Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафтол определение в смеси

    Для открытия следов нитробензола в нефтепродуктах может быть использован метод, заключающийся в восстановлении нитробензола в анилин и в определении последнего путем перевода его в азокраситель. Определение проводится следующим образом. Около 5 з масла смешивают в колбе емкостью 250 мл с 30 мл спирто-бензольной смеси (1 1) и 3 жд концентрированной соляной кислоты. Смесь переносят в делительную воронку емкостью 250 мл, добавляют 20 мл амальгамы цинка и энергично перемешивают в течение 2 мин. Затем опускают амальгаму и в воронку приливают 5 мл 20 %-ного раствора нитрита натрия. После перемешивания содержимое воронки должно отстояться до отчетливого разделения двух слоев. В коническую колбу емкостью 250 мл спускают из делительной воронки нижний нитритный слой, предварительно налив в нее 15 мл щелочного раствора -нафтола, и наблюдают изменение окраски в момент приливания нитритного слоя к раствору -нафтола. [c.684]


    Реакционная смесь, полученная нагреванием 1-нафтола с серной кислотой при 130°, содержит 2,7- и 4,7-дисульфокислоты и небольшое количество 2,4,7-трисульфокислоты [638 б, 639 в, г, 646], количественное определение которой не представляет труда благодаря нерастворимости ее бариевой соли. Обработка 1-нафтола 2,5 весовой части серной кислоты в течение 4 час. при 125 приводит к превращению приблизительно части нафтола в трисульфокислоту [638 б]. [c.99]

    Определение кобальта в никеле и его сплавах. Фотометрическое определение следов кобальта в металлическом никеле и его сплавах с железом 2-нитрозо-1-нафтолом [1188]. Металл растворяют в смеси соляной и азотной кислот, раствор выпаривают досуха и растворяют остаток в соляной кислоте. Из этого раствора, 6—8 N по соляной кислоте, экстрагируют хлорид железа изопропиловым эфиром. К водной фазе прибавляют смесь азотной и серной кислот и выпаривают до появления белых паров. Остаток растворяют в смеси 5 мл концентрированной соляной кислоты и 20 мл воды. К аликвотной части раствора прибавляют 1 мл 50%-ного раствора ацетата натрия и 50 мл раствора реагента. Последний готовят следующим образом. Смешивают 30 мл слабощелочного 50%-ного раствора трехзамещенного цитрата натрия с 50 мл ледяной [c.199]

    Ход определения. Содержимое поглотительных приборов сливают вместе, отбирают 1 мл в колориметрическую пробирку,, приливают 0,1 мл раствора аммиака, 1 мл уксусной кислоты и доводят объем водой до 5 мл. Затем вносят 0,3 мл нитрит-бро-мидного раствора и через 10 мин в реакционную смесь вводят 0,9 мл щелочного раствора а-нафтола, затем доводят объем этиловым спиртом до 8 мл. Через 15 мин окрашенные в красный цвет растворы сравнивают со стандартной шкалой, приготовленной одновременно с пробами (табл. 63), или измеряют оптическую плотность растворов при длине волны 490—495 нм в кювете [c.149]

    Для того чтобы устранить превращение кетоформы в енольную форму при титровании, работают быстро и при низкой температуре. Кето-енольная смесь обрабатывается при 0° избытком раствора брома. Затем прибавляется раствор -нафтола или диизобутилена, мгновенно взаимодействующий с непрореагировавшим бромом. Все эта. операции продолжаются менее 15 сек. Образовавшийся нри этом бромкетон содержит очень реакционноспособный бром. Для определения последнего добавляется подкисленный раствор йодистого калия выделяющийся йод оттитровывается обычным способом (см. результаты этих определений на стр. 102). [c.68]


    В среде водных растворов едкой щелочи для достижения требуемой температуры процесса щелочное плавление приходится вести в автоклаве. В случае использования 50%-ного раствора едкого натра при 300 развивается давление порядка 50 ат. При переработке нестойких веществ, которые не должны подвергаться действию кислорода воздуха, и в тех случаях, когда требуется точно поддерживать определенную концентрацию щелочи и заданную температуру, щелочное плавление предпочитают вести в автоклавах. Едкое кали плавится при более низкой температуре и реагирует энергичнее едкого натра. Поэтому несмотря на более высокую стоимость КОН, его применяют в некоторых процессах щелочного плавления. Смесь едкого кали и едкого натра тоже плавится при более низкой температуре, чем едкий натр. Однако в большинстве случаев используется едкий натр, например в процессе щелочного плавления, осуществляемого в крупном промышленном масштабе для получения б-нафтола из натриевой соли Р-нафталинсульфокислоты (У-соль)  [c.280]

    Определение первичного амина. Навеску в 7—8 г испытуемой смеси аминов растворяют в 28—30 мл концентрированной соляной кислоты и разбавляют водой до 100 т. Одновременно приготовляют титрованный раствор Р-соли, содержащий в 1 л такое ее количество, которое эквивалентно приблизительно 10 г З-нафтола. Отбирают пипеткой 10 мл раствора солянокислых аминов, разбавляют водой и льдом и прибавляют такое количество нитрита, которое понадобилось бы израсходовать, если бы смесь состояла только из одного анилина. Полученн.ую смесь постепенно приливают в отмеренный объем раствора Р-соли, [c.543]

    Обычный способ получения анги-диазотата (или нитрозамина) заключается в диазотировании амина в определенных условиях и превращении солянокислого или сернокислого диазония в син-диазотат калия или натрия при прибавлении раствора диазония к раствору едкого кали или натра при 0° (количество щелочи, рассчитанное на нейтрализацию кислоты и образование щелочного диазо-тата). Через 2—3 часа раствор сын-диазотата медленно прибавляют к 50—70% раствору едкого натра при 100—125°. После того, как взятая проба перестает сочетаться с -нафтолом, что является свидетельством полного превращения в амга-форму , реакционную смесь разбавляют водой при 75° до получения прозрачного раствора. При охлаждении до 20° щелочной ангы-диазо-тат кристаллизуется и его отфильтровывают. [c.270]

    Цвет выкраски должен точно соответствовать заданному образцу, что требует большого мастерства. Оттенки обычно подбираются визуально, поэтому от колориста требуется большая аккуратность и большой опыт. Для лабораторного контроля применяются спектрофотометрические методы. Рецепт крашения отрабатывается на опытной партии, проводящейся на маленьких мотках пряжи или на небольших кусках ткани. Для этого применяются фарфоровые красильные котелки конической формы, емкостью не более чем на 100 мл красильной жидкости. Образец поворачивается в красильной ванне с помощью стеклянной палочки. Процент выкраски определяется отношением веса кра-сителя к весу материала так, двухпроцентная выкраска означает, что для крашения 100 г материала использовались 2 г красителя. Отношение объема красильной ванны к весу материала носит название длины ванны. Иногда при крашении красильная ванна выбирается почти полностью, так что взятое количество красителя определяет степень выкраски но в других случаях (например, при крашении индигозолями и соледонами при применении нафтолов или в случае любых других процессов пропитывания) выкраска рассчитывается на основании концентрации красителя (в граммах на литр или в фунтах на 100 галлонов), находящегося в красильной ванне. Часто необходимую выкраску не удается получить с помощью одного красителя поэтому торговый краситель иногда представляет собой смесь, состоящую из двух или большего числа красителей. При составлении такой смеси необходимо однако учитывать, что смешивать можно лишь красители, обладающие одинаковой растворимостью, величиной адсорбции, кроющей способностью и прочностью. Также, если колористу для получения необходимого цветового эффекта приходится окрашивать смесью красителей, то смешивать он может только такие красители, которые имеют одинаковые красящие свойства и обладают одинаковой прочностью. Для определения качества красителя или смеси красителей проводится опытное крашение, но другие факторы, например количество красителя, длина ванны и время крашения, устанавливаются с учетом больщого масштаба крашения, особенно принимая во внимание тип машин. [c.323]

    Определение активности окиси алюминия. Сорбенты и, в частности, окись алюминия весьма гигроскопичны и при хранении на воздухе их активность уменьшается. Для определения активности сорбента в тонкослойной хромографии чаще всего применяют стандартные красители азобензол, п-метоксиазобензол, бензолазо-р-наф-тол (судан желтый), азобензолазо- -нафтол (судан красный), п-амино-азобензол, значения Rf которых для разной активности известны. Для определения активности сорбента на пластинку с сорбентом наносят три-четыре точки. Одна из них — смесь 0,5%-ных растворов стандартных красителей в четыреххлористом углероде, остальные — растворы индивидуальных красителей, например азобензола, п-мето-ксиазобензола, бензолазо- -нафтола. Элюент — четыреххлористый углерод. После окончания хроматографирования определяют стандартных красителей, по графику (рис. 80) находят активность сорбента по каждому красителю отдельно и вычисляют среднюю величину активности. При вычислении активности, как правило, используют значения в пределах от 0,15 до 0,8, поскольку в этом случае погрешности наименьшие. [c.267]


    Аналитические реагенты традиционно были неорганическими и органическими (экстракты дубильных орешков или фиалок, щавелевая кислота). Во второй половине ХЕХ в. число органических соединений, используемых для анализа, увеличивается. Предложен (1879) реактив Грисса на нитрит-ион (смесь а-нафтиламина и сульфаниловой кислоты дает с нитритом красное окрашивание). М. А. Ильинский (1885) использовал 1-нитрозо-2-нафтол в качестве реагента на кобальт. Большое значение имели работы Л. А. Чугаева, применившего диметилглиоксим для обнаружения и определения никеля. [c.18]

    Определение кобальта в водных растворах [1517]. Реактив готовят следующим образом. Смешивают 0,1 г 2-(штрозо-1-нафтола с 20 мл воды, прибавляют мл I N раствора едкого натра и затем нагревают смесь до полного растворения реагента, после чего разбавляют раствор водой до 200 мл. Раствор содержит 0,05% реагента и сохраняется несколько недель. [c.137]

    Ряд работ посвящен анализу смесей фосфатов методом хроматографии на бумаге с последующим фотометрическим определением (после их гидролиза до ортофосфатов) в виде синего фосфорномолибденового комплекса. В качестве растворителя применяют смесь диоксана, воды, трихлоруксусной кислоты и концентрированного раствора аммиака, для восстановления фосфоромолибдата на бумаге — раствор 1-амино-2-нафтол-4-сульфокислоты, Na2S03 и NaH Og в разбавленном растворе NH4OH [898]. [c.101]

    Для определения цинка в смазочных маслах и присадках методом пламенной ААС пробу многократно разбавляют растворителем нафтолит (смесь алканов Се—Сд). Эталоны готовят растворением в нафтолите дибутилдитиокарбамата цинка. Анализ проводят на СФМ Перкин-Элмер , модель 306 в пламени оксид диазота — ацетилен. Горелка длиной 5 см повернута на 30°, пламя бедное, расход оксида диазота 11,8 л/мин, ацетилена — 5 л/мин. Высота наблюдения 13 м,м, спектральная ширина шели 0,2 нм, сила тока ЛПК 12 мА, аналитическая линия 2п 213,8 нм. Градуировочные графики линейные до концентрации цинка 4 мг/л. При введении 1, 2, 3, 4% базового масла 5АЕ-30 в раствор, содержащий 4 мг/л цинка, абсорбционный сигнал снижается соответственно на 4, 6, 8 и 9%- Не обнаружено влияния на результаты определения цинка сульфонатов натрия и кальция, а также смеси гидроксида бария, полибутилена и алкил фенолов. Рекомендуется для получения достоверных результатов эталоны готовить на основе тех же цриса-док и базовых масел, какие содержатся в анализируемых образцах [291]. [c.191]

    Характер связи между противоизносным слоем и металлом определить очень сложно. По-видимому, он зависит от металла и химического строения вещества. Очевидно, возможна водородная связь, возникающая между функциональной группой поверхностно-активного вещества и металлом. Такой вид связи далеко не единственный. В целом эффективность противоизносных веществ будет определяться поверхностной энергией взаимодействия с металлом. Но отсюда вытекает важное обстоятельство. Большинство антиокислительных, антикоррозионных присадок, а также присадок, повышающих термическую стабильность топлив, могут оказаться эффективными в той или иной мере и как противоизносные присадки, поскольку все эти соединения обладают поверхностной активностью. Показано Г55], например, что смесь фенолов, играющая роль антиокислителя в топливе, при сравнительно низких температурах оказалась одновременно эффективной противоизносной присадкой для топлива Т-2, приближая его по этому показателю к топливу ТС-1 без присадки. В определенном температурном интервале роль противоизносных присадок в топливе выполняли такие антиокислители, как а-нафтол, М,Ы -ди-вгор-бутил-п-фенилендиа мин, 2,6-ди-т/7ег-бутилкрезол, п-оксиди-фениламин и др. Однако наиболее эффективны присадки, повышающие термическую стабильность топлив, поскольку они остаются работоспособными при сравнительно высоких температурах, что является важным условием для предотвращения или ограничения износа в трущейся паре. На практике это предположение хорошо подтверждается. Такие присадки, как высокомолекулярные алифатические амины и сополимеры эфиров метакриловой кислоты, улучшающие термическую стабильность топлив, оказа- [c.291]

    Для определения состава нитрозоиафтолата железа приготавливают эквимолекулярный растворы сульфата железа (III) и 1-нитрозо-2-нафтола концентрацией 5,0-10" М. Затем сме-й1ивают эти растворы в соотношениях от 10 до 90% так, чтобы общий объем оставался постоянным — 10 мл. Приготовленные растворы изомолярной серии фотометрируют в интервале длин волн 600—800 нм и по экстремальной точке на изомолярных диаграммах определяют состав нитрозоиафтолата железа (II). [c.253]

    Определение палладия 2-нитрозо-1-нафтолом [200]. К раствору комплексного хлорида палладия, помещенному в делительную воронку, прибавляют 2 капли 3N НС и 1 мл 3%-ного раствора комплексона III, Смесь разбавляют до 10 мл водой (pH примерно 2,5), прибавляют 0,1 мл 1 %-ного раствора 2-нит-розо-1-нафтола и оставляют стоять в течение 10 мин. при комнатной температуре. Затем прибавляют 5 мл толуола и 1 мл NH4OH (1 1), закрывают пробкой и энертично встряхивают. [c.165]

    Бензол и толуол не реагируют с перекисью водорода в отсутствие катализатора. Если в слой перекиси ввести соединение железа и смесь перемешать, происходит окисление до фенола. Если проводить процесс так, чтобы окисление протекало дальше, происходит глубокое окисление с образованием темно-окрашенных и коллоидных веществ [333]. Боттомли и Блэкмэн [334] указывают, что эта реакция может находиться в определенной связи с образованием торфа и угля. В присутствии уксусной кислоты наблюдается окисление других замещенных бензолов например, анилин окисляется в нитробензол и азоксибензол, а бензальдегид дает бензойную кислоту. Полициклические углеводороды образуют хиноны при продолжении окисления происходит размыкание кольца например, при окислении фенантрена образуется дифеновая кислота. Подобным же образом нафтол превращается в нафтохинон [335], причем происходит и разрыв кольца, например с образованием о-карбокспкорич-ной кислоты. Перекись водорода не активирует сульфирование нафтола [336]. С другой стороны, перекись водорода способствует галогенированию ряда соединений [337], например образованию хлоранила из п-бензохинона. [c.345]

    Для определения активности сорбента на пластинку с сорбентом наносят три-четыре точки. Одна из них — смесь 0,5%-ных растворов стандартных красителей в четыреххлористом углероде, остальные — растворы индивидуальных красителей, например азобензола, п-метоксиазобензола, бензолазо-Р-нафтола. Элюент — четыреххлористый углерод. После окончания хроматографирования определяют Rf стандартных красителей, по графику (рис. 65) находят активность сорбента по каждому красителю отдельно и вычисляют среднюю величину активности. При вычислении активности, как правило, [c.61]

    Реактивы к методам определения состояния РНК в клетке 1) фиксатор Карнуа (этанол, хлороформ и ледяная уксусная кислота в соотношении 6 3 0,5), 2) фиксатор Беккера, 3) спирт этиловый (25, 50, 75, 96, 100%). 4) спирт н-бутиловый, 5) О-ксилол, 6) смеси О-ксилола и этанола (в оотно-шении 3 1, 1 1, 1 3), 7) 1 и. НС1, 8) хлорамин Т (0,5 — 5%-ные водные растворы), 9) уксусный ангидрид, 10) смесь метанола и хлороформа (1 1), II) смесь этанола и эфира этилового (3 1), 12) ЫаМОг (для приготовления азотистой кислоты), 13) 26%-ная уксусная кислота, 14) 1 н. H IO4, 15) 5%-ная ТХУ, 16) а-нафтол, 17) 0,2 М ацетатный буфер pH 4,6, 5,8, 18) 0,05 М фосфатный буфер pH 6,0, 19) КагСОз, 20) глицерин, 21) глицерин-желатина, 22) растворы ферментов (способ приготовления см. на стр. 161)—РНК-аза, трипсин, 23) красители (способ приготовления см. на стр. 165—173, 190) —пиронин Ж, прочный зеленый, акридиновый оранжевый, Судан III, судак черный Б. [c.173]

    Для определения анилина в смеси с другими алшнами мы применили реакцию азосочетания уксуснокислого фенилдиа-зония с а-нафтолом, обеспеч11вающую количественный выход красителя [7, 8]. К 2 мл исследуемого раствора, подкисленного 0,1 мл 40%-нон уксусной кислоты, добавляли 0,3 мл реактива, содержащего смесь 7 %-ного раствора нитрита натрия и 12%-ного раствора бромида натрия. Через 5 мин. вносили 0,2 мл 10 %-ного раствора аммиака и немедленно добавляли 0,5 мл 0,05%-пого раствора а-нафтола в спирте и 0,1 мл 40%-ного раствора гидроокиси натрия. В присутствии анилина раствор окрашивается в оранжево-красный цвет. При этом, как и в последующих определениях, после добавления каждого реактива раствор перемешивали. Максимум светопоглощения окрашенных растворов лежит при 496 м 1, однако для устранения влияния диметиланилина, образующего желтые растворы питрозосоединения, фотометрирование производили в 1-сантиметровой кювете со светофильтром, отвечающем 533 Ж[х. Зависимость между светопо-глощением и концентрацией выражается прямой линией. [c.439]

    Методика определения. Навеску -нафтола (около 0,2 г) помещают в коническую колбу емкостью 500 мл, прибавляют 2 мл 10%-ного раствора NaOH, 25 мл воды и нагревают смесь до растворения р-нафтола. Полученный раствор охлаждают до 20—25°, приливают к нему соляную кислоту до кислой реакции по бумаге конго, 3—5 мл 1%-ного раствора крахмала и титруют примеси, содержащиеся в техническом р-нафтоле, 0,1 н. раствором иода до синего окрашивания раствора. Израсходованное количество раствора иода не учитывают. Затем к раствору приливают 400 мл воды и небольшими порциями прибавляют химически чистый бикарбонат натрия до получения раствора, проба которого не окрашивает бумагу конго в синий цвет. После этого добавляют еще 10 г NaH O и, при непрерывном энергичном помешивании, медленно титруют 0,1 н. раствором иода до появления синего окрашивания, не исчезающего в течение 5 мин. Бикарбонат натрия должен быть чистым, в частности—не должен содержать карбоната, так как в его присутствии получаются неправильные результаты. [c.232]

    В определенных условиях нитрования (повышенная температура и концентрированная кислотная смесь) выход побочных продуктов увеличивается. Так, в техническом нитррнафталине найдено 4,5% р-нитронафталина и до 3,0% 2,4-динитро-1-нафтола [4]. [c.295]

    Несмотря на то что дифенилкарбазон широко применяют в мер-куриметрии, переход окраски при титровании все же достаточно растянут. Для получения более четкого перехода окраски дифенилкарбазон смешивают с рядом кислотно-основных индикаторов р-нитрозо-а-нафтолом [93, 302], бромфеноловым синим [517, 544, 729], бромкрезоловым зеленым [20, 72, 133]. Наиболее часто применяют смесь дифенилкарбазона с бромфеноловым синим. Титрование проводят в подкисленной водно-спиртовой среде. Определение хлорид-ионов с применением дифенилкарбазона и смесей его с другими индикаторами нашло в последние годы применение при анализе воды [134], гипса, глины, цемента [578], биологических материалов [18, 344]. [c.41]

    Автоматизация контроля процессов нейтрализации и подкисления. Острая необходимость автоматизации анализа конечного продукта впервые возникла при освоении процесса непрерывной нейтрализации сульфомассы сульфитом натрия в производстве фенола (стр. 55). Без непрерывного аналитического контроля pH готовой сульфосоли невозможно было отрегулировать потоки реагентов, что нриводило к больщим потерям сернистого ангидрида, прониканию его в воздух рабочего помещения и к необходимости исправления качества соли периодическим способом. Такая же проблема возникла при переводе на непрерывный способ стадии подкисления (разложения) фенолята сернистым газом, а также в производстве 2-нафтола на стадиях нейтрализации сульфомассы и подкисления нафтолята. Контроль всех этих операций заключается в определении pH конечного раствора. При непрерывном процессе нейтрализации бензолсульфокислоты pH нейтрализованного раствора, выходящего из колонны, равно 3,0 и при возмущениях в системе может колебаться в пределах 1,3—5,1. При непрерывном разложении раствора фенолята конечная смесь содержит эмульсию фенола в растворе сульфита с примесью 1% бисульфита. Для этой эмульсии pH = 6,5—7 и мало зависит от колебаний концентрации фенола и сульфита. В периодическом процессе разложения начальная величина pH раствора составляет 12—12,5. В производстве 2-нафтола нейтрализация 2-сульфокиСлоты нафталина сульфитом натрия заканчивается при pH, равном 1,8, а сернистый газ превращается в КаНЗОз при pH, равном 4,6. При непрерывной нейтрализации pH конечного раствора колеблется в пределах 2—5. Выделение 2-нафтола при подкислении раствора нафтолята сернистым газом заканчивается при рН = 7-9. Необходимая точность измерения во всех случаях не превышает 0,3—0,5 единицы pH. [c.212]

    М. А. Портнов и С. М. Шейн исследовали возможность применения потенциометрического титрования при определении свободной щелочи в растворах фенолятов и в плавах ароматических сульфокислот. Авторы использовали сурьмяный электрод и титровали смесь фенолята (или нафтолята) и свободной щелочи до pH =11. При этом оттитровывалась только свободная щелочь. При титровании до pH ==5 определяли содержание фенола (нафтола). Однако измерения по этому способу имеют большую погрешность. Значительно меньше погрешность ( 5 от абсолютного содержания NaOH) при потенциометрическом титровании до определенного значения э. д. с. Для пары, состоящей из сурьмяного и насыщенного каломельного электродов, значение э. д. с. при 20 Г равно 610 же. [c.217]

    Робертс и Риган [84] предложили свой оригинальный метод определения смесей карбоновых кислот по реакциям этих кислот (взятых в большом избытке) с интенсивно окрашенным дифенилдиазометаном. Скорость реакций они определяли колориметрически. Папа, Марк и Рейли [79] определяли смеси фруктозы — глюкозы, фруктозы — сахарозы, глюкозы — сахарозы в водных растворах и в сыворотке крови по их реакции с молибдатом аммония. Скорость реакций определяли колориметрически по образованию Mo(IV). Парсонс, Симан и Вудс [80] определили следовые количества (0,5%) нафтола-1 в нафтоле-2. При добавлении кислоты к щелочному раствору нафтола-2 он в основном осаждается, а образующаяся смесь реагирует с солью диазония. Нафтол-1 реагирует быстрее. Скорость реакции определяли колориметрически. В других работах сообщали о следующих определениях ароматических альдегидов в присутствии ароматических кетонов [31 ], ванилина в присутствии ацетованилина [32], смесей олефинов по реакции с надбензойной кислотой [64, 65, 86], таннинов в вине [16], тетраэтилпирофосфата в смеси с другими этилфосфатными эфирами [29], этилового эфира олеиновой кислоты и этилэлаидинового эфира [19] (изомеров, которые отличаются цис- и транс-конфигурациями отно- [c.188]

    При плавлении 2-нафталинсульфокислоты ранее было отмечено образование небольших количеств нафталина. Объяснялось это тем, что наряду с обычной реакцией замены сульфогруппы на оксигруппу происходит побочная реакция гидролиза с образованием нафталина и сульфата натрия. Однако определение количеств сульфита и сульфата, образующихся при щелочном плавлении 2-нафталинсульфокислоты, показало, что сульфат при реакции не образуется, а выход сульфита количественный или близкий к нему ( 99,5% теоретического). Количество нафталина увеличивается, а количество 2-нафтола уменьшается с увеличением продолжительности взаимодействия соли сульфокислоты с водным раствором едкого натра. Значительные количества нафталина (до 20% от теоретического) образуются и при нагревании 2-нафтола с раствором едкого натра при 395—400 °С. В качестве других продуктов расщепления нафтола образуются о-толуиловая и о-толилпропио-новая кислоты и смесь жидких углеводородов. Очевидно, нафталин образуется, как и другие побочные продукты реакции щелочного плавления, в результате дальнейшего окислительно-восстановительного превращения 2-нафтола в этих условиях [358]. [c.1791]

    Другой колориметрический метод, который можно применить к фосфолипидам, заключается в следующем образец растворяют в хлорной кислоте и определяют содержание фосфора с помощью раствора молибдата аммония. Курри и др. [161] обрабатывали пятна на силикагеле 0,4 мл 70 %-ной хлорной кислоты в специальной пробирке, осторожно выпаривая на маленьком огне до полного высушивания. Остаток растворяли в 12 %-ной хлорной кислоте и нагревали 10 мин на бане с кипящей водой. Такая обработка затрагивает не только фосфолипиды в результате ее силикагель переходит в нерастворимое состояние. После охлаждения определяли содержание фосфора по методу Вагнера [153, 264, 265] к пробе добавляли 0,3 мл 2,5 %-ного раствора молибдата аммония и 0,3 мл свежеприготовленного 10 %-ного раствора аскорбиновой кислоты. Смесь тщательно встряхивали и выдерживали 2 ч при 38°С, после чего раствор центрифугировали и определяли его коэффициент поглощения при длине волны 820 нм. Робинсон и Филлипс [266, 267] вместо аскорбиновой кислоты использовали в качестве восстановителя 1-амино-2-нафтол-4-сульфоновую кислоту, а Растоджи и др. [268]—раствор 2,4-динитрофенилгидразина в соляной кислоте. Дойзаки и Зиве [269] применили для подобных определений несколько другой метод они обрабатывали липиды серной кислотой с добавкой пероксида водорода. [c.99]

    Кроме определения содержания индивидуальных аминов, с помощью метода N-нитрозирования также можно раститровать смесь первичных, вторичных к третичных аминов [11,12]. При этом общее содержание аминов определяют по расходу нитрита натрия. Полученный при М-нит-розировании раствор сочетают с активным азокомпонентом, например Р-солью или Э-нафтолом [38]. [c.7]


Смотреть страницы где упоминается термин Нафтол определение в смеси: [c.224]    [c.190]    [c.54]    [c.127]    [c.54]    [c.267]    [c.56]    [c.333]    [c.194]    [c.212]    [c.97]    [c.97]    [c.460]    [c.106]   
Основные процессы синтеза красителей (1957) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Смеси нафтол

Смесь определение



© 2025 chem21.info Реклама на сайте