФН для дисперсий АФ-6. Симбатное изменение ряда свойств растворов НПАВ под действием роста минерализации, концентрации и молеку-лярно-массового состава оксиэтилированных алкилфенолов указыва- [c.191]

    Важно отметить, что для многих свойств коллоидных систем наличие или отсутствие поверхности раздела не имеет существенного значения, хотя, как мы видели, оно весьма важно в проявлении устойчивости. Такие важные процессы, как установление равновесия при поглощении ионов электролитов или нейтральных молекул (электрохимическое, сольватационное равновесие и др.) зависят лишь от природы и плотности расположения ионогенных или полярных групп, но не от того, находятся ли эти группы на дисперсной частице или макромолекуле, возникли ли они путем адсорбции из раствора или диссоциации групп на поверхности. Различными авторами было показано, что [c.17]

    Молекулярная адсорбция из растворов существенно зависит от свойств растворенного вещества, растворителя и адсорбента. Так, а) вещество адсорбируется тем лучше, чем оно менее растворимо в данном растворителе б) на твердых поверхностях адсорбируются только вещества, обладающие полярностью, промежуточной между полярностями фаз в) неполярные твердые тела лучше адсорбируют неполярные адсорбтивы и наоборот. Существует также ряд других частных закономерностей. < [c.76]

    Водоизолирующие свойства растворов синтетических высокомолекулярных соединений зависят не только от концентрации полимеров, но и от степени аэрации и газонасыщенности смесей. Газонасыщенные растворы обладают более высокими ингибирующими свойствами, чем негазированные, поскольку величина адсорбции газонасыщенных смесей в несколько раз выше. Даже в тех случаях, когда газы не являются необходимым компонентом промывочных жидкостей, они, по разным причинам, присутствуют в них, принимая разностороннее участие в физико-химичес-ких процессах. В системе газированного раствора адсорбция пузырьков газа по скорости превышает адсорбционные процессы [c.45]

    ГолЬко природа адсорбента и растворенного вещестьа, но также и свойства растворителя, которого, как правило, всегда значительно больше, чем растворенного вещества. Поэтому простейший случай адсорбции из раствора должен рассматриваться как случай адсорбции двух видов молекул. [c.14]

    Физическая адсорбция из раствора оиределяется здесь довольно произвольно и не затрагивает адсорбцию ионов, которая рассматривается в следующем разделе. По-видимому, в данном случае не существует какого-либо общего правила, основанного на структуре или физических свойствах органических молекул, для предсказания их относительного сродства к силанольной поверхности определенных бинарных или более сложных смесей. Поскольку величина рКа силанольной поверхности сходна с величиной рКа для воды, а энергия межфазной границы раздела оказывается очень небольшой, то, вероятно, взаимодействия органических молекул с водой будут соответствовать межмолеку-лярным взаимодействиям с силанольной иоверхностью. [c.905]

    Нередко при адсорбции из раствора пользуются эмпирическим правилом, которое гласит чем хуже растворимость, тем лучше адсорбция. Данное правило, однако, едва ли может быть Положено в основу рассуждений при выборе условий опыта, так как при этом совершенно не учитываются такие обстоятельства, как полярность и другие специфические свойства адсорбента, растворителя и адсорбируемого вещества. Действительно, факты, противоречащие этому правилу, встречаются очень часто. [c.225]

    Кроме таких аналитических применений разделения компонентов смесей на основе различной их адсорбции или различ ной растворимости, газовая хроматография, очевидно, может быть применена и для решения обратной задачи, т. е. для быстрого определения адсорбции и теплоты адсорбции, величины по-. ерхности твердого тела и ее химических свойств или для опре-1еления термсдинамических свойств раствора в неподвижной жидкости и связанных с этими свойствами физико-химических величин (констант равновесия, изотерм распределения, коэффи циентов активности, тепловых эффектов и т. п.). [c.546]

    Изучение процесса вытеснения с помощью математических мбделей. Полная математическая модель для изучения нефтеотдачи при закачке полимерных растворов включает помимо обычно используемых при расчете заводнения уравнений неразрывности, движения отдельных фаз, а также уравнения кинетики и адсорбции полимера, изменения вязкости и реологических свойств раствора от концентрации и зависимость для фактора сопротивления. [c.122]

    Адсорбционные явления как определяющие микропроцессы в пластах наблюдаются и в уже распространенном методе увеличения нефтеотдачи — полимерном воздействии на нефтяные залежи. Это метод предназначен преимущественно для залежей с высоковязкой нефтью ( iн>50 мПа-с),где при вытеснении нефти необработанной водой даже в макрооднородном пласте развивается, так называемая вязкостная неустойчивость. Однако полимерное воздействие применимо и в залежах с нефтями средней вязкости, а в этих условиях механизм нефтевытеснения во многом определяется степенью адсорбции полимерных растворов в неоднородной пористой среде. Механизм и степень адсорбции многих полимерных рабочих агентов (особенно на основе полиакриламида ПАА) в настоящее время достаточно полно изучены с получением широкого спектра изотерм адсорбции. Построенные на этой основе математические модели процесса, оценивающие динамику факторов сопротивления и остаточных факторов сопротивления, количественно используются в проектных работах и в анализах опытно-промыщленных испытаний метода. Однако этими изысканиями и разработками не ограничивается роль (и учет) микропроцессов в пластах при осуществлении работ по повыщению нефтегазоотдачи. Оказалось, что адсорбция ПАА существенно зависит от состава и свойств породы и от минерализации пластовых вод. Поэтому при усовершенствовании математической модели полимерного воздействия нами предлагается рассматривать полимерный раствор Как активную примесь с изменяющейся подвижностью вследствие адсорбции, степень которой зависит от минерализации пластовых вод (наличие в них подвижных ионов Ма, Са, Ре и др., а также изменяющейся величины pH). Сорбция полимерных агентов благоприятно влияет на соотношение подвижностей вытесняющей и вытесняемой фаз, снижая фазовую проницаемость, но приводит и к отставанию фронта рабочего агента от фронта продвижения воды. Получается сложная игра микропроцессов, при которой желательно получить оптимальное значение нефтевытесняющей способности рабочего агента в конкретных физико-геологических условиях пласта. [c.163]

    Н. Н. Серб-Сербиной, Э. Г. Кистера и Т. П. Губаревой установлено, что гуматы с низкими степенями кальцинирования представляют гидрофильные полуколлоидные системы. Проведенные М. И. Липкесом исследования механизма известкования глинистых суспензий показали, что специфический характер адсорбции извести (особенно при высоких температурах) позволяет регулировать концентрацию ионов кальция в их фильтратах, поддерживая на определенном уровне соотношение ионов натрия и кальция в гуматах. Ввод в раствор добавок щелочи (0,25—0,50%) ускоряет процесс обмена ионов кальция на натрий, в обменном комплексе глин, уменьшая тем самым количество кальция в гуматах. Переход гуматов в растворимое состояние улучшает стабилизирующие свойства УЩР, а дополнительное кальцинирование твердой фазы повышает ингибирующие свойства раствора. Видимо, этим можно объяснить и действие акриловых полимеров при стабилизации известковых растворов. [c.181]

    Русские ученые внесли неоценимый вклад в создание основ коллоидной химии. Так, в трудах М. В. Ломоносова (1751) четко различались явления кристаллизации и свертывания (коагуляция) растворов, описаны способы получения и свойства коллоидных растворов в воде и стекле (его знаменитые цветные стекла по существу являются твердыми растворми). Позднее Т. Е. Ловиц (1789) впервые открыл одно из важнейших явлений, на которых основана коллоидная химия,— адсорбцию из растворов на твердом адсорбенте (угле). Это свойство угля Ловиц успешно использовал в практических целях для осветления сахарного сиропа и растительных масел, а также для очистки селитры, которая применялась в производстве пороха. [c.279]

    ЛИЗОЦИМЫ — белки, ферменты, распространенные в животном мире содержатся почти во всех тканях и жидкостях живого организма, особенно в печени, селезенке, слюне, слезах. Л. обладают свойством растворять, лизировать оболочки некоторых бактерий. Молекула Л. состоит из одной полипептидной цепи, включающей 127—130 аминокислотных остатков. Л. легко выделяется из яичного белка кристаллизацией, адсорбцией на бентоните или хроматографическим разделением на ионообменной целлюлозе. Л. применяют при лечении воспалительных заболеваний глаз, носоглотки, ожогов, ран, в акушерской практике, в микробио. огии для разрушения клеточных оболочек бактерий, для консервирования икры рыб, как добавку к молоку с целью консервации и лучшей усвояемости. [c.147]

    Способность к специфическим межмолек улярным взаимодействиям придают полимерам ПА атомы кислорода карбоксильных и сложноэфирных групп, имеющие неподеленные электронные пары. В гораздо меньшей степени эти свойства проявляют я-связи ароматических ядер. В ПАН электронная плотность сосредоточена на атомах азота, это придает ПА и ПАН свойства адсорбента третьего типа. Полиарилат хорошо растворяется в органических растворителях, например в бензоле и эфире, а полиакрилонитрил в диметилформа-миде и диметилоульфоксиде. Поэтому эти полимеры можно использовать для модифицирования поверхности макропористых кремнеземов методом адсорбции из растворов. [c.85]

    При изучении адсорбции из растворов часто пользуются моделями поверхностного раствора, в частности, моделью мономолекулярного слоя постоянной толщршы. В лекции 7 отмечалось, что такая модель вводит чуждую термодинамике Гиббса величину — толщину адсорбционного слоя. Обычно толщина адсорбционного слоя не сохраняется постоянной вследствие различий в размерах молекул компонента 1 и 2 и изменения их ориентации с изменением заполнения поверхности адсорбента. Однако есть случаи, когда толщина адсорбционного слоя при адсорбции из бинарного раствора приблизительно сохраняется. К ним относится, например, адсорбция плоских молекул, таких как симметричные полиметилбензолы и ароматические углеводороды с конденсированными ядрами на гидроксилированной поверхности силикагеля из растворов в н-алканах (см. рис. 14.5—14.7, а также лекцию 16). Эти ароматические углеводороды ориентируются преимущественно параллельно поверхности, образуя мономолекулярный поверхностный раствор, толщина которого с ростом концентрации таких ароматических углеводородов в объемном растворе изменяется мало и остается близкой к вандерваальсовым размерам толщины бензольного ядра и молекул растворителя — н-алкана в вытянутой конформации. В этой лекции будут рассмотрены свойства такой двухмерной модели поверхностного раствора постоянной толщины. [c.268]

    Адсорбция из растворов на границе между двумя жидкостями и жидкости с твердым адсорбентом имеет важное практическое значение в самых различных областях техники, природных процессах и щи-роко используется в лабораторной практике. Многие вопросы, связанные с управлением свойствами дисперсных систем с помощью адсорбционных слоев, рассматриваются в последующих главах здесь ограничимся лищь некоторыми характерными примерами практического использования явлений адсорбции из растворов на твердых адсорбентах. [c.92]

    При адсорбции из растворов электролитов наряду с поглощением нейтральных молекул наблюдается и адсорбция ионов, находящихся в растворе, например краситель метиленовый синий, основной по своим химическим свойствам, у которого положительно заряженный ион адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, в частности на силикагеле, а отрицательный ион — ион хлора — остается в растворе. Для компенсации заряда этого аниона из силикагеля переходит в раствор ион натрия, всегда содержащийся в небольшом количестве в силикагеле. Такая избирательная адсорбция одинаковых ионов растворов электролита, сопровождающаяся одновременно вытеснением соответствующего иона из адсорбента, называется обменной, полярной или ионообменной. При обменной адсорбции происходит обмен ионами в эквивалентных количествах, благодаря чему элек-тронейтральность растворов остается ненарушенной. По этой жё причине электронейтральность остается ненарушенной и на поверхности адсорбента. Обменная адсорбция протекает более медленно, чем обычная. [c.139]

    К изменению свойств растворов ПАА приводит и адсорбция полимера при фильтрации через пористую среду, причем сорбируемость ПАА увеличивается с ростом минерализации растворов, концентрации полимера в растворе и уменьшением проницаемости пород [5]. При контакте раствора ПАА со стальной поверхностью резко снижается вязкость закачиваемых растворов [6]. Поэтому при использовании растворов полимеров для заводнения или обработки ПЗП нагнетательных скважин необходимо сокращать время контакта раствора со стальными трубами, по возможности исключить смешивание их с минерализованными пластовыми водами и стабилизировать растворы ПАА, чтобы действие описанных выше факторов на свойства растворов полимеров бьшо незначительным [5-7]. Все перечисленные факторы, а также и другие - деструкция растворов ПАА, большие транспортные расходы (совместно с полимером перевозится около 90% воды), слабая эффективность при использовании их на участках с высокой обводненностью, в скважинах, разрез которых представлен про-пластками с высокой проницаемостью и трещинами, - затрудняют и сдерживают более широкое применение водных растворов полимеров для обработки ПЗП нагнетательных скважин [5-7, 60, 64]. [c.23]

    Важным свойством связующего является также его способность адсорбироваться на наполнит(зле. Так как каменноугольные пеки полностью не растворяются в обычных растворитёлях, то для изучения адсорбции используют раствор пека в бензоле [100]. Адсорбция пека [c.153]

    Она учитывает зависимость относительных фазовых проницаемостей от концентрации полимера, влияние проницаемости на реологаческие свойства раствора, а также адсорбцию и частичную десорбцию полимера. [c.186]

    Влияние природы растворителя, растпорснного пещества, структуры и свойств поверхности адсорбента па величину адсорбции из растворов может быть предстаплено лишь чисто качественно f3, 4, 8, 9]. [c.134]

    Для адсорбции из растворов употребляют, как правило, порошкообразные адсорбенты. Перечень и свойства наиболее употребительных адсорбентов приведены в гл. XV. Более подробно свойства адсорбентов рассмотрены в двух монографиях Дейца [5, 6]. При обычной адсорбции с целью увеличения поверхности можно применять очень мелкие порошкообразные адсорбенты. Такие материалы нельзя, однако, использовать для хроматографии, так как колонки, наполненные ими, мало проницаемы для жидкостей. [c.324]


Смотреть страницы где упоминается термин Адсорбция свойств раствора: [c.134]    [c.317]    [c.4]   
Курс физической химии Том 1 Издание 2 (1969) -- [ c.503 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция из растворов

Влияние на адсорбцию из растворов химической природы поверхности, размеров пор адсорбента и свойств раствора

Влияние разбавления на реологические свойства композиций Адсорбция из мицеллярных растворов

Растворов свойства



© 2025 chem21.info Реклама на сайте