Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь свойств

    Водородная связь служит причиной некоторых важных особенностей воды — вещества, играющего огромную роль в процессах, протекающих в живой и неживой природе. Она в значительной мере определяет свойства и таких биологически важных веществ как белки и нуклеиновые кислоты. [c.156]

    Силикагель можно использовать для адсорбции многих веществ. Его адсорбционная активность объясняется ненасыщенными водородными связями ОН-группы на поверхности структуры. При нагревании силикагель легко возвращает поглощенные вещества, восстанавливая при этом свои адсорбционные свойства. [c.89]


    Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже прн осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых вторичных связей . В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи. [c.130]

    Исследования состояния влаги в пористых телах давно уже привели к выводу об особом характере ее свойств вблизи поверхности частиц и о существовании так называемой связанной воды в дисперсных системах [1]. Отличия связанной воды от свободной объясняются перестройкой сетки межмолекулярных водородных связей в ее структуре под влиянием поля поверхностных сил. Моделирование структуры воды численными методами Монте-Карло и молекулярной динамики позволило получить некоторые количественные характеристики структурных изменений вблизи твердых поверхностей различной природы. При этом межмолекулярная водородная связь описывается различными потенциалами, правильность выбора которых проверяется путем сравнения рассчитанных и экспериментальных физических констант объемной воды. Поскольку численным методам посвящен ряд специальных статей этой монографии, остановимся только на основных результатах, важных для дальнейшего обсуждения. [c.7]

    Устойчивость золя определяется pH среды, концентрацией ЗЮг и органических растворителей. Полярные растворители (спирт) стабилизируют поликремниевую кислоту, так как образуются комплексы на основе водородных связей. Свойства водноспиртовых золей кремниевой кислоты, образующихся после гидролиза раствора этилсиликата, зависят от а.) соотношения этилсиликата, спирта и воды, количества соляной кислоты  [c.103]

    Отклонения от законов идеальных растворов наступают тогда, когда взаимодействие между неодинаковыми молекулами существенно отличается от взаимодействия между одинаковыми молекулами. При отсутствии других осложняющих факторов, таких, как образование водородных связей, свойством, которое можно в известных пределах применять для предсказания, будут ли два данных компонента образовывать раствор, близкий к идеальному, или нет, является диполь ный момент молекул, которьш определяется их полярностью. Вещества одинаковой полярности, если исключить компоненты, образующие водородные связи, должны образовать растворы, в которых отклонения от идеальности не слишком велики. [c.74]


    Последнее важное различие между кислородо ,-, и серой, о котором мы здесь упомянем, состоит в том, что кислород образует водородные связи —свойство, присущее только наиболее электроотрицательным элементам. В результате образования водородных связей многие соединения кислорода приобретают свойства, очень отличные от тех свойств, которые следовало бы ожидать, исходя из аналогии с соответствующими соединениями серы. Эти аномалии будут рассмотрены в следующих разделах, в которых описаны структуры воды, гидратов и гидроокисей. Например, существование гидроокисей многих тяжелых металлов связано с тем, что кислород образует водородные связи соответствующих гидросульфидов не существует, и известны только ионные гидросульфиды. [c.346]

    Состав этих молекул определили, не выделяя из раствора. Были установлены взаимное расположение и влияние атомов друг на друга, водородные связи, свойства определенных атомов фтора и азота (на схеме эти атомы обведены кружками). [c.216]

    То, что аммиак является сильным основанием, обусловливает высокую, растворимость в нем карбоновых кислот, спиртов и фенолов. Во многих случаях при рассмотрении растворимости трудно отличить явления, вызываемые основностью аммиака, от эффектов, связанных с его способностью к образованию водородных связей. Свойством аммиака, близким по характеру к основным, является склонность его молекул координироваться по отношению к ионам переходных элементов, таких, как N1 +, Сп +, Ag и т. д. [c.24]

    Жидкая вода представляет собой систему с сильно развитыми водородными связями, свойства которой хорошо описываются непрерывной, или континуальной, моделью, где практически все молекулы воды в среднем образуют водородные связи. Однако водородные связи в воде характеризуются широким набором углов и длин. Это означает, что потенциальная энергия водородной связи является непрерывной функцией угла межмолекулярной водородной связи и геометрических характеристик молекул воды. Максимум функции распределения энергии водородной связи соответствует расстоянию между атомами кислорода До-О = 0,286 нм. В упорядоченной структуре водородные связи линейны и Ко-О сокраш ается до 0,275 нм. [c.229]

    Структура и физические свойства жидкости зависят от химической индивидуальности образующих ее частиц, а также от характера и интенсивности сил, действующих между ними. Для воды, как мы видели, большую роль в ассоциации молекул в комплексы играют водородные связи. У неполярных молекул взаимодействие и взаим- [c.119]

    Межмолекулярные водородные связи могут образовываться между молекулами одного и того же вещества и разных веществ, а также между молекулами ПАВ и растворителя [217]. В результате такого взаимодействия изменяются важнейшие физико-химические свойства исходных соединений увеличивается молекулярная масса в зависимости от разбавления и типа разбавителя, образуются ассоциаты с аномалией температур плавления и кипения, может измениться растворимость ПАВ. [c.204]

    В этом случае свойства водородных связей растворителя облегчают разрыв связей бром—бром. [c.447]

    Принципиальное улучшение свойств и расширение областей применения нового типа эластомеров — бутадиен-стирольных термоэластопластов— достигается модификацией бутадиеновой части сополимера введением карбоксильных или сложноэфирных групп. Увеличение межмолекулярного взаимодействия за счет водородных связей карбоксильных групп и, в еще большей степени, образование солевых карбоксильных связей повышает сопротивление разрыву даже при 100 °С, уменьшает остаточное удлинение при сохранении способности перерабатываться методами литья и экструзии [29]. Реакция оксосинтеза с блоксополимером протекает более эффективно, чем с полиизопреном, по-видимому, вследствие большего содержания боковых винильных групп и большей реакционной способности бутадиеновых звеньев. [c.236]

    Синтез сегментированных или блокполиуретанов, как и соответствующая реакция диизоцианата и низкомолекулярного диола -(жесткий сегмент), осуществляется посредством конденсацноннвй полимеризации. Это неизбежно выражается в широком молекулярно-массовом распределении как сегментов, так и полимера в целом [52, 53]. В связи с этим заслуживают внимания данные по влиянию молекулярно-массового распределения на свойства сегментированных полиуретанов [54]. Объектами исследования служили системы, в которых действие водородных связей было сведено к нулю, так как наличие их могло затруднить трактовку экспериментальных результатов. Молекулярная масса эластичного сегмента менялась от 1003 до 1744. Полидисперсные жесткие сегменты получались ступенчатой реакцией 1,4-бисхлорформиата и пиперазина. Полиуретан затем синтезировали из предварительно сформированных жестких и полиэфирных сегментов. Учитывая, что промышленный политетрагидрофуран, использованный авторами, имел широкое молекулярно-массовое распределение, образцы с узким молекулярно-массовым распределением готовились из отдельных фракций. [c.541]


    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]

    Такое отличие одиночных полярных групп можно понять, предположив, что молекула воды, связанная с жесткой матрицей только одной водородной связью, мало отличается от молекулы чистой воды по своей способности участвовать в различных конфигурациях сетки водородных связей. Вклад таких молекул не должен сильно изменить термодинамические свойства воды. Не исключено и некоторое увеличение релаксационной составляющей. [c.55]

    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    Сложнее обстоит дело в случае воды, между молекулами которой действуют направленные и более сильные, чем дисперсионные, силы водородной связи. Для записи этих сил используют различные модельные потенциалы, с той или иной степенью приближения передающие свойства объемной воды. Хотя общая картина структуры объемной воды в достаточной мере прояснилась, многие вопросы еще требуют доработки. Это касается, в частности, коллективных взаимодействий молекул на больших расстояниях, играющих особенно важную роль в полярных и ионных средах. Дальнейший прогресс связан здесь с увеличени- ем числа включенных в рассмотрение молекул, за одновременным перемещением и нахождением которых ведется наблюдение в численном эксперименте. Однако увеличение числа частиц требует дальнейшего повышения оперативной памяти и быстродействия ЭВМ. [c.116]

    Многие наиболее важные свойства воды обусловлены водородными связями. Наличие водородных связей во льду и в жидкой воде определяет неожиданно высокие температуры плавления и кипения воды по сравнению с другими водородными соединениями элементов группы VI периодической системы-НгЗ, НзЗе и НзТе. Аналогичные аномалии, вызванные теми же причинами, обнаруживают жидкий аммиак и фтористый водород (рис. 14-19). Однако в аммиаке водородная связь выражена менее сильно, [c.619]

    Поскольку при добавлении тепла происходит медленное разрушение связанных водородной связью кластеров HjO, вода имеет большую теплоемкость, чем многие из других распространенных жидкостей, за исключением аммиака. Кроме того, вода имеет необычно высокую теплоту плавления и теплоту испарения. Совокупность этих трех свойств делает воду эффективным термостатом, который поддерживает температуру на поверхности Земли в умеренных пределах. При плавлении льда поглощается огромная энергия, а нагревание воды на каждый градус требует большей затраты тепла, чем для большинства других веществ. Соответственно при охлаждении воды она выделяет в окружающую среду больше тепла, чем многие другие вещества. [c.621]

    Водородная связь возникает в результате притяжения между положительно заряженным атомом водорода и каким-либо электроотрицательным атомом, который должен быть настолько мал, чтобы протон мог сильно приблизиться к нему. Водородные связи чаще всего образуют кислород и фтор, в меньшей степени склонен к образованию связей азот, а хлор обычно слишком велик для этого. Водородные связи ответственны за многие широко известные свойства воды и льда. [c.640]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа молей ионизированного вещества к оби ему числу молей растворенного. Степешз ионизации в основном определяется электронно-донорными и электронно-акцепторными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи Н2О. .. H I в донорно-акцепторную [Н гО—Н]+  [c.128]

    Какую роль играют водородные связи в образовании кристаллической структуры льда Какое влияние они оказывают на свойства льда  [c.641]

    Наиболее важной темой этой главы являются межмолекулярные силы. В табл. 14-1 и 14-3 представлены различные кристаллические структуры и их свойства, которые следует обсудить подробно. Чрезвычайно важно, чтобы учащимся стали понятны такие термины, как вандерваальсовы (лондоновские) силы и водородная связь. [c.577]

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]

    На перенос вещества влияют некоторые очень тонкие химические и физико-химические явления, что становится очевидным при более пристальном рассмотрении проникающих веществ, например воды. Сама по себе вода существует в виде связанных водородной связью групп, состоящих примерно из сотни молекул, причем каждая из них имеет от четырех до шести соседей. Устойчивость таких групп, однако, зависит не только от температуры, но и от природы растворимых частиц и физико-химических свойств мембраны. Гидрофобные вещества и мембраны стремятся оттолкнуть молекулы воды, превращая их в большие льдоподобные, а следовательно, и более трудно проникающие группы. [c.66]

    Изучение свойств надкритического водяного пара обычно проводят путем сопоставления их с соответствующими свойствами воды. В отличие от ранее рассмотренных в этой главе растворителей вода является полярным веществом и характеризуется ажурной молекулярной структурой. Молекулы воды в каркасе связаны водородными связями, в среднем с четырьмя ближайшими к ней соседями. При повышении температуры до комнат- [c.19]

    Почему водородная связь оказывает влияние на свойства NHз, НдО и НР, но не оказывает заметного влияния на свойства РНз, НгЗ и НС1  [c.22]

    В результате изменения структуры при переходе из индивидуального состояния в раствор, а также в результате происходящих при этом взаимодействий изменяются свойства системы. На это указывает, в частности, наличие тепловых (ДЯ) и объемных (Д1/) эффектов при растворении. Так, при смешении 1 л этилового спирта с 1 л воды объем образующегося раствора оказывается равным не 2 л, а 1,93 л (25° С). В данном случае уменьшение объема (на 3,5%) обусловлено в основном образованием водородных связей между гидроксильными группами спирта и воды, а также разрушением льдоподобных структур последней. [c.135]

    Устойчивость золя определяется pH среды, концентрацией ЗЮг и органических растворителей. Полярные растворители (спирт) стабилизируют поликремниевую кислоту, так как образуются комплексы на основе водородных связей. Свойства водноспиртовых золей кремниевой кислоты, образующихся после гидролиза раствора этилсиликата, зависят от а.) соотношения этилсиликата, спирта и воды, количества соляной кислоты б) температуры и длительности гидролиза в) степени полимеризации кремнекислоты г) отношения Т/Ж. С увеличением концентрации этилсиликата в исходной композиции (этилсиликат — этиловый спирт — вода — соляная кислота) и соответственно повышением концентрации 510г в золе устойчивость золя к за- [c.103]

    В некоторых растворителях типа а могут образоваться и межмолекулярные, и внутримолбкул1ярные водородные мостики в других растворителях этого типа, а также в случае растворителей типов б и в возможно возникновение только межмолекулярных водородных связей. Свойства растворителя изменяются в наибольщей степени, когда его молекулы соединяются межмоле-куляриыми водородными мостиками это приводит к понижению упругости пара, повышению точки кипения, а также к возрастанию относительной диэлектричеокой проницаемости. Степень этих изменений зависит от объема или длины образующихся молекулярных агрегатов. [c.111]

    Химические соображения о выборе разделяющего агента. Юэлл с соавторами [19] предложили объяснение отклонения свойств смесей от св011ств идеальных растворов, приводящего к образованию азеотропных смесей. Это объяснение основано на представлении о водородной связи. Водород может образовывать координационную связь между двумя атомами-доно-рами кислорода, азота или фтора или координационную связь между этими атомами-донорами и атомом углерода при условии, что с атомом углерода связано достаточное количество отрицательно заряженных атомов или групп. Подобные теоретические соображения могут быть положены в основу при выборе возможных разделяющих агентов. [c.124]

    Весьма существенна роль пространственной структуры в сегментированных уретановых эластомерах. Высокополярные группы образуют довольно прочную физическую сетку в основном за счет водородных связей. Результирующее действие от их введения в полимер — увеличение межцепного взаимодействия. С ростом концентрации полиуретановых и полимочевинных сегментов происходит значительное увеличение напряжения при удлинении эластомера. Используя принцип направленного сочетания сегментов различной природы, можно получить не только высокомодульные эластомеры, но и сохраняющие высокие механические свойства при повышенной температуре (табл. 7) [59]. [c.544]

    Водородная связь. Еще в XIX веке было замечено, что соединения, в которых атом водорода непосредственно связан с атомами фтора, кислорода и азота, обладают рядом аномальных свойств. Это проявляется, например, в значениях температур плавления и кипения подобных соединений. Обычно в ряду однотипных соединений элементов данной подгруппы температуры плавления и кипения с увеличением атомной массы элемента возрастают, Это объясняется усилением взанмиога притяжения молекул, чтб связано с увеличением размеров атомов и с ростом дисперсионного взаимодействия между ними (см. 48). Так, в ряду H I—НВг—HI температуры плавления равны, соответственно, [c.154]

    Растворители представляют собой однородные структурированные субстанции. При контакте между молекулами растворителя и растворенного вещества имеют место ион-дипольные взаимодействия. Степень сольватации указывает на количество таких взаимодействий. Взаимодействие тем больше, чем ближе контакт между растворимым веществом и растворителем. Дипольные, дисперсионные и индукционные взаимодействия, а также водородные связи действуют совместно с кулоновскими силами, и все вместе определяют стабильность и свойства ионных пар. Поэтому большое значение имеет природа" как растворенного вещества, так и растворителя. Сольватная оболочка уменьшает подвижность и коэффициенты диффузии как ионов, так и ионных пар. Способность апротонного растворителя к сольватированию не зависит от диэлектрической проницаемости, но в значительной степени определяется его элект-ронодонорными или электроноакцепторными свойствами. Рол  [c.17]

    Большая часть полярных атомных групп на поверхности белков и нуклеиновых кислот расположена близко друг к другу, так что молекула воды в гидратной оболочке может связываться с поверхностью двумя водородными связями [138— 140]. Поэтому хорошей моделью для изучения свойств воды полярной поверхности биополимеров могут служить полифунк-циональные низкомолекулярные соединения со сближенными полярными группами, такие, например, как сахара, аминокислоты и др. [c.54]

    Состояние связанной воды (энергия связи, подвижность) определяет специфику процессов структурообразования и массообмена в дисперсных материалах. Исследование диэлектрических свойств торфа низкой влажности свидетельствует, что связь молекул воды с сорбентом не является жесткой [215]. К тому же выводу можно прийти, анализируя данные калориметрического определения теплот смачивания торфа водой. При поступлении первых порций воды в материал выделяемая теплота составляет около 67 кДж/моль. Время жизни молекулы воды на активном центре, в соответствии с формулой т = = тоехр (—Е1ЯТ) (где Е — энергия связи молекул сорбата с сорбентом), в этом случае примерно равно 10 с, а при наличии лишь одной водородной связи тжЗ-10 2 с, т. е. молекулы сорбированной воды могут с частотой 10 —10 с отрываться [c.67]

    Изменение устойчивости ири изменении кислотности среды и незначительном изменении ионной силы может быть объяснено влиянием pH на свойства поверхности ЗЮг и, вследствие этого, на свойства и протяженность ГС. При щелочных pH образование ГС может быть связано с ориентацией диполей воды иод действием сильного электрического иоля поверхности частиц ЗЮг (л Ю В/см). Следует отметить, что при pH = 9- 11 существенную роль в устойчивости частиц кварца могут также играть поверхностные гелеобразные слои иоликремниевых кислот. При pH = 2 наблюдаемая устойчивость системы может быть обусловлена ориентацией молекул воды за счет водородных связей, возникающих около незаряженной поверхности, несущей недиссоциированные силанольные группы [502, 503, 508]. Таким образом, для золя ЗЮ2 в случае как незаряженной, так и высокозаряженной поверхности частиц возможно образование достаточно толстых и прочных ГС, что обусловливает высокую агрегативную устойчивость системы. В промежуточной области (рН = Зч-6), где с одной стороны, часть силанольных групп уже диссоциирована, а с другой стороны, плотность фиксированного заряда еще недостаточно велика, развитие ГС является минимальным. [c.175]

    Молекулярные представления о природе поверхностных явлений основаны на механизме межмолекулярного взаимодействия между частицами твердого тела и газа, а такж частиц газа между собою. Если исключить пока хемосорбционные процессы, то основной вклад в поверхностные явления вносят дисперсионные силы. Оказывают влияние на энергетику поверхностного взаимодействия также электростатические силы и водородная связь. В целом можно утверждать, что чем больше удельная поверхность пор 5 и чем ближе разделяемая газовая смесь по своим свойствам приближается к неидеальным системам, тем сильнее будет сказываться влияние поверхностных явлений на процессы в пористой мембране. [c.42]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Избирательность растворителя изменяется при введении в молекулу второй функциональной группы, причем, если эта группа образует водородную связь, то избирательность снижается. Если вторая функциональная группа не способна к образованию водородной связи, то снижается изби,рательная способность только тех растворителей, у которых она была очень высокой. На избирательность растворителя влияет также структура радикала при одинаковой функциональной группе, причем избирательность снижается в такой. последовательности тиофеновое кольио>бензоль-ное кольцо>фурановое кольцо>алифатический радикал. При введении алкильного радикала в молекулу полярного растворителя его избирательность может как повышаться, так и понижаться, в зависимости от того, что будет превалировать — рост дисперсионного взаимодействия, снижающего избирательность, или уменьшение теплового движения молекул. Поэтому растворитель обладает высокой избирательностью только при определенном соотношении углеводородного радикала и функциональной группы, которые обусловливают его дисперсионные и полярные свойства. Нарушение этого соотношения приводит к снижению избирательности растворителя. [c.58]

    Если водород соединен с сильно электроотрицательным элементом, ои может образовать еще одну дополнительную бО(9оро<Зную связь, правда, значительно менее прочную, чем обычная валентная связь. Способность атома водорода связывать в ряде случаев два атома Впервые была установлена в 80-х годах прошлого столети М. А. Ильинским и Н. Н. Бекетовым. Хотя энергия водородной связи мала (8—40 кДж/моль), эту связь следует считать разновидностью ковалентной, так как она обладает свойствами направленности и насыщаемости. [c.131]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]


Смотреть страницы где упоминается термин Водородная связь свойств: [c.277]    [c.216]    [c.303]    [c.133]    [c.51]    [c.122]    [c.231]   
Природа химической связи (1947) -- [ c.318 ]




ПОИСК





Смотрите так же термины и статьи:

Белки, Водородная связь, внутримолекулярная, Вязкость, Диэлектрические свойства, спектры, Кинетика, Кристаллы, структура. Поверхностное натяжение, Рентгеновские лучи. Связи

Вода - самый распространенный растворитель. Физические свойства воды. Строение молекулы воды. Поляризация. Диполь Водородные связи

Водородная связь влияние на физические свойства веществ

Водородная связь и кислотно-основные свойств

Водородная связь и спектральные свойства

Водородная связь как причина необычных свойств воды

Водородная связь насыщенный, свойства

Водородная связь обусловливает необычные свойства воды

Водородная связь термодинамические свойства

Водородные связи

Водородные связи влияние на свойства

Водородные связи и физические свойства

Изотопные эффекты в физико-химических свойствах жидкостей с водородными связями. И. Б. Рабинович

Изучение полярных свойств веществ с водородными связями методом диэлектрометрического титрования. Е. Н. Гурьянова

Луц кий, Т. Д. Марченко. Зависимость некоторых свойств комплексов с водородной связью от характеристик взаимодействующих .молекул

Луцкий, Т. Н. Марченко. Зависимость некоторых свойств комплексов с водородной связью от характеристик взаимодействующих молекул

Луцкий. Водородная связь и химические свойства органических соединений. Влияние растворителей на кинетику химического взаимодействия

Необычайные свойства воды I обусловлен водородной связью

Обзор условий образования и свойств водородной связи

Приложение Б. Термодинамические свойства водородной связи

Распространенность в природе.— Получение.— Физические свойства.— Химические свойства.— Водородная связь.— Изотопы водорода.— Применения водорода Окисление и восстановление

Свойства атомов, образующих водородную связь

Свойства кристаллов с водородными связями

Свойства льда, определяемые водородными связями выводы

Свойства соединений с водородной связью

Связь водородная хромофорные свойства

Связь водородная, Водородная связь

Спектральные свойства спиртов. Водородная связь

Теоретическое рассмотрение свойств систем с водородной связью

Физико-химические свойства и структура соединений с водородной связью Структура растворителя и термодинамические свойства растворов электролитов в воде, метиловом спирте и ацетоне. К П. Мищенко

Физические свойства спиртов. Водородная связь

Физические свойства. Ассоциация спиртов. Водородная связь

Электрические свойства веществ с водородными связями Водородная связь и диэлектрические свойства жидкостей. А. Е. Луцкий, Михайленко

Эпштейн. Водородные связи и химические свойства органических соединений

Этиловый спирт влияние водородной связи на свойства



© 2024 chem21.info Реклама на сайте