Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вольфрам методы отделения

    Экстракционные методы. Наибольшее применение экстракционные методы концентрирования примесей имеют при анализе -ВОДЫ, кислот, щелочей, щелочных металлов и их солей. Характерно для этого способа концентрирование анионных форм таких элементов, как мышьяк, фосфор, вольфрам, селен, теллур, и неметаллов. Основные элементы, как правило, экстрагируют из сильно кислых сред активными кислородсодержащими растворителями в виде галогенсодержащих комплексных соединений. Такой метод отделения примесей в ряде случаев сопровождается побочными нежелательными эффектами (например, соэкстракцией). [c.202]


    Так, например, можно отделить алюминий, цинк, молибден, сурьму, вольфрам от железа, меди и др. Метод отделения амфотерных катионов имеет существенное преимущество вследствие устранения соосаждения амфотерных катионов с осадком гидроокисей катионов. [c.362]

    Вольфрам захватывается осадком фосфоромолибдата аммония и должен быть отделен перед осаждением, за исключением, быть может, тех случаев, когда содержание его невелико и определение проводят молибдатно-магнезиальным методом. Отделение вольфрама осуществляют нагреванием с азотной и соляной кислотами и последующим фильтрованием. Фильтрат следует затем выпарить с азотной кислотой для удаления большей части соляной кислоты, а вольфрамовую кислоту необходимо исследовать на содержание в ней фосфора, лучше всего растворением в аммиаке, содержащем цитрат аммония, и осаждением магнезиальной смесью из ледяного раствора, как описано на стр. 788. [c.783]

    Прежний метод отделения хрома и ванадия вместе с такими элементами, как молибден и вольфрам, основанный на осаждении нитратом ртути [1], теперь, по-видимому, используется мало. [c.188]

    Для вольфрама Сендел [12] предложил более детальный метод, основанный на разложении силикатной породы плавиковой и серной кислотами. Вольфрам отделяют от железа и титана осаждением щелочью, а от молибдена осаждением последнего в виде сульфида с сурьмой в качестве соосадителя. Этот метод отделения был критически изучен Чаном и Райли [13], которые нащли, что при низких содержаниях вольфрама некоторое количество его соосаждается в виде сульфида с молибденом и сурьмой. В данном методе было также замечено обесцвечивание органических экстрактов. Нижний предел обнаружения вольфрама для этого метода составляет 5- 10 % (при навеске 1 г), чувствительность метода меньще, чем для молибдена, и едва ли достаточна для больщинства основных пород. [c.311]

    Для разложения вольфрамита 10—100 г тонко измельченного минерала сплавляют с двух- или трехкратным количеством карбоната натрия. Скандий отделяют от основной массы вольфрама выщелачиванием плава горячен водой и последующим фильтрованием Осадок растворяют в соляной кислоте, обычным путем отделяют кремнекислоту и из солянокислого фильтрата осаждают фторид скандия фторосиликатом натрия, как указано в разделе Методы отделения (см. ниже). Тонко измельченную руду можно также обработать царской водкой при нагревании и отделить вольфрам, как описано в гл. Вольфрам (стр. 704). [c.561]


    Молибден можно отделить от вольфрама экстракцией бутилацетатом комплексного соединения молибдена с дитиолом из растворов минеральных кислот, содержащих лимонную кислоту (стр. 584). Другой метод отделения от вольфрама основан на том, что вольфрам не экстрагируется из 8—14 н. серной кислоты. [c.577]

    Экстракция ниобия метилэтилкетоном является эффективным методом отделения его от-железа(П1), никеля и урана Для этого водный раствор делают 8%-ным по фториду аммония, 10 об. %-ным по концентрированной плавиковой кислоте, 20 об.%-ным по концентрированной серной кислоте и дважды экстрагируют в каждом случае в течение 5 мин равными (по сравнению с водной фазой) объемами кетона, предварительно приведенного в равновесие с указанной смесью кислот. Органическую фазу упаривают в платиновой посуде, а смолистый остаток для разрушения органических соединений нагревают со смесью концентрированной азотной и серной кислот, а затем для удаления азотной кислоты упаривают до появления паров серной кислоты. Коэффициент распределения ниобия для данной системы равен примерно 200 (органич./водн.). Ванадий и вольфрам также частично экстрагируются. Оба эти элемента мешают при колориметрическом определении при помощи роданида и хлорида олова(П). [c.614]

    Шишков разработал метод отделения У от элементов при помощи ионного обмена. Метод основан на различии ионного состояния разделяемых элементов в растворе с pH = 1. По данным автора, вольфрам находится в виде комплексного аниона, ванадий и хром соответственно в виде 0 и Сг +. [c.203]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    При относительно небольшой плотности тока (0,01 а/смР-) оно достигает весьма значительной величины (1,2 в). Это обстоятельство может быть использовано для разделения металлов. При электролизе подкисленных растворов с применением ртутного катода все металлы, ионы которых разряжаются на ртути при потенциалах еще более отрицательных, чем ионы водорода, останутся в растворе. Не осаждаются в этих условиях щелочные и щелочноземельные металлы, алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам, уран. Таким образом удается отделить эти металлы от железа, хрома, цинка, кадмия и других металлов, которые разряжаются на ртути и образуют с ней амальгаму. Этот метод широко применяется при анализе алюминиевых сплавов для отделения железа. При анализе сталей железо таким же образом отделяется от алюминия, титана, ванадия и некоторых других компонентов сталей. Все эти металлы остаются в сернокислом растворе взятой навески стали, а железо уходит в амальгаму. Такое предварительное групповое разделение весьма облегчает весь ход анализа и может применяться для самых различных сплавов. [c.294]

    Осаждение ванадия в виде ванадата свинца может служить лишь для его предварительного отделения, обычно группового, так как осадок нельзя непосредственно взвешивать и, кроме того, совместно с ванадием осаждаются молибден, вольфрам и хром (VI). Этот метод применяют после переведения ванадия в раствор в виде ванадата щелочного металла. Раствор слабо подкисляют азотной кислотой, вводят ацетат свинца в небольшом избытке, нагревают до кипения и перемешивают до коагуляции осадка. Затем осадок отфильтровывают, промывают сильно разбавленной уксусной кислотой, растворяют в азотной кислоте и отделяют свинец в виде сульфата после выпаривания с серной кислотой. [c.511]

    Вольфрам из раствора, 6 Ai по H I и 0,4 N по Н3РО4, не извлекается диэтиловым эфиром [129]. При этих условиях экстрагируется 76% Мо. Это позволяет разработать экстракционный метод отделения молибдена от вольфрама. В отсутствие маскирующих веществ хлоридный комплекс вольфрама экстрагируется диэтиловым эфиром в значительных количествах (около 30%). [c.139]

    Главный метод отделения свинца основан на нерастворимости его сульфата. Описанное на стр. 262 выпаривание с серной кислотой служит для отделения свинца от многочисленных элементов, образуюш их растворимые сульфаты. При необходимости точного определения свинца в растворах, содержаш их соляную или азотную кислоту, их слуздует выпаривать до появления паров серной кислоты два или три раза, после каждого выпаривания обмывая стенки сосуда, чтобы быть уверенным в полном удалении соляной или азотной кислоты, так как эти кислоты частично растворяют РЬЗО . Следует также избегать добавления хлорной кислоты, так как она растворяет небольшое, но все же заметное количество сульфата свинца, даже и в т(зх случаях, когда в растворе имеется избыток свободной серной кислоты. Сульфат свинца слегка растворим также и в разбавленной серной кислоте, поэтому в точных работах его надо затем извлекать из фильтрата. При выполнении рядовых анализов, когда определяют только один свинец, сульфат свинца достаточно промывать разбавленным раствором серной кислоты, насыщенным сульфатом свинца при той же температуре, при которой применяется раствор. Часто рекомендуемое прибавление спирта уменьшает растворимость сульфата свища, но одновременно вызывает осложнения вследствие загрязнения осадка сульфата свинца сульфатами кальция и висмута, и поэтому в тех случаях, когда фильтрат надо подвергнуть Дальнейшему анализу, спирт добавлять не следует. Вместе с сульфатом свинца выделяется кремнекислота, а также и вольфрам, ниобий, тантал, барийименее полно стронций и кальций. Висмут, сурьма, серебро, медь, а также, без сомнения, и некоторые другие элементы отчасти загрязняют сульфат свинца. Никель и хром иногда создают затруднения, если серная кислота нагревалась выше температуры появления ее паров или почти полностью была выпарена. [c.258]


    В. И. Кузнецов и Г. В. Мясоедова 207] разработали метод отделения следов молибдена от вольфрама при помощи метода двух реактивов , заключающегося в том, что сперва молибден соосаждают вместе с другими элементами таннином и метил-виолетом ( органические соосадители ), а затем, после озоле-ния и растворения осадка, снова осаждают молибден, но уже не таннином, а роданидом и метилвиолетом, создавая виннокислую среду, в которой вольфрам не осаждается. Этим методом удается определять молибден в присутствии 400 000-кратного избытка вольфрама — например 2,5 мкг молибдена при 1 г вольфрама. Этот же метод позволяет концентрировать малые количества молибдена из больших объемов, например из природных вод. Методы хроматографического разделения молибдена и железа разрабатывались Ф. М. Шемякиным и И. П. Харламовым [202, 208], использовавшими предварительные данные других авторов. Это разделение хорошо проходит на сульфоугле, поглощающем молибден и пропускающем железо. После промывания колонки через нее пропускается раствор едкого натра, выщелачивающий поглощенный сульфоуглем молибден. Ш елочной раствор молибдата переводят в сернокислый и титруют его перманганатом после предварительного восстановления молибдена но пятивалентного при помощи амальгамированного цинка. [c.90]

    Таннин является необычным органическим реагентом, поскольку он, вероятно, действует как отрицательно заряженный коллоид, осаждающий положительно заряженные гидроксидные золи ШОз, N5205 и ТагОз. Например, если раствор вольфрамата обработать таннином и подкислить, вольфрам почти количественно осаждается. Небольшое количество вольфрама, оставшееся в виде коллоида, можно осадить таннином или цинхонином [37]. Этими реагентами вольфрам можно отделить от большого числа ионов. Интересен метод отделения тантала от ниобия тантал избирательно осаждают из слабокислого оксалатного раствора [38]. Таннин используют для осаждения германия после отгонки тетрахлорида германия при анализе стали [39]. [c.454]

    Вольфрам можно отделять методами осаждения, ионного обмена, жидкостной экстракции, бумажной и тонкослойной хроматографии, эле трофореза на бумаге и методом соосаждения. В работе [5] приведен обзор основных методов отделения вольфрама. [c.234]

    Для экстракции вольфрама используют несколько способов. Дитиол (толуол-3,4-дитиол) применен для отделения Мо и Ш [11]. В среде 10 Ж НС1 в присутствии восстановителей вольфрам образует интенсивно окрашенный комплекс, который можно экстрагировать эфирами, например этилацетатом. Вольфрам(VI) отделяется от Со, V, 5п, РЬ, N1, Мп и А1, однако соэкстрагируются малые содержания железа, а молибден экстрагируется полностью, как и вольфрам. Метод может быть применен для спектрофотометрического определения вольфрама и молибдена, в частности, при анализе диоксида титана [12.  [c.235]

    Осаждение вольфрама цинхонином было описано в разделе Методы отделения . Гравиметрическому определению вольфрама с цинхонином мешают As , и Si, не мешает Мо . Комплекс W с цинхонином гигроскопичен. Для перевода в WO3 осадок прокаливают при 700—850 °С [6]. Вольфрам в среде HNO3 образует с пероксидом водорода пероксовольфрамат, который при нагревании разлагается с выделением осадка вольфрамовой кислоты. Осадок фильтруют, прокаливают при 700—850°С и взвешивают в виде WO3 [31]. Для осаждения H2WO4 в методике рекомендуется нагревание раствора до 60°С. В работе [32] показано, что полное осаждение достигается при 80 °С. [c.236]

    V) присутствуют одновременно, можно определить содержание каждого в отдельности, проводя измерение оптической плотности раствора при двух различных длинах волн проходящего света ( при 430—436 М.МК и при 546—565 ммк ). Можно также связать титан в комплекс добавлением фторида и определить с перекисью водорода один ванадий. В последнем случае такое же количество фторида надо ввести в стандартные растворы (пользоваться фотоколориметром не следует, так как плавиковая кислота разрушает кюветы). Железо (III) при этом также обесцвечивается. При отсутствии титана можно железо (III) связывать в комплекс фосфорной кислотой, добавляя ее и в стандартные растворы. Если анализируемый раствор содержит одновременно фосфор (V), ванадий(V) и вольфрам (что бывает при анализе некоторых сталей), то в растворе образуется желтого цвета фосфорованадиевовольфрамовая кислота (см. предыдущий метод). Отделение осадка вольфрамовой кислоты приводит к потере некоторого количества ванадия. [c.731]

    На метод отделения молибдена от вольфрама в шеелите выдан патент [100]. В качестве электролита используют смесь ЫаС1 и Ма2В407 или МазРзО,. Молибден осаждается при пониженной плотности тока — 0,02—0,3 о/сж , затем катод меняют и выделяют вольфрам при более высокой плотности тока — 0,2—2 а см . Температура — 900—1100° С. [c.138]

    Осаждение сероводородом в кислом растворе — важцый метод отделения и концентрации следов олова в присутствии железа и других металлов, не осаждаемых при этих условиях. Если раствор содержит вольфрам, ванадий и титан, осаждение производят в присутствии винной кислоты. От меди и других металлов подгруппы меди олово отделяют, осаждая эти элементы в виде сульфидов в щелочной среде, но при этом часто теряют олово вследствие соосаждения последнего. Олово можно-осадить и отделить от меди сероводородом в кислом растворе, если добавить достаточно тиомочевины, чтобы связать медь в комплекс . [c.366]

    Разработан [16] экстракционный метод отделения вольфрама от Т1, Аи, 8Ь, Са, Ре, гп, С(1, Ве, Ag, Р1, 1г, 1п, Си, Те, 8п, Со и 8е. Из раствора 9—10 М НС1 дихлордиэтиловым эфиром отделяют Т1, Аи, 8Ь, Са, Ре водную фазу упаривают, растворяют в 0,2 М НС1 и экстрагируют Zn, С(1, Ве, Ад, РЬ, Р(1, 1г 0,08%-ным раствором диметилбензилалкиламмонийхлорида (ЧАО) в дихлорэтане. Экстракт промывают 0,2 М НС1, реэкстрагируют вольфрам раствором 3 М НС1. Метод проверен нри радиоактивационном определении вольфрама в трихлорметилсилане. [c.59]

    Кокриш и Фараг [950] изучали поведение комплексных соединений ванадия, молибдена и вольфрама с аскорбиновой кислотой в колонках с сильноосновным анионитом амберлит IRA-400 (в аскорбинатной форме) и разработали метод отделения ванадия от молибдена, вольфрама, железа и других элементов. Ванадий, молибден и вольфрам образуют в растворах аскорбиновой кислоты при pH 4 отрицательно заряженные комплексные ионы различной устойчивости, которые неодинаково сильно удерживаются названным анионитом. При промывании колонки 0,1 N раствором НС1 количественно извлекается ванадий и только около 1 % W. Весь молибден удерживается амбер-литом. [c.130]

    IV, V и VI. Представителем вольфрама(VI) является окись ШОз, растворяющаяся в щелочах с образованием вольфрамат-иона Нейтрализация или подкисление раствора приводит к образованию полимерных вольфрамовых кислот, выпадающих в осадок. Подобно молибдат-иону, вольфрамат-ион может также образовывать гетерополикислоты. Методы отделения (У1) от веществ, мешающих его определению, включают растворение в щелочах и соосаждение его окиси с Ре(ОН)з, А1 (ОН)з или арсе-натом свинца при нейтрализации аммиаком или гексаметилен-тетрамином. Различия в устойчивости тартратных комплексов молибдена и вольфрама позволяют отделять молибден от вольфрама осаждением МоЗз из кислых растворов. Подобно молибдену, вольфрам образует осадки с а-бензоиноксимом (экстрагирующийся хлороформом) и купферроном (экстрагирующийся изоамиловым спиртом). В разбавленных солянокислых растворах с вольфрамовой кислотой реагирует родамин В, причем окраска изменяется от желто-красной до фиолетовой. Эту реакцию можно также использовать в анализе, измеряя уменьшение интенсивности флуоресценции родамина В. Дитиол с Ш(У1) дает соединение, окрашенное в сине-зеленый цвет, которое экстрагируется органическими растворителями. При реакции образуется, вероятно, трис-комплекс. В растворах серной кислоты высокой концентрации между (У1) [а также Мо(У1) и Ti(IV)] и гидрохиноном идет реакция с образованием окрашенных веществ неизвестного строения. [c.318]

    Большое значение имеют экстракционные методы отделения молибдена, например, диэтиловым эфиром из солянокислого раствора [22—24]. При определенных условиях молибден можно полностью отделить от железа, меди и ряда других элементов. Успешно отделяют малые количества молибдена от больших количеств вольфрама экстрагированием ксантогената молибдена хлороформом из разбавленного сернокислого раствора. В последние годы разработан экстракционный метод отделения молибдена из 6Л Н2804 [25—28] смесью хлороформа и ацетилацетона (1 1). Ацетила-цетон представляет селективный реагент для экстракции молибдена при анализе материалов, содержащих железо в качестве главного компонента вольфрам, медь и хром не экстрагируются. [c.538]

    Аналогичный метод отделения вольфрама на катионите применил А. И. Кокорин. Солянокислый раствор, содержащий восстановленный вольфрам, пропускают через колонку с катионитом и еще 50 мл воды. Поглощенный катионитом вольфрам вымывают 200 мл 5%-ного раствора едкого натра, и содержание его в фильтрате определяют весовым методом. Как показывают результаты опытов, сульфоуголь, эспотит 1 (КУ-1) и вофатит Р поглощают от 99 до 100°/о вольфрама. [c.202]

    Возможно разложение вольфрамовых минералов электролизом в расплавленных солях и прямым восстановлением минералов углеродом, нижетемпературы плавления металла, до порошкообразного вольфрама с последующим отделением примесей. Однако техноэкономиче-ская целесообразность этих методов сомнительна. В настоящее время наиболее перспективны те методы вскрытия, после которых возможно извлечь вольфрам и отделить его от примесей ионным обменом и экстракцией. [c.248]

    Вольфрам (до 5-10 %) в металлическом рении определяют после растворения образца в смесях кислот и его отделения от основной массы рения соосаждением с гидроокисью алюминия. Небольшая часть рения (- 0,5 мг от 0,5 г) захватывается осадком и затем удаляется в виде RejO, при унарнваини с H2SO4. Содержание вольфрама определяют экстракционно-колориметрическим методом по интенсивности окраски раствора роданидного комплекса вольфрама(У) в изоамиловом спирте [1302]. [c.270]

    А. В. Виноградов и Т. И. Евсеева [84] успешно определяли молибден в его концентратах осаждением в форме Мо02(СэНбОЫ)2 из 0,1 N Н2504 в присутствии комплексона III (без отделения железа и других элементов). Если присутствует вольфрам, то его маскируют добавлением щавелевой кислоты. Определение молибдена заканчивают взвешиванием промытого и высушенного при 120—140° С осадка. Метод дает точные результаты. Он был применен для определения молибдена в сплавах на основе ниобия и циркония [85]. [c.165]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    В ЭТОМ случае используют амфотерную природу некоторых металлов, таких, как цинк, алюминий, молибден, вольфрам и сурьма эти металлы, извлеченные из раствора катиоиообменной смолой, могут быть затем вытеснены из нее промывкой щелочью. Другие металлы, которые образуют нерастворимые гидроокиси, конечно, остаются на смоле. Некоторые исследователи, применившие этот метод, заявляют, что добились очень хорошего отделения молибдена и вольфрама от железа и алюминия от железа. Однако к этим сообщениям нужно относиться осторожно, так как другие исследователи получали неудовлетворительные разделения. Сейчас, конечно, слишком рано приходить к определенным выводам, но если сам принцип правилен, то, несомненно, кажущиеся расхождения в результатах найдут себе объяснение. [c.74]

    Таннин вряд ли можно классифицировать как обычный органический реагент, так как он действует как отрицательный коллоид— флоккулянт положительно заряженных золей гидратированных окислов, например WO3, НЬгОз, TagOs. Так, при добавлении таннина к раствору вольфрамата и подкислении почти весь вольфрам выпадает в осадок. Небольшое количество остается в виде коллоидной дисперсии и флоккулируется осадителем таннина, например цинхонином 2. Таким методом вольфрам можно отделить от большого числа ионов. Отделение тантала от ниобия тоже небезынтересно тантал селективно осаждается из слегка подкисленного раствора оксалата Осаждение германия таннином после отгонки его в виде тетрахлорида применяется при анализе стали Исключительно селективный осадитель вольфрама, образующий в кислом растворе комплекс с вольфраматом состава 1 1 — анти-1, 5-ди-(п-метоксифенил)- [c.285]

    Для фотометрического определения вольфрама известен роданидный метод этому определению мешает ниобий, образующий при тех же условиях желтый роданидный комплекс. Для маскирования ниобия при определении вольфрама предложена [30] щавелевая кислота. С другой стороны, для отделения ниобия от ряда элементов известно его осаждение или экстракция куп-фероном (КГ). Этому отделению мешает вольфрам, образуя в тех же условиях аналогичный купферонат. Для маскирования вольфрама предложена [31] также щавелевая кислота. Таким образом, в системе роданиДных комплексов щавелевая кислота маскирует ниобии, не мешая определению вольфрама. Наоборо., в купферонатной системе та же щавелевая кислота маскирует вольфрам, не препятствуя определению ниобия. Очевидно, это объясняется следующим соотношением констант диссоциации (или констант равновесия) в определенных условиях кислотности  [c.148]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Хннализариновый метод. Галлий можно определить колориметрическим методом, основанным на его реакции с хинализарином в результате которой образуе тся лак, окрашенный в розовый до аметистового цвет. Эта реакция весьма чувствительна (можно открыть 0,02 мг1л галлия), но крайне н специфична, и при ее применении требуется предварительное отделение от галлия многих посторонних металлов. Наилучшие результаты получаются при pH раствора, равном 5, и содержании в растворе ацетата аммония (1 н.) и хлорида аммония (0,5 н.). В этих условиях влияние алюминия, бериллия, титана, циркония, тория, редкоземельных металлов олова (IV), таллия (III) и других элементов можно устранить введением фторида который, однако, нё препятствует реакции хинализарина с железом (III), оловом (II), сурьмой (III), медью, свинцом, индием, германием, ванадием (IV) и (V) и молибденом (VI). При pH = 5 магний, марганец, железо (II), ртуть (II), таллий (III), Кадмий, вольфрам, уран (VI) [c.556]

    Осаждение циркония купфероном с последующим прокаливанием осадка до окиси дает точные результаты. Этот метод удобен тем, что в результате прокаливания получается остаток определенного состава, который можно взвешивать, и, кроме того, при атом происходит полное отделение циркония от алюминия, хрома, урана (VI), борной кислоты и малых количеств фосфата. Однако определению циркония купфероновым методом препятствуют многие элементы, например титан, торий, церий (и, возможно, другие редкоземельные металлы), большинство элементов сероводородной группы, железо, ванадий, ниобий, тантал, вольфрам, кремнекислота и уран (IV). [c.643]

    Осаждение купфероном (стр. 143) обычно служит лишь для группового отделения, так как цирконий, редкозмельные металлы (по крайней мере частично), некоторые элементы сероводородной группы, железо, ванадий, вольфрам и уран (IV) выделяются совместно с титаном. Этот метод позволяет, однако, отделять титан от алюминия, хрома, марганца, никеля и небольших количеств фосфора. [c.653]


Смотреть страницы где упоминается термин Вольфрам методы отделения: [c.359]    [c.588]    [c.127]    [c.180]    [c.280]   
Фотометрическое определение элементов (1971) -- [ c.148 ]

Колориметрические методы определения следов металлов (1964) -- [ c.794 , c.795 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам методом

Методы отделения



© 2024 chem21.info Реклама на сайте