Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы в растворах электролитической диссоциации

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Большое значение для развития физической химии имели работы И. А. Каблукова (1857—1942), который, исходя из гидратной теории Д. И. Менделеева, установил явление гидратации ионов электролитов в водных растворах и сущность химического взаимодействия в процессах электролитической диссоциации (1891). Им впервые были выполнены работы по исследованию поведения электролитов в неводных растворах. Каблуков организовал первую кафедру физической химии в сельскохозяйственном вузе и начал читать систематический курс физической химии будущим агрономам. [c.9]

    Идея о распаде вещества в растворе на ионы была высказана Сванте Аррениусом (1857). Основоположниками современной теории электролитической диссоциации как процесса, вызываемого сольватацией молекул, являются И. А. Каблуков и В. А. Кистяковский. В отличие от гипотезы ионизации С. Аррениуса, не учитывающей взаимодействие растворенного вещества с растворителем, в их тео-[ ии к объяснению электролитической диссоциации привлекается имическая теория растворов Д. И. Менделеева. [c.128]

    Теория электролитической диссоциации позволила дать научное определение понятиям кислота , основание , буферная емкость раствора , создать теорию индикаторов, объяснить процессы ступенчатой диссоциации, гидролиза солей и т. д. Ниже рассмотрены некоторые примеры приложения это["1 теории к химическому равновесию в растворах. [c.38]

    Электролиты (кислоты, основания и соли) в водном растворе диссоциируют на ионы. Получающиеся при диссоциации ионы соединяются с молекулами воды, образуя гидраты ионов в частности, ион водорода соединяется с одной молекулой воды, образуя НзО , называемый оксонием.. Процесс, обратный электролитической диссоциации, — соединение ионов в молекулы, — называется моляризацией. Обратимость процесса электролитической диссоциации приводит к ионному равновесию, при котором скорость диссоциации равна скорости моляризации. [c.118]

    Электролитами называют вещества, способные к распаду на ионы в растворах или расплавленном состоянии. К ним относятся кислоты, основания и соли. Молекулы этих веществ под действием растворителя распадаются на ионы. Этот процесс называется электролитической диссоциацией. [c.113]

    Свойства гидратной воды. Водные растворы галогенидов щелочных металлов имеют pH, близкий к 7, но водные растворы солей многозарядных катионов обладают кислой, а многих солей щелочных металлов со слабыми кислотами — щелочной реакцией. Этот эффект обусловлен процессом гидролиза. Электролитическую диссоциацию координированной молекулы воды можно представить следующим образом  [c.216]


    Этот процесс называется электролитической диссоциацией кислот. Реакция приводит к равновесию, которое сдвигается вправо при разбавлении равновесие диссоциации). В зависимости от степени, с которой различные кислоты диссоциируют в растворах одинаковой эквивалентности, судят [c.79]

    Сванте Аррениус (1859—1927), профессор университета в Стокгольме и директор Нобелевского института. Предложил теорию, объясняющую свойства растворов солей, кислот и оснований и получившую название теории электролитической диссоциации. Аррениусу принадлежит также ряд исследований по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам. [c.233]

    Диссоциация слабых электролитов подчиняется закону действующих масс и может быть количественно охарактеризована константой равновесия. Классическим примером слабого электролита может служить уксусная кислота в разбавленном водном растворе. В таком растворе устанавливается равновесие диссоциации СНзСООН СНзСОО + Н . Количественно этот процесс характеризуется степенью диссоциации и константой диссоциации. Степенью электролитической диссоциации а называют отношение числа молекул, распавшихся на ионы, к общему числу молекул  [c.430]

    В книге рассмотрены основные аспекты физической химии не-, водных растворов, классификация растворителей, строение неводных растворов и связь между физическими и химическими свойствами растворов. Отдельные разделы книги посвящены термодинамике, равновесиям в неводных растворах, электролитической диссоциации и электродным процессам, а также кинетике реакций в неводных средах. [c.448]

    Молекулы солей, кислот и щелочей, растворяясь, распадаются на ионы, несущие положительные и отрицательные заряды электричества этот процесс называется электролитической диссоциацией. Количество положительно и отрицательно заряженных ионов всегда равно между собой, так что раствор остается нейтральным. [c.6]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]

    Электролиты при растворении распадаются на положительно и отрицательно заряженные частицы (ионы). Этот процесс называется электролитической диссоциацией. Так как число положительных зарядов равно числу отрицательных, - раствор в целом электронейтрален. Ионы, находящиеся в растворе, могут взаимодействовать друг с другом. Поэтому электролитическая диссоциация — процесс обратимый. [c.107]

    Электролитическая диссоциация веществ в растворе — процесс обратимый. Применив закон действующих масс к процессу распада соединения КпА , в растворе на ионы К "" и Л"" [c.181]

    Как известно, электролитическая диссоциация веществ в растворах — также процесс обратимый, ведущий к установлению динамического равновесия. Например, для процесса распада соединения [c.227]

    Этот процесс называется электролитической диссоциацией кислот. Реакция приводит к равновесию, которое сдвигается вправо при разбавлении равновесие диссоциации). В зависимости от степени, с которой различные кислоты диссоциируют в растворах равной эквивалентности, судят о силе кислот (см. стр. 85). Существуют кислоты, которые диссоциируют еще меньше, чем чистая вода. Водные растворы тех кислот, которые диссоциируют сильнее, чем вода, окрашивают лакмус в красный цвет. [c.73]

    Степенью диссоциации называется выраженное в процентах отношение числа молекул электролита, распавшихся на ионы, к общему числу молекул электролита в растворе. Электролитическая диссоциация является обратимым процессом и выражается в уравнениях обязательно двумя стрелками вместо знака равенства  [c.29]

    О неполной диссоциации на ионы многих электролитов в растворе говорит также и возрастание эквивалентной электропроводности с разбавлением. При повышении концентрации, наоборот, эквивалентная электропроводность уменьшается. Поэтому процесс электролитической диссоциации можно считать обратимым. [c.166]

    Теория электролитической диссоциации слабых электролитов учитывает взаимодействие каждой данной пары ионов между собой и рассматривает процесс диссоциации молекулы и образования ее из ионов. Теория же сильных электролитов должна учитывать совокупность взаимодействия каждого данного иона со всеми остальными окружающими его ионами того и другого знака. Так как одноименно заряженные ионы взаимно отталкиваются, а разноименно заряженные — взаимно притягиваются, то каждый ион в растворе окружается ближе к нему расположенными ионами противоположного знака, в то время как одноименно заряженные ионы располагаются в среднем дальше от него (вследствие этого притяжение преобладает над отталкиванием). [c.392]


    Рассмотрим подробнее условия появления в растворе ионов., До создания Аррениусом теории электролитической диссоциации (1883 г.) господствовало мнение, что диссоциация молекул на ионы происходит только под действием электрического поля. В настоящее время достоверно известно, что процесс образования ионов идет самопроизвольно, так как при протекании соответствующей реакции, например [c.308]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Процесс распада растворенного вещества на ионы называют электролитической диссоциацией (Аррениус, 1883—1887). Распад на ионы происходит независимо от того, подвергается или не подвергается вещество действию электрического тока. Существенной особенностью электролитической диссоциации является ее динамический характер. В растворе непрерывно происходят многократные акты диссоциации электролита на ионы и соединения ионов в молекулу. Многократность повторения этих актов приводит к тому, что при равновесии в растворе устанавливаются некоторые равновесные концентрации ионов и молекул, не меняющиеся во времени. При изменении условий (концентрации, температуры и т. п.) число актов распада электролита и соединения ионов в молекулу изменится, что приведет к изменению равновесных концентраций участников процесса. Однако и вновь установившиеся равновесные концентрации в растворе также будут неизменны во времени. [c.429]

    Огромное количество химических реакций происходит в растворах. Свойства вещества в растворе отличаются от свойств индивидуального вещества и подчиняются особым законам. В этой главе произойдет наше знакомство с законами, которые действуют в водных растворах. Мы рассмотрим теорию электролитической диссоциации, объясняющую механизм процесса растворения и явления, сопровождающие растворение. С точки зрения теории электролитической диссоциации будет обсуждено поведение представителей различных классов неорганических веществ в водных растворах. [c.101]

    Недостаточность одного только физического объяснения процессов диссоциации была ясна еще Д. И. Менделееву. Известно, что он был противником теории электролитической диссоциации Аррениуса и даже воздерживался от ее изложения в Основах химии . Д. И. Менделеев и русская школа химиков (И. Л. Каблуков, Д. П. Коновалов и др.) в своих работах подчеркивали значение химической теории растворов, в частности значение химического взаимодействия между растворенным веществом и растворителем с образованием сольватов. [c.292]

    Теория электролитической диссоциации не сразу получила признание. Одним из возражений, которые выдвигались против этой теории, было то, что теория не указывала сил, вызывающих диссоциацию электролитов на ионы в растворе. Энергетические затраты на ионизацию твердых солей довольно велики — энергия решетки ионных кристаллов часто измеряется сотнями кДж/моль. Теория электролитической диссоциации не объясняла, за счет чего могли быть покрыты эти затраты и процесс ионизации в растворе мог стать самопроизвольным. [c.431]

    В молекулах или в кристаллах соединений с и о и н о й связью содержатся не нейтральные атомы элементов, а их ионы, и, например, хлористый натрий состоит из ионов Na+ и С " не только в водных растворах, но и в любом его состоянии. Из этих ионов состоят, в частности, и кристалл поваренной соли и молекулы Na l в парах. Таким образом, в отношении ионных соединений развитие электронной теории валентности избавило гипотезу электролитической диссоциации от задачи объяснить процесс образования ионов, так как при растворении такого электролита происходит лишь разъединение ионов, а не образование их. Переход ионов в раствор происходит в результате взаимодействия их с молекулами растворителя, в результате образования связей между ионом и молекулами растворителя (сольватация ионов) и, в частном случае, молекулами воды (гидратация ионов). [c.383]

    Вместе с тем, теория электролитической диссоциации дает возможность объяснить для электролитов аномальные тепловые эффекты химических реакций (нейтрализации, обмена и т. п.), процессы гидролиза, ступенчатой диссоциации, кислотные, основные и буферные свойства растворов. Теория электролитической диссоциации позволяет определить физический смысл изотонического коэффициента I и установить его связь со степенью диссоциации  [c.8]

    Возникновение электрохимии как науки относится к рубежу XVni и XIX вв. и связано с работами Л. Гальвани, А. Вольта, В. В. Петрова, Г. Дэви. В 1833 г. М. Фарадеем были открыты законы электролиза — основные законы электрохимии. Теория электролитической диссоциации С. Аррениуса (1887) оказалась весьма плодотворной для развития учения о механизме электродных. процессов и прохождения тока через электролиты. В 1890 г. Нернстом предложена первая теория возникновения электродного потенциала, которая позднее была усовершенствована Л. В. Писаржевским,, Н. А. Изгарышевым, Герни. В XX столетии развивались теория растворов электролитов (работы П. Дебая, Э. Хюккеля, Л. Онза- [c.454]

    Термодинамические характеристики (298 К) процесса электролитической диссоциации в водных растворах следующие  [c.76]

    Эта ограниченность стала очевидной, когда в качестве растворителя стали использовать не только воду, но и жидкие NH3, O I2, SOj, SO lj и др. Одновременно опыт показал сходство кислотно-основных реакций в водных растворах и неводных (например, в жидком аммиаке), что определено сходством процессов собственной электролитической диссоциации молекул растворителей  [c.118]

    К 3—4 каплям раствора Си304 прилить по каплям раствор щелочи. Наблюдать образование осадка. Отметить его цвет. Составить уравнение процесса электролитической диссоциации взятой соли и уравнение реакции взаимодействия ионов меди с гидроксильными ионами щелочи. [c.92]

    Все соли и основания по Аррениусу являются сильными электролитами, процесс их электролитической диссоциации в разбавлеииом водном растворе необратим и поэтому применение закона действующих масс к этому процессу невозможно. В концентрированных растворах сильных электролитов из-за большой концентрации ионов и их взаимного притяжения кажущаяся степень диссоциации, определенная экспериментально, как правило, не равна I (100 %). [c.258]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Написать уравнения реакции электролитической диссоциации воды (автопротолиза), электрохимических процессов на катоде и аноде для электролиза раствора хлорида иатрия с железным и ртутным катодами. Сравнить эти способы электролиза и отметить их преимущества п недостатки. [c.204]

    Установив, что значения коэффициентов I, полученные измерением понижения точки отвердевания, совпадают с подсчитанными им самим на основании его данных по электропроводности, т. е. что растворы электролитов ведут себя аналогично и при пропускании электрическаго тока, и в его отсутствие, Аррениус пришел к выводу, что диссоциация молекул растворенных электролитов на ионы происходит не под действием тока (как считали в то время), а уже при самом растворении, независимо от того, пропускаТот через раствор электрический ток или нет. Такой распад молекул электролитов на ионы в среде растворителя получил название электролитической диссоциации (или ионизации). Благодаря этому процессу в растворе увеличивается число частиц, в результате чего коэффициент г принимает значения, большие единицы. [c.247]

    Непостоянство констант диссоциации, которое наблюдалось у многих слабых электролитов уже в области умеренных концентраций, также связано с проявлением этих взаимодействий и, в частности, сил межионного взаимодействия, не предусмотренного и неучитываемого классической теорией электролитической диссоциации. С увеличением концентрации электролита количество ионов в растворе увеличивается и ин-Еенсивность их взаимодействия между собой и с растворителем возрастает, что вызывает изменение константы диссоциации и ряда других эффектов (эффекты неидеальности). Отклонения от идеальности количественно учитывают с помощью коэффициентов активности 7 (см. с. 365). Поэтому классическую константу диссоциации слабого электролита [см. уравнение (152.4)] следует заменить на истинную термодинамическую константу диссоциации К°, выраженную через активности участников процесса  [c.432]

    Механизм процесса электролитической диссоциации. Первоиа чально сформулированная Сванте Аррениусом теория электролитической диссоциации не учитывала всей сложности взаимодействия электролитов с молекулами растворителя. Ясное представление о механизме процесса электролитической диссоциации сложилось ыа основе использования наряду с теорией Аррениуса сольватной теории растворов Д. И. Менделеева и работ И. А. Каблукова, посвященных сольватации ионов. [c.171]

    В нефтяных растворах могут протекать (при изменении температуры и состава растворителя) процессы равновесной гемолитической диссоциации, аналогичные электролитической диссоциации, сопровождающиеся появлением в растворе различного количества свободных радикалов, Гомолитической диссоциации подвергаются углеводороды, имеющие низкую энергию разрыва связей [77]. [c.41]

    Исключительное значение для обоснования электрохимического механизма коррозии имели работы выдающихся ученых Г.Дэви и М. Фарадея, установивших закон электролиза. Так, М. Фарадей предложил ва кнейшее для дальнейшего развития электрохимической теории коррозии соотношение между массой аноднорастворяющегося металла и количеством протекающего электричества, а также высказал (проверено Г. Дэви) предположение о пленочном механизме пассивности железа и электрохимической сущности процессов растворения металлов. В 1830 г. швейцарский физикохимик О. Де да Рив ч ко сформулировал представления об электрохимическом характере коррозии (он объяснил растворение цинка в кислоте действием микрогальванических элементов). Русский ученый H.H. Бекетов (1865 г.) исследовал явление вытеснения из раствора одних металлов другими, а Д.И. Менделеев (1869 г.) предложил периодический закон элементов, который имеет очень важное значение для оценки и классификации коррозионных свойств различных металлов. Важен вклад шведского физикохимика С. Аррениуса, сформулировавшего в 1887 г. теорию электролитической диссоциации и немецкого физикохимика В. Нернста, опубликовавшего в 1888 г. теорию электродных и диффузионных потенциалов. [c.4]

    При умягчении природных вод обратным осмосом через ацетилцеллюлозную мембрану действием рабочего давления в 6,86 МПа содержание СаСОз в них снижается с 843 до 1 мг/л. Каково осмотическое давление на мембрану установки Во сколько раз рабочее давление больше осмотического Степень электролитической диссоциации СаСОз принять равной 0,96, плотности растворов 1000 кг/м , температура процесса 20 С. [c.174]

    Отработанные воды производства нитроакриловой кислоты содержат до 740 мг/л u(N0a)2- До какого значения можно повысить в стоках содержание u(NOa)j очисткой отводимых вод обратным осмосом через ацетилцеллюлозиые мембраны, если процесс вести при 20 °С и рабочем давлении в 9,8 МПа, учитывая, что значение последнего в 3—4 раза превышает осмотическое давление концентрата. Какую часть сточных вод можно будет после этого вернуть в производство Степень электролитической диссоциации соли принять равной 0,65, Плотность раствора считать неизменной и равной 1000 кг/м  [c.175]

    При этом процессе семивалентный марганец, входящий в состав КМПО4, восстанавливается до двухвалентного, а четырехвалентная сера, входящая в состав NaaSOg, окисляется до шестивалентного состояния. Следовательно, эту окислительно-восстановительную реакцию можно разделить на две части окисление четырехвалентной серы до шестивалентной и восстановление семивалентного марганца до двухвалентного. В соответствии с основными положениями теории электролитической диссоциации формой существования семивалентного марганца в этом растворе является ион МпОГ, для двухвалентного марганца — ион Мп +, для четырехвалентной серы — ион sor, для шестивалентной серы — ион [c.55]


Смотреть страницы где упоминается термин Процессы в растворах электролитической диссоциации: [c.46]    [c.47]    [c.393]    [c.166]    [c.174]   
Растворитель как средство управления химическим процессом (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс электролитической диссоциации

Электролитическая диссоциаци

Электролитическая диссоциация



© 2025 chem21.info Реклама на сайте