Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атом распределение электронной плотности

    Судя по влиянию заместителей перного рода на распределение электронной плотности в ядре, можно предвидеть, что они будут облегчать атаку электрофильного реагента на ядро и направлять его в пара- и орто-положения. В то же время атака нуклеофильного реагента на атом углерода ядра заместителями первого рода затрудняется и направляется в. мета-положение. По силе влияния электроно-донорные заместители можно расположить в ряд  [c.247]


    Расчеты показали, что хотя ССП АО и отличаются от орбиталей атома водорода, но они характеризуются такими же квантовыми числами и сохраняют характер распределения электронной плотности, присущий атому водорода. В отличие от атома водорода энергия многоэлектронного атома зависит не только от главного квантового числа п, но и от побочного числа I. Уровень энергии с данным п расщепляется на подуровни, определяемые квантовым числом /. [c.23]

    Характерно, что в случае силоксанов длина связи 51—0 совпадает с суммой радиусов атомов кремния и кислорода при двойной связи между ними. При этом каждый атом кислорода связан с двумя атомами кремния, находящимися от него на одинаковом расстоянии. Такая координация возможна при условии, если в связь с атомами кремния вовлечены две неподеленные пары 2р-электронов атома кислорода. При этом образуются донорно-акцепторные 2р —-связи, усиливающие ковалентные а-связи 51 — О. Это в свою очередь приводит к увеличению валентного угла 51 — О — 51, поскольку двойные связи занимают около центрального атома больше места, чем одинарные. Структура чистого кремния тетраэдрическая. Валентный угол равен 109°28. Из кривых распределения электронной плотности следует, что молекулы линейных силоксанов представляют собой цепочки. ..51 — [c.215]

Рис. 44. Знергетическая диаграмма орбиталей охватывает все ато-орбиталей тетраэдрической молекулы мы молекулы и поэтому по без тг-связывания на примере СН4 характеру распределения электронной плотности все четыре атома водорода равноценны. Это позволяет считать, что в молекуле имеются четыре равноценные связи С Н Рис. 44. Знергетическая <a href="/info/20746">диаграмма орбиталей</a> охватывает все ато-<a href="/info/70913">орбиталей тетраэдрической</a> молекулы мы молекулы и поэтому по без тг-связывания на примере СН4 <a href="/info/1491432">характеру распределения электронной плотности</a> все четыре <a href="/info/1117693">атома водорода</a> равноценны. Это позволяет считать, что в молекуле имеются четыре равноценные связи С Н
    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]


    Первоначальная работа Бете относилась к ионным кристаллам, но сама концепция нашла более широкое применение. Когда атом или ион попадает в окружение лигандов, симметрия их расположения будет оказывать влияние на распределение электронной плотности в атоме или ионе. Исходная сферическая симметрия атомных орбиталей теряется, и возникает симметрия, наведенная присутствием лигандов. Как следствие обычного понижения симметрии, степень вырождения также уменьшается. [c.299]

    Как видно из полученных результатов, хорошей экстрагирующей способностью по отношению к НСЮ обладают кетоны алифатического и циклического строения — МЭК, метилпропилкетон (МПК), циклогексанон (ЦГ), циклопента-нон (ЦП), сложные эфиры органических и неорганических кислот (бутилацетат, этилацетат, ТБФ), степень извлечения которыми при объемном соотношении растворителя к водной фазе 1 2 находится в пределах 91-95%. Введение в молекулу растворителя атома галогена резко снижает экстрагирующую способность (хлорекс, хлоркетоны (ХК), СС14, фторированные соединения). Сказывается, по-видимому, способность галогена оттягивать часть отрицательного заряда с активной группы, за счет чего снижается ее основность. Особенно резко этот эффект сказался при использовании фторсодержащих соединений. Атом фтора, обладающий высокой электроотрицательностью, изменяет распределение электронной плотности в молекуле, снижая или совсем лишая ее основных свойств. [c.58]

    При этом электронный заряд перетекает частично с центрального атома на лиганды (так называемое обратное связывание). Так как заряд перетекает на разрыхляющую орбиталь, связь в лиганде между С и О ослабевает, из тройной становится двойной. Поскольку на а-связывающих орбиталях электрон переносится от лигандов к центральному атому, а на <1—л-орбиталях в обратном направлении, достигается равномерное распределение электронной плотности в координационном соединении. Итак, в карбониле Сг(СО)в, как и в других карбонилах, связь возникает в основном за счет обобществления в комплексе электронов неподеленных пар молекул СО и внешних электронов атома металла. [c.128]

    Первый максимум на кривых распределения электронной плотности при Н = 1,5 А соответствует длине связи С—С второй при 7 = 2,35 А — расстоянию С...С, взятому через один атом углерода. Третий и четвертый максимумы соответствуют расстоянию между атомами углерода через два и три атома в рассматриваемых молекулах. Валентный угол С—С—С в молекуле равен 103°. [c.221]

    В принципе важно было бы учесть в атомных амплитудах и перераспределение электронной плотности. Эту задачу решить нелегко прежде всего потому, что определение распределения р(г) в ячейке, а значит, и области, относящейся к каждому атому, само является конечной целью структурного исследования. Итерационный процесс применить здесь крайне трудно, так как поправки к fj каждого атома пришлось бы на каждом шаге итерации находить в численном виде. Приближенный метод, получающий все более широкое распространение, заключается в так называемом мультипольном представлении распределения электронной плотности по атому, т. е. в виде суммы подходящих функций, содержащих не только радиальные, но и азимутальные множители с численными параметрами, подлежащими уточнению. Фурье-преобразование мультипольного представления р/ (г) дает атомную амплитуду / (Н) также в виде суммы функций, в которые входят те же численные параметры. Ути параметры уточняются вместе с координатами атомов и другими константами в общей схеме МНК, описанной выше .  [c.183]

    В ненамного более сложной молекуле, такой, например, как А—А—X, распределение электронной плотности в связи А—А уже не будет симметричным, поскольку поляризация связи А—X наводит частичный положительный заряд на центральном атоме, т. е. А—А +—X -. Этот заряд делает центральный атом молекулы чуть более электроотрицательным, чем его левый за- [c.25]

    В группу В входят полярные молекулы, включающие фрагменты с неподеленными электронными парами или я-связями. Это, например, квадрупольные молекулы азота, ненасыщенные и ароматические углеводороды, а также молекулы с такими ди-польными функциональными группами, как, например, кислород в эфирах и кетонах или азот в третичных аминах и нитрилах. Полярные связи или функциональные группы должны быть расположены в периферических частях таких молекул, т. е. быть доступными периферическим полярным группам других взаимодействующих с ними молекул. Молекулы группы В способны проявлять наряду с универсальным неспецифическим также и более специфическое направленное межмолекулярное взаимодействие. Специфическое взаимодействие осуществляется, однако, только в том случае, если другой партнер, вступающий в межмолекулярное взаимодействие с молекулами группы В, имеет положительный заряд, локализованный на периферическом фрагменте малого радиуса (это может быть, например, в той или иной степени прбтонизи-рованный атом водорода в группах ОН кислотного типа или другой электроноакцепторный центр). Поэтому межмолекулярное взаимодействие молекул группы В с молекулами группы А остается неспецифическим межмолекулярное же взаимодействие молекул группы В между собой, помимо универсального неспецифического, может включать значительный вклад специфических взаимодействий, связанных с уже указанными особенностями распределения электронной плотности. Сюда относится, например, дииоль-диполь-ное притяжение молекул кетонов или нитрилов, [c.12]


    Число электронов, смешанных от атома данного элемента или к атому данного элемента в соединении, называется степенью окисления. Положительная степень окисления обозначает число электронов, которое смещается от данного атома, а отрицательная степень окисления — число электронов, которое смещается к данному атому. Из этого определения следует, что в соединениях с неполярными связями степень окисления элементов равна нулю. Примерами таких соединений служат молекулы, состоящие из одинаковых атомов (N2, Hz, I2). Степень окисления металлов в элементарном состоянии равна нулю, так как распределение электронной плотности в них равномерно. В простых ионных соединениях степень окисления входящих в них элементов равна электрическому заряду, поскольку при образовании этих соединений происходит практически полный переход электронов от одного атома к другому  [c.178]

    Поляризуемость рассматривают на основе представлений о том, что ковалентная связь может быть неполярной (чисто ковалентной) или полярной. В первом случае связь образуется между одинаковыми атомами, и симметричное распределение электронной плотности в межъядерном пространстве приводит к совпадению центров тяжести положительных и отрицательных зарядов. Полярная связь образуется в тех случаях, когда межъядерная электронная плотность смещается к атому с большей электроотрицательностью. Тогда центры тяжести (+)и (—) зарядов не совпадают и возникает система (электрический диполь) из двух равных по величине, но противоположных по знаку зарядов (б- - и б—), расстояние между которыми называют длиной диполя I. Степень полярности такой связи оценивается значением электрического момента диполя равного произведению абсолютного заряда электрона (9=1,60-10 1 Кл) на длину диполя х.=д1. Так, если /(Я—С1) = 0,022 нм или 22-10 1 м, то р(Н—С1) = 1,60х х10- -22-10-1 =3,52-10-2 Кл-м. [c.119]

    Рассмотренный выше случай енолизации может служить примером более общего явления таутомерии. Строго говоря, этот термин относится к любым обратимым взаимопревращениям изомеров, которые могут происходить в разных условиях. Практически же им пользуются обычно применительно к случаям изомеров, легко подвергающихся взаимным превращениям и различающихся только распределением электронной плотности и положением относительно подвижного атома или группы. Таким атомом в подавляющем большинстве таутомерных систем яв-, ляется атом водорода в этом случае говорят о прототропии. Хорошо известными примерами прототропии могут служить ацетоуксусный эфир и алифатические нитросоединения  [c.259]

    Атом хлора, введенный вместо водорода в молекулу бензола или другого ароматического соединения, вызывает изменение распределения электронной плотности облаков всех атомов углерода в бензольном кольце. Так, после введения атома хлора наибольщую реакционную способность получают атомы углерода, расположенные в орто- и пара-положении. [c.454]

    Специфику поведения реакционных центров целлюлозы при взаимодействии с молекулами растворителя обусловливает гетероциклическое строение ее молекулы, имеющей в кольце атом кислорода, который оказывает влияние иа распределение электронной плотности между атомами кольца. На гетероатоме концентрируется электронная плотность, что сказывается на величинах зарядов на углеродных атомах. Исходя из расчетных значений отрицательных зарядов атомов кислорода ОН-групп целлюлозы [47], можно предполагать, что атака дипольной группой растворителя легче происходит у атома 06, что объясняется также и стерическими соображениями. Однако в целом [c.368]

    Винильная группа, связанная с шестичленным гетероциклом, будет иметь иную полярографическую активность, нежели группа, связанная с пятичленным гетероциклом. Пятичленные гетероциклы (тиофен, фуран, пиррол) можно рассматривать как производные бензола, у которого группа —СН = СН— замещена гетероатомом (5, О, Ы), способным поставлять, благодаря гибридизации два электрона в ароматический секстет. Это обусловливает относительно высокие значения энергии сопряжения (в кДж/моль) у тиофена—117, у пиррола 100, у фу-рана — 52. Так как в этих гетероциклах неподеленная пара электронов гетероатома участвует в сопряжении с двойной связью —С = С, то пониженная плотность электронного облака наблюдается на гетероатоме (по сравнению с С-атомами). При этом а-углеродный атом имеет большую электронную плотность, чем находящиеся в -положении по отношению к гетероатому. Особенности распределения электронной плотности в пятичленных гетероциклах сказываются определенным образом и на полярографической активности винильной группы в их винилзамещенных. Винилтиофен и винилфуран на фоне 0,05 М N( 2H5)4I в диметилформамиде образуют волны с - 1/2=—2,312 и —2,449 В соответственно [179]. При сравнении потенциалов полуволн а-винилфурана и а-винилтиофена видно, что винильная группа в первом восстанавливается труднее, чем во втором. Из эффектов, влияющих на полярографическую активность органических молекул, тут следует учитывать, по крайней мере, два а) индукционный эффект самого гетероцикла, определяющего статическую полярность молекул и, в первую очередь, состояние электронного облака на винильной группе б) подвижность я-электронной системы в винильном производном, что связано со степенью ароматичности соответствующего гетероцикла, и способность молекул поляризоваться в электрическом поле электрода. [c.127]

    До сих пор рассматривались я-связи, возникшие между определенными атомами и поэтому являюш,иеся локализованными (пара электронов, обеспечивающих и-связь, принадлежит двум определенным атомам). Иным оказалось распределение электронной плотности в молекулах бензола и его производных. Спектральный анализ позволил выяснить, что молекула бензола имеет ось симметрии шестого порядка (об элементах симметрии см. гл. IV). Она представляет собой плоский правильный шестиугольник, в вершинах которого находятся атомы углерода. Каждый атом С имеет трех соседей в этом [c.98]

    С помощью таких соотношений обычно удается выразить фазовые углы для наиболее сильных брэгговских отражений, обычно около 10 на атом (не считая атомы водорода), что, таким образом, дает возможность рассчитать карту распределения электронной плотности с хорошим приближением. Аналогичные методы существуют и для нецентросимметричных кристаллов. Разработка высокопроизводительных компьютерных программ одновременно с появлением автоматических дифрактометров и высокоскоростных компьютеров привело к прорыву в 1970-х в области рентгеновской дифракции, которая стала основным методом структурного анализа. В настоящее время нормальной практикой считается, когда первое сообщение о синтезе нового вещества сопровождается данными рентгеноструктурного анализа. [c.410]

    Выше была рассмотрена классификация химических связей, исходившая из симметрии электронных облаков. Существует и другой подход к классификации химической связи, основанный на характере распределения электронной плотности между атомами в молекуле, т.е. химическая связь рассматривается с точки зрения принадлежности электронной пары тому или иному атому. Возможны три случая. Первый электронная пара связывает в молекуле два одинаковых атома. В этом случае она в равной мере принадлежит им обоим. В молекуле нет разделения центров тяжести положительного и отрицательного зарядов. Они совпадают, и такая связь называется ковалентной неполярной. Если же электронная пара связывает два различных атома, то она смещается в сторону более электроотрицательного атома. Центры тяжести положительного и отрицательного зарядов разделяются, связь становится полярной и носит название ковалентной полярной связи. [c.45]

    Вспомним, что связь образуется за счет перекрывания орбита-лей при сближении атомов. Поскольку для гибридных орбиталей электронная плотность сосредоточена в одном направлении (в отличие от симметричного относительно ядра распределения электронной плотности 5-, р- и -орбиталей), в этом случае обеспечивается более эффективное перекрывание атомных орбиталей, и именно система гибридных орбиталей должна использоваться для образования связей. В соответствии с этим (см. рис. 16) атом Mg, имеющий гибридные 5р-орбитали, дает молекулы линейного строения атом В — плоские молекулы (например, ВРз) с тремя связями, на-правленнрлми под углом 120° друг к другу атом С — молекулы, в которых оп находится в центре тетраэдра, образуемого четырьмя связанными с ним атомами. В молекуле РСЬ атом Р находится в центре трехгранной бипирамиды, образуемой пятью атомами хлора, а в 5Р б атом 5 находится в центре октаэдра с шестью атомами Р в его вершинах. [c.77]

    Как известно, в химии для воздействия на ход химических реакций пшроко используется введение в реагирующие молекулы тех или иных заместителей Эти заместители могут, во-первых, совершенно изменить стереохимические свойства реагента, а, во-вторых, привести к перестройке электронной оболочки молекулы В гл 3, где обсуждался характер химической связи, отмечалось, что распределение электронной плотности следует за распределением в пространстве молекулы кулоновского потенциала, создаваемого положительно заряженными ядрами Достаточно ясно, что при введении заместителя этот потенциал в наибольшей степени будет меняться в области пространства, прилегающей к этому заместителю и включающей его Величина изменения будет прямо пропорциональна заряду атома, если замещается один атом, или суммарному заряду замещающей атомной группы При этом надо учитывать экранирующую роль не принимающих участие в образовании химической связи внутренних элекгронов атома-заместителя или атомной группы Понятно поэтому, что в наибольшей степени исходная электронная оболочка будет деформироваться при введении сильно полярного (заряженного) заместителя Значит, именно исследование влияния полярных заместителей может позволить заметить наиболее значимые эффекты и установить как бы верхнюю границу влияния любого заместителя, что и определяет особый интерес к этому вопросу Если полярный заместитель располагается в непосредственной близости от реакционного центра, то он может совершенно радикально изменить его свойства Никаких универсальных закономерностей здесь выявить нельзя и надо отдельно рассматривать каждый конкретный случай Влияние удаленных заместителей более мягкое , и при изучении его можно выявить некоторые общие моменты [c.177]

    Согласно квантовой механике излучение (поглощение) происходит только при переходе из одного стационарного состояния в другое. При этом изменяется распределение электронной плотности, что с классической точки зрения отвечает появлению дипольного момента в акте перехода. Анализ показывает, что атомная (молекулярная) система под влиянием возмущения, изменяющегося во времени, например под влиянием периодически изменяющегося электромагнитного поля (света), может совершать переходы из одного стационарного состояния в другое, пог.нощая при этом квант энергии г = км = = Е"—Е . Время перехода ничтожно коротко. Время жизни в возбужденном состоянии около 10 с (за исключением особых случаев). Возвращаясь в основное состояние, атом (молекула) изучает квант с энергией е = /IV, и в спектре испускания наблюдается линия с частотой [c.35]

    Успех в определении кристаллической структуры обусловлен возможностью нахождения распределения электронной плотности в элементарной ячейке кристалла. Распределение электронной плотности отражает расположение атомов в структуре, так как каждому атому соответствует сгусток электронной плотности, который тем больше, чем больше его атомный номер. [c.544]

    Действительно, в последнее время для миоглобина удалось определить фазы 12 ООО рентгеновских отражений и получить распределение электронной плотности в молекуле с разрешением в 2 А. Полученная разрешающая способность еще недостаточна, чтобы можно было наблюдать каждый атом в отдельности. Однако на этом распределении можно проследить конфигурацию чередующихся аминокислотных остатков. На нем четко выявились участки с а-спиральной конфигурацией цепей. [c.546]

    Молекула еиаминов имеет электронодонорные свойства. Нуклеофильным центром еиамниов является углеродиьи" атом. Распределение электронной плотности иа ВЗМО свидетельствует о том, что [c.405]

    Базир тощийся на квантовой механике подход к рассмотрению X. с, позволил объяснить многие теоретич. положения классич. и электронных моделей X. с. и понять эксперим. данные, не укладывающиеся в эти модели. Так, для атомов s-и р-элементов установление возможности образования не более четырех валентных связывающих мол. орбиталей привело к пониманию октетной теории Льюиса - Косселя. Структурная теотия Гиллеспи получила объяснение в рамках метода мол. орбиталей. Образование комплексных соед., у к-рых центральный атом образует большее число связей, чем то допустимо формальными правилами классич. теории валентности, стало понятным с развитием кристаллического поля теории и поля лигандов теории. Количеств, результаты, позволяющие характеризовать отдельные X. с., получают с помощью квантовохим. расчетов (см. Незмпирические методы, Полуэмпирические методы) и экспериментально, напр, при изучении распределения электронной плотности в мол. кристаллах рентгенографич. методами. [c.236]

    По электроотрицательности кремний приблизительно равен олову и занимает последнее место в ряду >Ge>Si ( Sn). Значения электроотрицательностей (ЭО) по Полингу у кремния и германия одинаковы и равны 1,8, в то время как у углерода ЭО = 2,5. Соответствующие значения по Оллреду и Рохову составляют С — 2,5 Ge — 2,02 Si—1,74 Sn—1,72. Если, следуя Полингу, найти разность ЭО кислорода и кремния, то окажется, что эта разность (3,6—1,8= 1,8) отвечает связи, имеющей приблизительно 50% ионности. Это, конечно, весьма грубая оценка тем не менее в неорганической химии принято приписывать атому кремния в группах SIO4 заряд +4, а кислородным атомам — заряд —2. При точных расчетах распределения электронной плотности в силикатах (Фам-Куанг-Зы, 1978) заряды на атомах кислорода получаются значительно меньшими. [c.170]

    Часть регжций органических координированных лигандов, особенно те, которые не затрагивают донорный атом (например, ацетилирование ацетилацетопа в его комплексах), аналогичны реакциям свободных лигандов. Так как координированные лиганды отличаются от свободных распределением электронной плотности и конфигурацией, то становятся возможными новые типы реакций. Кроме того, нз протекании замещения в лиганде во многих случаях существенно сказывается близость катиона металла. Механизм протекания этих реакций у ферроцена, как правило, таков  [c.375]

    Следует отметить, что не существует строгого физического определения степени ионности химической связи. Если в идеальной ионной молекуле -Ь й — сосредоточены в центрах заряженных атомов — ионов, то в реальной полярной молекуле не существует отдельных ато-мов. Наблюдаемые свойства (дипольный и квадрупольный момент, сдвиги в спектрах и т. д.) отражают асимметрию распределения электронной плотности в молекуле в целом, и определение по ним эффективных зарядов на атомах и степени ионности связи имеет условный характер. Поэтому только как условные характеристики отклонения с-вязи от чиЬто ковалентной или идеальной ионной должны рассматриваться различные критерии ионности (Полинг, Горди и др.). Однако эти критерии полезны при сравнительном анализе полярности связи в молекулах и кристаллах. [c.136]

    До снх пор рассматривались я-связи, возникшие между определенными атомами и поэтому являющиеся локализованными (пара электронов, обеспечивающих я-связь, принадлежит двум определенным атомам). Р1ным оказалось распределение электронной плотности в молекулах бензола и его производных. Спектральный анализ позволил выяснить, что молекула бензола имеет ось симметрии шестого порядка (об элементах симметрии см. гл. IV). Она представляет собой плоский правильный шестиугольник, в вершинах которого находятся атомы углерода. Каждый атом С имеет трех соседей в этом случае происходит sp -гибридизация трех его электронных облаков. Три гибридных облака образуют а-связи под углом 120° с двумя соседними атомами углерода и с атомом водорода,, У каждого атома С остается по одному негнбридизироваиному р-электрону, об- [c.121]

    Такое разнообразие базисных ф-ций, как правило, встречается только в пеэмпирических методах квантовой химии. В полуэмпирических методах и при интерпретации расчетных данных традиционные ато.мные орбитали в ЛКАО-п. продолжают сохранять свое значение, т. к. оии позволяют достаточно просто оценить распределение электронной плотности около отдельных атомов и в областях между атомами (по хим. связям), а также изменение этого распределения при внеш. воздействиях на молекулу, в частности при элементарном акте хим. р-ции (см. Дииамика элементарного акта). Простая интерпретация мол. структуры на базе ЛКАО-п. даже при использовании сложных многоконфигурационных электронных волновых ф-ций позволяет отчетливее увидеть достоинства и недостатки этих ф-ций. [c.610]

    Существенный вклад в распределение электронной плотности пептидной группы цвиттер-ионной формы (II) должен сказаться в увеличении отрицательного заряда на карбонильном кислороде (по сравнению с ацетоном), что и подтверждается результатами расчета интенсивностей ИК-полос поглощения (см. табл. П.З и II.6). Это полностью согласуется также с таким известным экспериментальным фактором, как предпочтительное протонирование амидов и пептидов по атому кислорода [41], а не азота, как это обычно имеет место. Амиды являются слабыми основаниями значения рКа, например, у ацетамида и N-метилацетамида составляют соответственно 0,35 и 1,0. В то же время они могут выступать и как слабъ е кислоты, рЕа кислотной диссоциации у формамида равно 17,2, а у ацетамида - 17,6 [42]. В соответствии с этим пептидная группа проявляет двойственную способность к образованию водородных связей, выступая одновременно в качестве акцептора протона (С=0) и его донора (N-H)-Образование водородных связей ведет к еще большей поляризации групп, [c.150]


Смотреть страницы где упоминается термин Атом распределение электронной плотности: [c.92]    [c.19]    [c.101]    [c.92]    [c.73]    [c.246]    [c.43]    [c.103]    [c.185]    [c.251]    [c.185]    [c.182]    [c.25]    [c.319]    [c.701]    [c.198]   
Основы общей химии том №1 (1965) -- [ c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Основное состояние водородоподобного атома. Энергия и распределение электронной плотности

Плотность электронов

Распределение электронной плотности в атомах и перекрывание облаков в двухатомных молекулах

Решение уравнения Шредингера для атома водорода. Уровни энергни и вид ф-функций атома водорода (И). 4. Характер распределения электронной плотности в s-, р, d-, - состояниях

Электрон в атомах

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны

Электронная распределение

Электронов распределение



© 2024 chem21.info Реклама на сайте