Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иодиды, методы отделения

    Описан метод отделения и косвенного определения микроколичеств кадмия в присутствии большого числа посторонних ионов с использованием хроматографической бумаги, обработанной раствором иодида свинца. Метод основан на осаждении определенным количеством раствора карбоната в специальном капилляре и хроматографировании избытка ионов СО3" на бумаге Ватман №1, пропитанной раствором РЫз- Количество кадмия определяют по степени интенсивности окрашенного пятна [175]. [c.159]


    Железо, связанное в комплекс, не реагирует в этих условиях, например, с иодидом калия (см. главу о иодометрии). Это свойство можно использовать как для определения железа, так и алюминия, например, в осадках гидроокисей или основных ацетатов (при применении ацетатного метода отделения элементов). [c.84]

    А. С. Воробьев [ЖАХ 4, № 3, 199 (1949)] отмечает, что отделение иодидов методом Берга дает хорошие результаты только тогда, когда исходная концентрация серной кислоты равна 2,5 н. и после добавления йодата калия она не падает ниже 1 н. Автор прибавляет иодат калия (вместо бромата) в избытке, равном 0,3—0,5 мл его 1о/о-ного раствора. В этих условиях он очень точно определял от 0,00025 до 0,001 г хлорид-ионов.  [c.328]

    Спектрофотометрические методы имеют очень большое значение для определения малых количеств хлора и его соединений. Эти методы чрезвычайно разнообразны и используются для определения хлора во всех его степенях окисления. В природных и большинстве промышленных объектах хлор и хлорсодержащие ионы присутствуют вместе с другими ионами, поэтому определению хлора и его соединений обычно предшествует их отделение или удаление сопутствующих элементов. Наиболее часто приходится отделять хлорид-ионы от бромид- и иодид-ионов, очень сходных с ними по химическим свойствам. Основным методом отделения от элементов, мешающих определению, является хроматография. [c.53]

    Широкое распространение получили экстракционные методы отделения мышьяка. С этой целью чаще других применяют экстракцию хлорида мышьяка (П1) четыреххлористым углеродом из хлористоводородных растворов мышьяк(1П) экстрагируют также в виде иодида. Кроме того, применяют экстракционное отделение мыщьяка в виде дитиокарбамата. [c.134]

    В большинстве случаев определению иодида мешают многие ионы, поэтому его лучше предварительно отделить от сопутствующих веществ. Наиболее надежным методом отделения соединений иода является экстракция органическими растворителями после предварительного образования иода. Это один из старых методов отделения иода [1, 2]. Необходимо отметить, что иодид калия удерживает иод в водной фазе и из 5%-ного водного раствора иодида калия элементный иод экстрагируется слабо [3]. Иод экстрагируют четыреххлористым углеродом [4, 5], хлороформом [6—10], толуолом 3], бензолом [3], сероуглеродом [И] и другими растворителями. [c.331]

    Основной метод отделения хлорид-ионов основан на осаждении их в виде хлорида серебра. Применению этого метода мешают 1) иодиды, бромиды, цианиды и роданиды, также осаждающиеся нитратом серебра  [c.739]


    МЕТОДЫ ОТДЕЛЕНИЯ ИОДА И ИОДИДОВ [c.187]

    По Другому методу отделения меди от висмута водный раствор с pH 3 обрабатывали иодидом калия и медь экстрагировали раствором дитизона в четыреххлористом углероде. Следы висмута, который экстрагировался вместе с медью, удаляли промыванием органического экстракта раствором иодида, имеющего pH 2. [c.396]

    При изучении фазовых равновесий широко применяется графический метод — метод построения диаграмм состояния. Диаграмма состояния может быть построена на основании опытных данных для любого вещества она позволяет судить об устойчивости какой-либо одной фазы системы и об устойчивости равновесия между двумя или тремя фазами при заданных условиях. На рис. 53 представлена диаграмма состояния иодида серебра AgI, имеющего три кристаллические модификации А, Б и В. Каждой модификации, т. е. каждой фазе, отвечает определенная область диаграммы, отделенная от других областей линиями, характеризующими равновесия между двумя отдельными фазами. Так, например, линия / характеризует равновесие между кристаллическими модификациями А и Б. [c.135]

    Для быстрого отделения мышьяка от большого числа ионов металлов использован метод восходящей распределительной хроматографии на бумаге Ватман № 1. С применением смесей муравьиной кислоты с соляной кислотой и ацетоном в отношении 3 3 4 мышьяк отделяется от многих металлов, в том числе от Ti, W, Au [1002]. С использованием бумаги Ватман № 1 и смеси (9 1) метанола с водой в качестве растворителя количественно разделяются мышьяк(1П), теллур(У1) и иодид-ион [594]. [c.135]

    Методы выделения кобальта электролизом и его отделение от других элементов рассмотрены на стр. 90. Был предложен метод разделения кобальта и цинка [339], основанный на выделении обоих элементов на ртутном катоде и последующем анодном растворении полученной амальгамы. Прн этом цинк переходит из амальгамы в виде ионов в водный раствор, а кобальт выделяется пз амальгамы с большим перенапряжением и поэтому практически полностью остается растворенным в ртути. Проверка метода показала [39], что разделение не количественно, много цинка остается в амальгаме. Для отделения кобальта от цинка и кадмия было предложено проводить электролиз из щелочного раствора, содержащего тартрат натрия-калия и иодид калня последний прибавляется для предотвращения окисления кобальта на аноде до высшего окисла [1449, 1463]. Изучены условия отделения висмута от кобальта электролизом [66а]. [c.87]

    Для анализа висмута предложены химико-спектральные методы, основанные на предварительном обогащении примесей [7]. Обогащение проводят отделением основной массы висмута в виде труднорастворимых иодида или основного нитрата [2]. Имеются указания на возможность отделения висмута в виде хлорокиси[9]. Раствор после отделения основной массы висмута, содержащий примеси, упаривают с угольным порошком и полученный концентрат анализируют спектрально. При этом методе, однако, ряд примесей осаждается совместно с висмутом и их приходится определять в отдельных пробах без обогащения. Сравнительная характеристика методов обогащения при анализе висмута приведена в табл. 1. [c.213]

    Определение с иодидом калия. Малые количества висмута, от 0,05 до 0,5 мг, лучше всего определять- колориметрическим методом, сравнивая желтую или коричневую окраску, полученную в результате обработки разбавленного азотнокислого раствора соли висмута иодидом калия, с окраской стандартного раствора. Определению мешают медь и железо (III), которые реагируют с иодидом калия, выделяя иод, некоторые члены мышьяковой группы, также даюш ие окрашенные растворы с иодидом калия, и, наконец, соли, которые сами сильно окрашены (как, например, нитрат никеля), если они присутствуют в достаточном количестве. Эти веш ества должны быть удалены обш ими, или специальными способами отделения соответственно каждому отдельному случаю Свинец не создает затруднений, если не присутствует в очень больших количествах, потому что желтый иодид свинца можно отфильтровать перед определением висмута. Большие же количества иодида свинца могут увлечь в осадок висмут. [c.277]

    Предложенный Ю. Ю. Лурье и Н. А, Филипповой [27] метод выделения висмута из проб, содержащих медь и свинец, основан на поглощении этих элементов катионитом и последующем элюировании висмута 1% раствором иодида калия в 0,1н. серной кислоте. Те же авторы осуществили отделение сурьмы от висмута на катионите с помощью раствора роданида аммония. Еще одна интересная возможность отделения висмута от других металлов основана на том. [c.381]

    Экстракция висмута из достаточно кислых растворов, содержащих иодид-ионы, изоамиловым спиртом и изоамилацетатом или их смесью была использована для отделения этого элемента от свинца [239], экстракция изоамиловым спиртом — для определения малых количеств висмута в железе и сталях [609]. Извлечение висмута изоамиловым спиртом [608] или этилацетатом [616] было использовано в методе фотометрического определения иодидного комплекса висмута. Экстракция метилизобутилкетоном или ме- [c.120]


    Ячейку калибровали по скорости диффузии 0,2 Ж раствора соляной кислоты в воду, приняв в качестве среднего значения коэффициента диффузии для этой системы значение 2,52 см" - в 1 день, взятое из работы Джемса и Гордона [Л4]. После калибровки диффузионной ячейки Адамсон заполнял оба отделения растворами иодида натрия, различавшимися только тем, что раствор в верхнем отделении содержал меченые атомы. Коэффициент диффузии вычисляли для каждой данной концентрации иодистого натрия путем измерения количества меченых атомов в нижнем отделении спустя определенное время. Этот метод удобен для применения его недостатками являются лишь некоторая недостоверность значений, полученных при калибровке пористой стеклянной диафрагмы, и возможность адсорбции ионов на развитой поверхности диафрагмы при применении очень разбавленных ионных растворов. [c.68]

    Метод соосаждения индия с осадком иодида метилового фиолетового с отделением от прочих элементов [c.25]

    Соединения роданида кобальта с органическими аминами. Методы отделения и фотометрического определения кобальта в виде соединении тетрароданида кобальта с крупными органическими катионами описаны на стр. 156. Экстракция кобальта заствором трибутилфосфата нз 10 У раствора соляной кислоты 407] позволяет выделить микрограммовые количества кобальта из металлического никеля. Трибутилфосфат рекомендуется для отделения урана от кобальта и других элементов [1383]. Экстракция легкоплавкими ароматическими аминами (а-нафтиламин и др.) из растворов иодидов и бромидов позволяет отделить кобальт от меди [187]. [c.74]

    Поскольку дитизонат меди имеет высокое значение константы экстракции, медь можно отделить в разбавленных кислотах от цинка, кадмия, свинца и других элементов, дитизонаты которых имеют низкое значение константы экстракции. Мешают только ртуть, серебро, золото, палладий и большие количества висмута. Первые два элемента (а также висмут) можно за.маскировать 0,1 М раствором бромида при pH 1 или — более эффективно — 0,1 М раствором иодида [458]. Палладий можно выделить предварительной экстракцией диметилглиоксимом. Другой метод отделения меди от ртутн, серебра и висмута состоит в промывании органического экстракта дитизонатов 2%-ным раствором иодида калия в 0,01 н. соляной кислоте [102, 691]. Дитизонат меди остается в органической фазе, в то время как дитизонаты других элементов разлагаются. [c.213]

    Обычным приемом обогащения является извлечение микропримесей из анализируемого материала, хотя иногда применяют химический метод отделения основного компонента пробы путем его осаждения. Например, при анализе высокочистого свинца осаждают сульфат свинца, при анализе металлического висмута осаждают иодид висмута и т. д. Примеси при этом остаются в растворе и после упаривания или другой обработки могут быть определены спектральным методом. [c.42]

    Лучшим методом отделения от мешающих ионов является окисление бромида до брома с последующей отгонкой в токе воздуха, азота или двуокиси углерода. Для разделения хлоридов, бромидов и иодидов часто применяют селективное их окисление [1, 2]. Легче других окисляется иодид, в среде фосфорной кислоты (pH 1) его можно окислить перекисью водорода до иода и отделить отгонкой. Бромиды окисляются до брома азотной кислотой при ее концентрации (1 3) —(1 6). В этих условиях ионы хлора не окисляются. Удобным методом отделения брома и иода является экстракция их четыреххлористым углеродом, хлороформом и другими органическими растворителями [3]. В присутствии хромовой кислоты, цианидов и разбавленной серной кислоты бромид образует летучий бромциан СМВг. Эта реакция применена для отделения бромида [4]. Кроме того, описаны ионообменные-методы разделения галогенид-ионов [б], а также методы осаждения бромидов ионами серебра. [c.320]

    Экстракция иодида мышьяка(III) четыреххлористым углеродом из растворов 9—12 М по соляной кислоте [6] для анализа силикатных или карбонатных пород не применялась, но как методом отделения этим приемом можно пользоваться для замены дистилляции или соосаждения, как описано, например, Портма-ном и Райли [7]. [c.113]

    Лучший метод отделения сурьмы от сопутствующих элементов, которые не могут быть отделены или отделяются лишь частично при экстракции карбамината сурьмы, — экстракция эфиром ионного ассоциата иодида сурьмы с пиридином из 8 н. сернокислого раствора, содержащего 5%-ную винную кислоту, с последующей реэкстракцией сурьмы из органической фазы 1,5 н, Н2504 [229, 1491]. [c.389]

    Этот вид комплексообразовалия может использоваться в гравиметрических методах. Рассмотрим присутствующую в растворе смесь хлоридов, бромидов и иодидов, которые должны быть отделены друг от друга. Галогениды легко выделяются при осаждении нитратом серебра. При обработке осадка разбавленным раствором аммиака удаляется только хлорвд серебра, в то время как бромвд и иодид остаются в твердой фазе. После отделения раствора от осадка бромидов и иодидов и удаления аммиака выпариванием можно вновь осадить хло Ж1д серебра (если выпаивание осуществляется медленно и осторожно, то хлорид с >ебра выпадает в мелкокристаллической форме). При последующей обработке первого осадка, содержащего бромид и иодид серебра, концентрированным аммиаком растворяется бромвд серебра и таким образом отделяется от [c.211]

    Бертьо и Тери [334] рекомендуют осаждать висмут в присутствии свинца при помощи КВгОз и КВг нз слабокислого раствора. Этот метод применим одинаково хорошо при определении висмута в очень чистом свинце и в свинце, содержащем немного сурьмы и олова другие примеси — Аз, Си, Ре, С(1, 2н отделению не мешают, поскольку они присутствуют в весьма незначительных количествах. Определение висмута заканчивают колориметрически реакцией с иодидом калия и цинхонином. Можно также осадок бромокиси растворить в азотной кислоте и осадить висмут фосфатом натрия. [c.52]

    Отделение мышьяка отгонкой в виде арсина отличается от всех других методов его отделения тем, что этот метод пригоден для отделения как макро-, так и микро- и ультрамикроколичеств мышьяка (до 0,01 мкг As в пробе). Некоторым препятствием реализации возможностей применения арсинового метода для выделения ультрамикроколичеств мышьяка долгое время было отсутствие реагентов, используемых для образования арсина, которые сами не содержали бы следовых количеств мышьяка. Для выделения мышьяка в виде арсина использовались, в основном, металлический цинк с НС1 или H2SO4 в присутствии хлорида олова(П) и иодида калия, которые сами содержат следовые количества мышьяка. [c.144]

    Окислительно-восстановительные реакции используют в анализе бромид-ионов не только для их непосредственного определения, но и для отделения брома от мешающих элементов или перевода в высшую степень окисления. Большую роль в аналитической химии брома играет реакция окисления бромид-иона гипохлорит-ионом, являющаяся исходной стадией многих методой анализа. За счет различия окислительно-восстановительных потенциалов при pH 5,5—7,0 она приводит к образованию бромат-иона ( " (НСЮ/СГ) = 1,50 в), при pH 9 — 10 — к гинобромит-иону ( " (СЮ /СГ) 0,88 б). В зависимости от состава раствора, способа регулировки pH и выбранного окислителя методы анализа, основанные на этих реакциях, имеют много вариантов, но их общим достоинством является возмон юсть определения бромид-ионов в присутствии хлорид-ионов [472, 903]. При соответствующем оформлении метод пригоден для определения бромид- и иодид-ионов при одновременном присутствии [403]. [c.23]

    Особенно щироко методы осаждения и адсорбции применяют для разделения смесей и концентрирования ионов Вг в микро-и радиохимическом анализе. Ярким примером быстрого отделения бромид- и иодид-ионов от большого числа продуктов деления урана является селективное осаждение галогенов на тонком слое све-жеосажденного Ag l (0,01 ммолъ/см ), который наносят просасыванием взвеси через мембранный фильтр площадью 2,5 или 6,5 см , а затем промывают 0,1 HNO3. [c.51]

    Остальные методы определения бромид-ионов в присутствии хлоридов и иодидов предполагают разделение смеси в той или иной форме. Один из методов основан на взвешивании осадка AgBr после его отделения от других галогенидов методом селективного осаждения возможности этого метода уже обсуждались в главе IV. В другом методе [342] смесь галогенидов серебра окисляют бихроматом калия в среде конц. H2SO4, отгоняют хлор и бром при пропускании тока воздуха через раствор. Затем образовавшийся иодат восстанавливают до иодида действием сульфита натрия, осадок AgJ отфильтровывают и взвешивают, а к фильтрату добавляют KJ для осаждения того количества ионов Ag+, которое эквивалентно содержанию Вг" + С1 в исходной пробе. [c.73]

    Определение кобальта после осаждения в виде соединения o6(NH4)з(As04)5 [350]. Осадок указанного состава образуется при следующих условиях. К Ю мл приблизительно 0,05 М раствора соли кобальта прибавляют пятикратное количество раствора мышьяковой кислоты, затем 20 мл 30%-ного раствора уксусной кислоты, нагревают смесь до кипения и прибавляют по каплям раствор гидроокиси аммония до появления слабого запаха (pH около 7—8). Далее приливают этанол, отфильтровывают осадок и промывают его разбавленным этанолом и затем теплой водой. Осадок растворяют в 25 мл серной кислоты (1 2,5), далее добавляют 25 мл бензола, 3 мл N раствора иодида калия и титруют выделившийся иод 0,1 N раствором тиосульфата натрия до обесцвечивания органического слоя. Метод пригоден для определения кобальта в железных сплавах после отделения железа в виде РеАз04. [c.116]

    Микроколичества серебра отделяют от ряда элементов и концентрируют их нередко другими методами. Известны методы выделения серебра соосаждением с металлическими никелем, свинцом, алюминием, палладием, элементным теллуром. В качестве коллекторов служат осадки карбоната кальция или фосфата кальция, иодид таллия и др. Для концентрирования серебра и его отделения от мешающих элементов рекомендуется применять многие органические соосадители. Описаны методы соосаждения серебра с применением в качестве коллектора дитизона, диэтилдитиокарбамината меди, га-диметиламинобензилиденроданина, ок-сихинолина, тионалида и некоторых других органических соединений. [c.138]

    Серебро можно отделить от многих других элементов также осаждением в виде бромида серебра, причем избыток осадителя должен быть небольшим. При отделении микроколичеств серебра зтим методом можно применять в качестве коллектора бромиды ртути(1), таллия(1) или свиш] а [1020]. Для отделения от серебра свинец рекомендуется [1604] осаждать либо фосфатом аммония, либо иодидом калия в слабо аммиачном растворе, содержащем тартрат аммония. [c.142]

    Висмут. Магний и другие примеси в висмуте высокой чистоты можно определять химико-спектральным методом, основанным на концентрировании примесей отделением основной массы висмута в виде иодида [201а, 247]. Чувствительность метода [c.177]

    Операций по отделению золота и серебра можно избежать, титруя палладий (II) раствором-иодида калия , с которым палладий (II), так же,как и серебро, дает осадки, практически нерастворимые в воде, но сильно отличающиеся по растворимости в аммиаке константы нестойкости аммиачных комплексов палладия и серебра отличаются больше чем на 20 порядков. Отсюда следует, что из аммиачной среды в осадок будет выпадать только иодид серебра (/( ест = 5,89 10 ), а палладий останется в растворе (К нест = 2,5 10 °). Золото (III) не может мешать при этом титровании, равно как не мешают ему и цветные металлы, даже в 100—1000-кратном избытке (см. описание иодидного метода определения серебра в разделе Серебро ) не Ьказывают влияния и ионы платины. [c.279]

    Палладий количественно осаждается из раствора его хлорида в виде иодида, если не вводить слишком большой избыток реагента Другие платиновые металлы, за исключением родия не осаждаются в этих условиях. Палладий можно, осадить также в виде цианида введением в раствор цианида ртути (II). Однако этот метод, так же как и иодндный, редко предпочитают методу осаждения диметилглиоксимом. Описан способ отделения палладия от платины, основанный на осаждении этиленом Опубликованные результаты, однако, не дают возможности судить о точности этого способа. [c.411]

    Для химического обогащения используют реакцию осаждения висмута в виде иодида из азотнокислого раствора [44]. Удобным реактивом для этого является иодистоводородная кислота, которая легко может быть приготовлена и очищена перегонкой [54]. Осадок иодида висмута — кристаллический, тяжелый, компактный, быстро оседает, что дает возможность отделять маточный раствор декантацией. Большинство элементов-примесей образуют иодиды, растворимые в азотной кислоте. По условиям метода совершенно не требуется количественного отделения висмута. Оказалось целесообразным использовать оставшуюся в растворе часть висмута как основу для концентрата примесей в виде В120з, которая также является основой для эталонов и холостого опыта. Одновременно по одной спектрограмме определяют 22 элемента M.g, Са, Ва, А1, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Р1, Си, Ад, Аи, 2п, Сс1, 1п, 5п, РЬ, 8Ь. Полностью не извлекаются в концентрат Ад, Си, РЬ, Аи и Р1. Обогащение примесей происходит в 20—100 раз (в зависимости от исходной навески образца). Чувствительность метода 1 10- —1 Ю %. [c.328]

    В случае совместного присутствия селена и теллура представляет интерес метод разделения, основанный на использовании концентрированной соляной кислоты. Селен (IV) и теллур (IV) эффективно удерживаются сильноосновными анионитами (рис. 15. 3 см. также [31, 58 ]). Возможность разделения этих элементов, а также отделения их от полония показана Сасаки [51 ]. Позднее разделение этих элементов исследовано Шнндевольфом [52]. Теллур (VI) не поглощается анионитом и может быть легко отделен от теллура [IV] в 3—12М соляной кислоте [30]. На этом основано отделение теллура от иодидов. Раствор, содержащий теллур и иодиды в 4M НС1, пропускают через колонку, причем весь теллур (VI) обнаруживается в вытекающем растворе. Затем при последовательном элюировании 0,1 и ЮМ растворами НС1 собираются соответственно теллур (IV) и иод [25 ]. [c.392]

    Ионообменные методы. Разделение нептуния и плутония может осуществляться хроматографией на анионитах из солянокислых растворов, содержащих нептуний( ) и плутоний(III). Последний не адсорбируется анионитом. Восстановление плутония до Ри достигается добавлением к солянокислому раствору I . Нептуний с колонки вымывается соляной кислотой. Восстановление плутония до Ри иодид-ионом можно проводить непосредственно на хроматографической колонке. Хроматографией на анионитах от нептуния может быть отделен и торий, не адсорбирующийся на анионитах. Уран (IV) адсорбируется из солянокислых растворов менее прочно, чем нептуний (IV), он адсорбируется только из очень концентрированных растворов НС1. Выделение зэ р облученной UO2 может осуществляться после растворения мишени в 8 М HNO3 сорбцией на анионите с последующей десорбцией 0,1 М HNO3. [c.381]

    Методы, использующие эффект отдачи. Выщелачивание часто применяют при отделении от облученной мишени изотопа, претерпевшего эффект отдачи. Так, при облучении иодистого этила тепловыми нейтронами происходит ядерная реакция Образующиеся горячие атомы короткоживующего изотопа (Т /2 = = 25 мин) покидают исходную молекулу и, взаимодействуя со средой, образуют различные ионные и молекулярные формы. Путем обработки облученной мишени раствором, содержащим какой-либо восстановитель (например, NaHSOs), полученный изотоп g -щелачивают в водную фазу в форме иодид-ионов. [c.199]


Смотреть страницы где упоминается термин Иодиды, методы отделения: [c.20]    [c.52]    [c.57]    [c.547]    [c.337]    [c.597]   
Фотометрическое определение элементов (1971) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Иодиды

Методы отделения



© 2025 chem21.info Реклама на сайте