Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование органических соединений

    Для извлечения и концентрирования органических соединений из воды используют концентрирующие патроны небольшие колонки, заполненные насыпным способом адсорбентом С16 или С18. Диаметр частиц адсорбента - от 50 до 100 мкм. Объем таких патронов 1-2 мл. [c.119]

    На основании изложенного можно сделать вывод, что для концентрирования органических соединений из воды следует применять кремнеземы, химически модифицированные алкилсиланами с возможно большей длиной углеводородной цепи, но без дополнительной силанизации. Необратимой сорбции в этом случае не происходит из-за того, что наиболее активные центры носителя взаимодействуют в процессе модифицирования с прививаемыми молекулами, а остающиеся силанольные группы не обладают достаточной энергией для необратимого связывания сорбируемых молекул [19]. [c.384]


    Аппаратура, используемая для сорбционного концентрирования органических соединений из вод, весьма проста [22 . Основным устройством является вакуумный коллектор, имеющий крышку с гнездами (до 96) для патронов с сорбентами. Внутри вакуумного коллектора находятся сменные приемники, используемые для сбора жидкостей, прошедших через патроны. Такую систему используют в тех случаях, когда отобранную пробу доставляют в аналитическую лабораторию. Но есть и другая возможность — производить концентрирование определяемых веществ непосредственно в объеме воды [36, 37]. В этом случае не требуется отбирать большие объемы воды, транспортировать их куда-либо, что особенно важно в полевых условиях. Концентрирование следов органических соединений можно производить на различных глубинах, подключив к патрону насос, погружаемый в воду. При этом обеспечивается постоянная скорость прокачки воды через сорбент на разных глубинах, чего не удается достигнуть присоединением патрона к вакуумирован-ной емкости определенного объема. Можно использовать не готовые патроны с сорбентом, а засыпать подготовленный сорбент, подбираемый в зависимости от поставленной задачи, непосредственно в специальный патрон, укрепленный на погружном насосе. [c.388]

    Выделение водорода по схеме (19.8) — (19.9) наиболее вероятно при электролизе щелочных растворов или концентрированных растворов солей щелочных металлов и на катодах с высоким перенапряжением водорода (ртуть, свинец и др.). На внедрение щелочных металлов в катоды из свинца и кадмия указывают некоторые факты, установленные при изучении процессов электровосстановления органических соединений. Для металлов с низким перенапряжением водорода вторичное выделение водорода представляется менее вероятным. Однако некоторые исследователи полагают, что и при образовании водорода на платиновых катодах вся совокупность опытных данных лучше всего объясняется схемой (19.8) —(19.9). [c.396]

    Простая перегонка осуществляется путем постепенного испарения сточной воды. Образующиеся пары конденсируются и в виде жидкости — дистиллята — собираются в сборнике. В результате перегонки в кубе аппарата остается сточная вода с более низким содержанием вредных соединений, а в сборнике — дистилляте удаляемыми соединениями. Метод применяется для удаления из сточной воды соединений, имеющих температуру кипения ниже температуры кипения воды (ацетон, спирты и т. д.). С целью более полного удаления органических соединений и получения концентрированного дистиллята перегонку осуществляют с дефлегмацией. [c.489]


    При хранении и перевозке растворов перекиси водорода и твердых перекисных соединений необходимо помнить, что все соединения, содержащие активный кислород, при определенных условиях могут легко разлагаться. Концентрированные перекисные соединения обладают сильной окислительной способностью и при соприкосновении с органическими веществами могут вызвать их заго- [c.131]

    Концентрированные алюминийорганические соединения бурно реагируют, иногда даже со взрывом, со спиртами, минеральными и низшими органическими кислотами. [c.33]

    Серебро растворимо в азотной и концентрированной серной кислотах, царской водке, цианистых солях. Оно обладает исключительной коррозионной стойкостью в уксусной кислоте и других органических кислотах всех концентраций (присутствие кислорода значительно снижает стойкость серебра), а также во многих органических соединениях. [c.275]

    Недостатком этого способа является использование в качестве гидролизующего агента водного раствора карбоната натрия, как и в распространенном промышленном способе, в результате чего образуется раствор с низким содержанием глицерина. Это также требует энергоемкого концентрирования глицеринового раствора и приводит к образованию загрязненных органическими соединениями сточных вод, как и в других способах щелочного дегидрохлорирования в водных средах. [c.46]

    В. С. Садиков [33]. Они подвергали гидролизу животные организмы— свинок, кроликов, кошек, мелких рыб—и установили, что лучше всею гидролиз производить не в присутствии концентрированных H. SO или НС1, а в автоклаве при помощи разбавленных кислот. При нагревании различных белков в автоклаве при ]40--150° с 0,5—4"о НС гидролиз заканчивается через 3—6 час., а при 180° в этих же условиях через 1—3 часа. В растворе образуется смесь простейших а-аминокислот и других растворимых в воде органических соединений, входящих в состав всех органов животного, а нерастворимые продукты распада—жиры, жирные кислоты, холестерины и т. д.—могут быть отделены от раствора. Этот способ гидролиза белков является большим достижением гомогенного катализа и известен под названием—автоклавный гидролиз белковых веществ. [c.542]

    В последнее время большое внимание уделяют алкилированию при помощи фтористого водорода, который, как и серная кислота, легко катализирует реакцию взаимодействия изопарафинов с различными изоолефинами. Он отличается, однако, от серной кислоты тем, что не дает побочных реакций, благодаря чему достигаются высокие выходы продуктов. Фтористый водород представляет собой легко сжижаемый газ с т. кип. 19,5°. Жидкий фтористый водород является прекрасным растворителем для большинства органических соединений. Устойчивость его позволяет проводить процессы при высоких температурах и давлениях. Промышленным методом получения фтористого водорода является обработка чистого плавикового шпата концентрированной серной кислотой при 300—800°. Фтористый водород (как жидкий, так и газообразный) сильно ядовит, и при работе с ним надо соблюдать ряд предосторожностей. [c.655]

    В качестве сорбентов для концентрирования органических веществ, в том числе ПАУ и ХОС, находят применение и активные угли. Их преимущества очевидны, они способны сорбировать многие органические соединения из водных растворов, практически не набухают в воде, имеют достаточно жесткую структуру, химически и термически устойчивы Основной недостаток этих сорбентов в том, что десорбция определяемых компонентов элюированием органическими растворителями, как правило, не бывает полной. Поэтому активные угли чаще применяют для очистки воды от органических загрязнителей, тогда как непосредственно для целей химического анализа они используются реже [59]. Для этих целей более широко применяются модифицированные графитированные сажи, которые позволяют избежать осложнений, встречающихся при использовании активных углей, поскольку имеют небольшой адсорбционный потенциал. Обычно они представляют собой пудру, из которой по-186 [c.186]

    В ТСХ в качестве сорбента применяются вещества, стойкие в отношении крепких кислот, поэтому для проявления хроматограмм возможно применение концентрированной серной кислоты или ее смеси с азотной, а также концентрированной фосфорной кислоты. При опрыскивании этими кислотами образуются темные пятна вследствие обугливания органических соединений. [c.145]

    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]


    Нитрование общее название реакций введения в молекулу органического соединения фуппы -ЫО . Концентрированная азотная кислота НКОз - плохой нитрующий агент для бензола, поскольку реакция [c.219]

    Цели и задачи проекта. Разработка общих моделей электросорбции органических веществ, включающих структурные параметры волокнистых и модифицированных углеродных материалов и других типов электродов, физико-химические свойства адсорбатов и объёмных растворов, концентрирование органических соединений на электродах с целью их аналитического определения. [c.4]

    Для извлечения и концентрирования органических соединений используют макропористые полимерные сорбенты (амберлиты ХАВ, тенакс ОС, хромосор-бы серии 100, порапак Q, полисорбы), активный уголь и графитированные сажи,синтетические иониты, химически модифицированный силикагель, а также пенополиуретан, материалы на основе фторопласта и полипропилена. Пористые полимерные сорбенты характеризуются большой сорбционной емкостью, гидрофобностью, легкостью проведения десорбции (табл. 1.11). [c.35]

    Для разделения гидролизатов на аминокислотные фракции был использован электродиализный метод. Садиков -показал, что применение трехкамерных и пятикамерных элек-тродиализаторов позволяет получать чистую фракцию моно-аминомонокарбоновых кислот, В своих экспериментах автор использовал инертные мембраны (целлофановые и коллодие-вые), которые, как известно, не отличаются большой прочностью и в связи с этим не могут применяться для промышленных целей. Отсутствие механически прочных и селективных мембран не позволило ему выйти за рамки лабораторных исследований. Поэтому разработка, создание и промышленный выпуск ионообменных мембран [2], отличающихся большой прочностью, химической стойкостью и высокой селективностью (выше 90%), должны значительно расширить применение электродиализного метода в промышленных процессах выделения, очистки и концентрирования органических соединений. [c.69]

    Для экстракции органических веществ из воды уголь использовали в непрерывном методе концентрирования, применяемом в полевых условиях, и в способе дозированного концентрирования с предварительной лабораторной очисткой пробы. Непрерывный метод получил широкое распространение после работ Бранса и сотр. [5] по выделению синтетических органических примесей, влияющих на вкус и запах поверхностных вод. Несмотря на многие недостатки, в том числе качественный характер результатов, метод адсорбции на угле полезен для экстракции и концентрирования органических соединений из поверхностных и донных вод. [c.463]

    Преобладающим методом извлечения и концентрирования органических соединений из проб воды является экстракция в системе жидкость — жидкость. Этот метод подробно исследован Фостом и Саффетом [4], показавшими важность правильного выбора соответствующего растворителя, обеспечивающего достаточное полное извлечение определяемого компонента. Боуман и Бероза [6, 7] ввели понятие р-величины, которая позволяет количественно расчетным путем выбрать растворитель и условия проведения экстракции, в том числе pH, температуру и ионную силу. Саффет [c.463]

    Применение кремнезема, модиф1щированного октадецилсилильными группами, для концентрирования органических соединений из воздуха известно довольно давно [6]. Сорбированные соединения реэкстрагируют малым количеством растворителя, экстракт дополнительно концентрируют и анализируют различными [c.381]

    Обстоятельное изучение адсорбционных свойств функционализированных ХМК позволило создать сорбенты, селективные к определенным классам соединений. Так, например, гидрофобные сорбенты с привитыми фенильными и алкильными группами, обеспечивающими увеличение гидрофобности, применяются в патронах Диапак в основном для обращенно-фазового (сорбент менее полярен, чем раствор матрицы) концентрирования, сорбент с привитыми нитрильными группами — для обращенно- и нормально-фазового (сорбент более полярен, чем раствор, в котором находится целевой компонент) концентрирования органических соединений [32]. Для подготовки и концентрирования проб с веществами ионной природы применяются патроны Диапак-ДЕАЕ, -Амин, -ТА, -Карбокси, -Сульфо. [c.386]

    Сорбция из других сред. Кремнеземы, модифицированные различными привитыми группами, используют не только для концентрирования органических соединений из морской и пресной воды и из почв. Такие кремнеземы оказались весьма эффективными и для извлечения разнообразных классов биологически активных веществ из сыворотки и плазмы крови, мочи, желчи и экстрактов различных органов, подготовки проб продовольственного сырья, пищевых продуктов и кормов. Показана эффективность таких сорбентов для концентрирования, очистки и количественного определения стероидов, пептидов, некоторых витаминов, нуклеотидов, простаглаидинов, сахаров, ряда лекарственных препаратов и метаболитов [38] в медицинских и фармацевтических исследованиях, для определения нормируемых токсикантов (например, микотоксинов) в пищевой промышленности. Уже в 1993 г. было известно более 400 методик подготовки проб с помощью ТФЭ [39], а в настоящее время их уже несколько тысяч. [c.388]

    Этим методом пользуются при определении содержания азота в веществах животного и растительного происхождения и вообще в органических соединениях. При этом навеску вещества нагревают с концентрированной H2SO4 (плотностью 1,84 г/см ) в присутствии катализаторов (например, ртути), вследствие чего органическое вещество окисляется до Oj и Н2О, а азот связывается в (NH4)2S04. После прибавления к полученному раствору избытка концентрированного раствора щелочи образующийся аммиак отгоняют и определяют его обыч-нь ми методами. [c.310]

    Крупный взрыв произошел в Техас-Сити в здании, в котором находилась установка для получения кислорода. Взрыв был вызван воспламенением горючих материалов в закрытом канале, в который попал жидкий кислород. Выяснилось, что операторы спускали жидкий кислород из одной или двух остановленных для отогревания колонн в специально устроенный колодец. В 6 м от этого колодца находился закрытый канал с воздухопроводом диаметром 600 мм (давление 560 кПа, или 5,6 кгс/см ). После взрыва на спускной линии были обнаружены в одном месте поломки, а в другом — поврежденный фланец. Проба, взятая после взрыва со дна канала, содержала 1,7% органических соединений в дисперсной форме (по-види.мому, смесь пороигеообразного изолирующего материала и отходов, которые выметают с иола). Однако основная причина —это контакт между горючим материалом и концентрированным кислородом. Спускная кислородная лнния была выполнена из алюминия. По размерам разрушения вычислили, что в зоне взрыва находилось около 6 кг жидкого масла или другого горючего материала. [c.375]

    Обыкновенно в бензин вводится концентрированная смесь, содержащая кроме свинцового органического соединения еще бромистый этилен, монохлорнафталин н красную краску. Бромиды вводятся в смесь для иреЕращения окиси свинца, образующейся при сгорании бензина, в бромистый свинец, разносимый с газами выхлопа на меньшие расстояния. Хлорнафталин имеет подсобное значение смазочного вещества. [c.142]

    Н2804 — это химически активная неорганическая кислота, которая активно взаимодействует с большинством металлов и окислов, соединяется с водой и с органическими соединениями, обладает окислительными и обезвоживающими свойствами. Концентрированная Н25 04 (свыше 70 %) почти не действует на стальные предметы. В то же время разбавленная серная кислота интенсивно разрушает железо, выделяя водород. [c.139]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Хромистые чугуны обладают высокой коррозионной стойкостью в окислительных средах. В холодной азотной кислоте, как в разбавленной, так и в концентрированной, хромистые чугуны стойки. В концентрированной горячей кислоте коррозионная стойкость хромистых чугунов значительно ниже стойкости стали типа Х18Н9. В 70 /о-ной фосфорной кислоте, в нитрозилсер-ной кислоте, в уксусной кислоте, в растворах солей, в том числе и в хлористых, в большинстве органических соединений (ие являющихся восстановителями) хромистые чугуны не подвергаются коррозии. Они также отличаются стойкостью к некоторым расплавленным металлам (алюминий, свинец). [c.244]

    Азотная кислота является одной из важнейших минеральных кислот и по объему производства занимает второе место после серной кислоты. Она образует растворимые в воде соли (нитраты), обладает нитруюш,им и окисляюш,им действием по отношению органических соединений в концентрированном виде пассивирует черные металлы. Все это обусловило широкое использование азотной кислоты в народном хозяйстве и оборонной технике. [c.208]

    Основным методом определения структуры индивидуальных компонентов нефти в последнее десятилетие стал метод хромато-масс-спектрометрии, сочетающий в себе высокую эффективность разделения методом газожидкостной хроматографии и возможность определения полной структуры органических соединений методом масс-спектрометрии. Большинство данных по определению индивидуальных компонентов нефти было получено именно этим методом. Как отмечалось выше, предварительное разделение на классы соединений (например, удаление аренов или концентрирование алканов) существенно облегчает задачу. Знание индивидуального состава фракций нефти необычайно важно для-разработки методик выделения интересных, порой необычных соединерий (так было с адамантаном, положившим начало новой области органической химии), методик переработки нефтяного сырья, установления важных деталей происхождения и изменения нефти и др. [c.137]

    Под влиянием катализаторов или при высокой те.мпературе даже прочно связанный водород органических соединений может сделаться настолько подвижным, что становится возможным замещение его дейтерием. Например, насыщенные жприые кислоты в концентрированной серкой кислоте при высокой температуре обменивают на дейтерий атомы водорода у а-С-атома, а при действии тяжелой воды в присутствии 1 %-ной щелочи и платины при 130 , по-видимому, обменивают на дейтерий даже все атомы Н. [c.1145]

    Первый шаг в подготовке пробы к анализу состоит в пропускании воды через фильтр с порами 0.45 мкм для отделения часгиц q/спензии Затем фильтрат подкисляют соляной кислотой до pH 2 для предотвращения адсорбции определяемых ионов на сгенках посуды. При этом многие комплексные формы распадаются вследствие диссоциации. Однако в пробах воды практически всегда содержатся органические соединения, которые способны образовывать довольно усто№швые комплексы с ионами металлов и адсорбироваться на поверхности индикаторного электрода, препятствуя процессам электрохимического концентрирования и растворения. Для устранения мешающего влияния органических компонентов применяют облучение гфоб УФ-светом, электрохимическое окисление или кислотное разложение. На рис. 7.3 приведена общая схема пробоподготовки воды при определении в ней токсичных металлов с применением ИВА. Стадии фильтрации и УФ-облучения могут быть пропущены, если вода не содержит в заметных количествах органических компонентов и твердых частиц. [c.279]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Наиболее важными из дихроматов являются дихромат калия К2СГ2О7 и дихромат натрия Na2 r207-2H20, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков, широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием хромовой смеси часто применяется для энергичного окисления и для очистки химической посуды. Все соли хромовых кислот ядовиты. [c.514]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    РЕН ЕЯ НИКЕЛЬ (скелетный никель) — никелевый катализатор, изготовленный по способу Ренея в 1925 г. Получается сплавлением никеля с 20— 50% Л1 при 1200° С, затем А1 удаляют растворением его в концентрированном растворе едкого натра, после чего промывают водой и спиртом. Р. н.— серочерный или черный порошок, очень пористый. Применяют как активный катализатор гидрирования и восстановления органических соединений. Р. н. очень огнеопасен, содержит значительное количество водорода, поэтому его нужно хранить под водой или спиртом, как взрывоопасный, [c.213]


Библиография для Концентрирование органических соединений: [c.196]    [c.240]   
Смотреть страницы где упоминается термин Концентрирование органических соединений: [c.111]    [c.428]    [c.63]    [c.500]    [c.658]    [c.45]    [c.188]    [c.188]    [c.196]    [c.214]    [c.30]    [c.216]   
Химия привитых поверхностных соединений (2003) -- [ c.379 , c.462 ]




ПОИСК







© 2025 chem21.info Реклама на сайте