Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез разделение зарядов

    Оказалось, что главной трудностью при разработке молекулярных каталитических систем для осуществления реакции (1) является необходимость подавления обратной реакции рекомбинации D++A- D + A, которая, будучи простым и сильно экзотермическим процессом, обычно протекает намного быстрее, чем сложные каталитические реакции (2) и (3). Рекомбинацию эту удается подавить, осуществляя реакцию (1) в молекулярных структурно организованных системах типа липидных везикул, в которых частицы D и А [а значит, и образующиеся в ходе реакции (1) частицы D+ и А ] пространственно разобщены. Интересно, что именно таким способом достигается высокая эффективность разделения зарядов и в природном фотосинтезе. [c.262]


    Выше рассматривалась ситуация, в которой спин-спиновые взаимодействия считались фиксированными, обменные интегралы считались постоянными в течение времени жизни РП. Такую ситуацию можно было бы назвать статической моделью спинового катализа. РП и парамагнитная добавка в этой модели образуют жесткую структуру с фиксированными расстояниями между спинами. Такая ситуация вполне может реализоваться в эксперименте. Например, реакционный центр фотосинтеза представляет собой молекулярный аппарат , в котором составляющие молекулы организованы в определенную структуру. При разделении заряда в реакционном центре образуется ион-радикальная пара. Спиновая динамика в этой радикальной паре может измениться при взаимодействии этих анион-радикалов с двухвалентным ионом железа - парамагнитной частицей. В этом случае ион железа может ускорять или замедлять процесс разделения зарядов в реакционном центре, и для описания влияния парамагнитной добавки можно применить статическую трехспиновую модель. [c.69]

    Антифазная структура спектра ЭПР спин-коррелированных РП (см. рис. 4) также может быть наглядно представлена в терминах неравновесной заселенности спиновых уровней спин-коррелированных РП. Подробнее этот вопрос будет обсуждаться в следующей лекции в связи с изучением спектров ЭПР состояний с разделенными зарядами в реакционном центре фотосинтеза. Для объяснения упомянутых выше осцилляций интенсивности линий ЭПР спин-коррелированных РП уже оказывается недостаточно привлекать неравновесные населенности спиновых уровней энергии. Для этого надо учитывать квантовую когерентность в состоянии спинов РП. Мы еще вернемся к вопросу о спиновой когерентности в РП. Пока только поясним кратко, о чем идет речь. Пусть система может находиться в двух стационарных состояниях и ср . Система может тогда находиться и в состоянии линейной суперпозиции (р= + В этом состоянии с , к = 1, 2 дает вероятность найти систему в А -ом стационарном состоянии. Величина характеризует когерентность состояния. Те, кто знакомы с методом молекулярных орбиталей в теории электронного строения, могут заметить, что можно провести аналогию между квантовой когерентностью в суперпозиционных квантовых состояниях и порядком связи в методе молекулярных орбиталей, выбранных в виде линейной суперпозиции атомных орбиталей. [c.95]


    Проявление поляризации электронных спинов в спектрах ЭПР состояний с разделенными зарядами в реакционном центре фотосинтеза [c.105]

    Первичные стадии разделения заряда при фотосинтезе. [c.105]

    Спиновая динамика в спин-коррелированных радикальных парах трансформирует начальную взаимную упорядоченность спинов и в результате создает такие формы поляризации (упорядоченности) электронных спинов, которые характерным образом проявляются в экспериментах по электронному парамагнитному резонансу. Проявление химической поляризации электронных спинов в спектрах ЭПР радикалов, вышедших из клетки в объем раствора, обсуждалось в предыдущей лекции. В этой лекции рассматривается форма спектра ЭПР спин-коррелированных РП. В настоящее время особенно много работ посвящено исследованию спиновой поляризации в спектрах ЭПР ион-радикальных (электрон-дырочных) пар, которые образуются в процессе разделения зарядов на первичных стадиях фотосинтеза. Поэтому в этой лекции ориентир взят на РП, образующиеся в реакционном центре (РЦ) фотосинтеза. Однако приведенные результаты могут быть применены и для интерпретации спектров ЭПР спин-коррелированных РП вообще. [c.106]

    Итак, в РЦ фотосинтеза в процессе разделения зарядов образуется последовательность спин-коррелированных РП. [c.107]

    Имея в виду состояния с разделенными зарядами в РЦ фотосинтеза до сих пор в этой лекции считалось, что РП рождаются в синглетном состоянии. В фотохимических реакциях нередко предшественником РП является триплет. Рассуждения, аналогичные приведенным выше, показывают, что при изменении мультиплетности предшественника РП изменяется знак поляризации электронных спинов. [c.114]

    Поляризация спинов интересна с двух точек зрения. С одной стороны, она повышает чувствительность метода ЭПР при исследовании первичных стадий разделения зарядов в реакционном центре фотосинтеза, так как спиновая динамика в спин-коррелированных РП создает неравновесную поляризацию спинов, которая существенно (на порядки) больше равновесной поляризации, и поэтому сигналы ЭПР усилены. С другой стороны, спиновая динамика в РП создает такие формы упорядоченности и/или взаимной упорядоченности электронных спинов, которые пренебрежимо малы или вовсе отсутствуют в термодинамическом равновесии. Поэтому в условиях ХПЭ может наблюдаться не только усиленное поглощение, но и эмиссия на определенных частотах, спектр может иметь антифазную структуру, когда линии поглощения чередуются с линиями эмиссии. Уже сам факт наблюдения эффектов ХПЭ в спектрах ЭПР РЦ фотосинтеза, антифазная структура спектра, указывает на то, что спин-спиновое взаимодействие между радикалами пары играет важную роль в спиновой динамике РП. Найдя из анализа спектров ЭПР параметры спин-спинового взаимодействия, можно сделать заключение [c.116]

    Заканчивая это краткое обсуждение проявлений спиновой поляризации в спектрах ЭПР электрон-дырочных пар в РЦ фотосинтеза, можно отметить предложение изучать спиновую динамику в РЦ фотосинтеза, добавляя в структуру РЦ в заданное положение дополнительную парамагнитную частицу, например, стабильный радикал. Этот дополнительный спин выступает в качестве наблюдателя. Спиновая динамика в системе разделенные заряды плюс парамагнитная добавка создает поляризацию электронного спина наблюдателя. Надеемся, что таким путем можно изучать спиновые взаимодействия на короткоживущих стадиях разделения зарядов в РЦ. В рамках такого подхода пока реализован только один эксперимент. А именно, изучено обменное взаимодействие в первичной паре Р А7 в бактериальном РЦ с предварительно восстановленным хиноном Qд. [c.116]

    В основе процессов фотохимического разложения воды лежат реакции межмолекулярного переноса электронов, т. е. электронные окислительно-восстановительные реакции. Молекулы поглощающего свет красителя, переходя в электронно-возбужденное состояние, становятся одновременно и очень хорошими донорами, и очень хорошими акцепторами кислорода. В результате этого энергия кванта света вначале переходит в энергию электронного возбуждения молекулы красителя, а затем в энергию разделенных электрических зарядов. Именно превращение энергии кванта света в энергию разделения зарядов обеспечивает фотосинтез и фоторазложение воды. [c.336]

    Полупроводниковый механизм рассматривает окислительно-восстановительные процессы в пигментных слоях хлорофилла с позиций электроники твердого тела [27]. Он предполагает миграцию зарядов по зоне проводимости или валентной зоне (в последней возникают светоиндуцированные вакансии) к центрам захвата — химическим акцепторам или донорам электронов. При экситонной миграции энергии в пигментной матрице нейтральный экситон может мигрировать к реакционному центру, где и происходит его диссоциация на два противоположно заряженных носителя. Разделение зарядов может иметь место не только в реакционном центре, но и на дефектах структуры пигментной матрицы [28]. В этом случае носители заряда раздельно мигрируют в матрице электронная вакансия (р) захватывается в активном центре, приводя к образованию катион-радикала хлорофилла (бактериохлорофилла), а электрон (е) — первичным акцептором, который может быть локализован вдали от активного центра. Центры захвата носителей заряда в пигментной матрице, обладающие низкой потенциальной энергией, разделены в пространстве в результате миграции зарядов по зоне проводимости или валентной зоне. В них инициируются первичные химические реакции фотосинтеза. [c.22]


    Термин экситон, впервые предложенный Френкелем (1931, 1936), часто используется для описания как резонансной миграции энергии, так и фотопроводимости. Экситон — это пара электрон — дырка. Резонансная миграция энергии может быть описана как движение внутримолекулярного экситона — электрон и дырка остаются в одной и той же молекуле миграция протекает без разделения зарядов. Межмолекулярный экситон, напротив, влечет за собой разделение положительных и отрицательных зарядов оба остаются в твердой фазе, но разделяются на дистанции много больше молекулярного диаметра. Под влияние.м электрических сил такой экситон может диссоциировать и заряды уходят из системы. В настоящее время резонансная миграция энергии кажется более подходящей для описания механизма первичных процессов при фотосинтезе. [c.319]

    Фотохимические реакции фотосинтеза. Общие представления о фотосистемах. Фотохимический этап фотосинтеза включает в себя ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и транспорта электронов, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают реакционный центр, в котором протекают очень быстрые реакции первичного разделения зарядов комплекс компонентов, передающих электрон от реакционного центра (электрон-транспортная цепь) комплекс компонентов, осуществляющих работу по фотоокислению воды и восстановлению реакционного центра. [c.420]

    Макромолекулы можно рассматривать как своего рода молекулярные машины, служащие для преобразования одного вида энергии в другой, как это следует из концепции белок — машина (Д. С. Чернавский, Л. А. Блюменфельд). Характерной чертой таких машин является трансформация различных видов энергии в результате взаимодействий в пределах одной макромолекулы. Так, функционирование реакционного центра фотосинтеза сопровождается конформационными изменениями его макромолекулярных компонентов — дает начало цепи переходов энергии электронного возбуждения в энергию разделенных зарядов и энергию поляризации белковой части, а также в энергию трансмембранного электрохимического потенциала и энергию химических связей АТФ. Таким образом, уже на макромолеку- [c.11]

    Квантовые выходы первичного разделения зарядов дФ в фотосинтезе и флуоресценции qPo равны, соответственно, [c.354]

    Таким образом, увеличение выхода флуоресценции при полном закрывании реакционных центров [Ру = Рм — Ро) обусловлено той частью световой энергии, которая использовалась в первичных реакциях фотосинтеза при открытых реакционных центрах. Легко найти, что отношение выходов переменной и максимальной флуоресценций равно квантовому выходу первичной фотохимической реакций разделения зарядов в фотосинтетических реакционных центрах  [c.354]

    В последние годы благодаря развитию методов выделения бактериальных реакционных центров и применению импульсных спектрофотометров с пикосекундными (10 2 с) лазерами удалось подробно изучить большинство реакций световой фазы бактериального фотосинтеза. Энергия света поглощается молекулами бактериохлорофилла и каротиноидов, а затем (путем миграции электронного возбуждения) передается реакционному центру, содержащему небольщое число (2 или 4) особым образом упакованных молекул бактериохлорофилла. Разделенные заряды переносятся через мембрану молекул этих бактериохлорофиллов, запуская электронный транспорт, обусловливающий образование АТР, КАОН или восстановленного ферредоксина. [c.108]

    Ключевыми стадиями первичных процессов фотосинтеза является эффективная миграция энергии в светособирающих комплексах, захват возбуждения фотоактивными пигментами реакционных центров, разделение зарядов и их первичная стабилизация в форме ион-радикалов. В [35] показано, что в число факторов, контролирующих эффективность начального разделения зарядов в структуре фотосинтетических реакционных центров, входят и циклические релаксационные процессы, включающие первичную поляризацию молекулярного окружения в макроструктуре ассоциатов донора и акцептора. Данные релаксационные процессы, индуцирующие определенную реорганизацию взаимодействующей среды, происходят уже в самой начальной стадии разделения зарядов, эффективно ускоряя скорость перестройки среды. [c.157]

    Подвижные электронные вакансии, достигающие границы раздела, могут заполняться электронами от постороннего восстановителя, что приведет к заряжению полупроводниковой пленки пигмента избыточным отрицательным зарядом. Такой заряженный слой делается способным отдавать электроны на другой границе раздела угольному или металлическому электроду, как был показано в фотогальванических опытах Евстигнеева и Теренина [1]. Из этих опытов и из наших измерений с сухими пленками следует, что контакт пленки хлорофилла с раствором, содержащим окислители, создает на этой границе раздела поверхностные электронные ловушки, способствующие захвату электронов, освобождаемых светом внутри слоя. Образующиеся подвижные положительные дырки, достигая электрода на другой границе раздела слоя, заряжают его положительно. Таким образом, в этой модели действительно осуществляется взаимосвязь пространственно разделенных окислительно-восстановительных реакций через посредство освещаемой пленки пигмента. В какой мере эти процессы имеют место в хлоропластах при фотосинтезе, остается пока еще открытым вопросом. [c.281]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Первичное разделение зарядов на стадии Р А.АгА, Р+А7А2А3 рождает пару ион-радикалов (электрон-дырочную пару) Р А7. В фотосинтетичес-ком реакционном центре первичный донор отдает электрон в синглетном возбужденном состоянии. Следовательно, в РЦ фотосинтеза первичная РП Р А7 образуется в синглетном спиновом состоянии. Вторичная пара Р А наследует спиновое состояние первичной пары Р А7 в момент переноса электрона А7А2 А,А2. [c.107]

    Резонансные частоты отличаются для разных ориентаций РЦ. Более того, в зависимости от ориентации РП изменяется знак диполь-дипольного взаимодействия, поэтому в зависимости от ориентации РЦ электронная спиновая поляризация может давать спектр ЭПР типа АЕАЕ или ЕАЕА. В ансамбле РП возможны такие ситуации, когда в одну и ту же часть спектра попадают линии типа А или Е от РЦ в разной ориентации, тогда вклады этих РЦ в суммарный спектр ЭПР в данной области частот могут полностью или частично компенсировать друг друга. Этими обстоятельствами объясняется наблюдаемая в эксперименте форма спектра ЭПР разделенных зарядов в РЦ фотосинтеза. [c.114]

    Когерентность характерным образом проявляется в спектроскопии. Например, в одной из предыдущих лекций уже обсуждались квантовые биения интенсивности линий во время-разрешенных спектрах электорон-ного парамагнитного резонанса состояний с разделенными зарядами в реакционном центре фотосинтеза [2]. Спектроскопические проявления когерентности позволяют изучить тонкие детали элементарного химического акта. [c.139]

    БИОЭЛЕКТРОХЙМИЯ, изучает электрохим. закономерности, лежащие в основе биол. процессов (в частности, передачи информации по нервным волокнам, преобразования энергии, фотосинтеза, рецепции, взаимод. и слияния клеток), а также воздействие внеш. электрич. полей на биол. системы. Общая стадия всех упомянутых процессов - разделение зарядов (электронов или ионов), реализующееся в ходе окислит.-восстановит. р-ции или при транспорте ионов [c.292]

    Неравновесные электронно-возбужденные состояния молекул играют решающую роль в первичных актах фотосинтеза. Кванты света поглощаются системой молекул хлорофилла, затем по экситонному механизму энергия возбуждения передается димеру хлорофилла с послед, фотохим. разделением заряда. Порождаемые внеш. воздействием (светом, хим. превращениями в среде) неравновесно возбужденные атомы, молекулы, сложные мол. комплексы обусловливают высокую избирательность биохим. р-ций, управление и самоорганизацию хим., биол. и физиол. процессов, характерных для живой природы (см. Самоорганизация в неравновесных процессах). [c.219]

    Фотобатареи жидкостного типа представляются перспективными в качестве аккумуляторов энергии. В таких батареях разделение зарядов осуществляется (аналогично тилакоидным мембранам фотосинтетических систем) путем катодного восстановления и анодного окисления. Двухслойные молекулярные мембраны (типа показанных на рис. 4.14) обладают малой прочностью, но их характеристики можно улучшить, используя в качестве подложек микропористые пленки. Очень важным является создание полимерных пленок, способных осуществлять разделение электрических зарядов в фотосинтетических системах. Такие пленки позволили бы регулировать обратные реакщ1и в процессах, описанных в разд. 4, и перейти к почти полному моделированию фотосинтеза. [c.145]

    В основе первичных процессов фотосинтеза ППФ лежит сложная совокупность окислительно-восстановительных реакций переноса электрона между компонентами электрон-транспортной цепи ЭТЦ. Наибольший интерес представляют механизмы трех основных стадий трансформации энергии в ННФ поглощение света фотосинтетическими пигментами и миграция энергии электронного возбуждения на РЦ фотосинтеза первичное разделение зарядов и трансформация энергии в РЦ перенос электрона по ЭТЦ и сопряженные с ним процессы, приводящие к образованию первичных стабильных продуктов (НАДФ и АТФ), используемых в дальнейших темновых реакциях фиксации СО2 и образования конечных продуктов фотосинтеза. [c.280]

    Очевидно, в тех закрытых соотояниях, где Р исходно окислен в темноте в ЭТЦ отсутствует первичный донор электрона. В случае, когда в темноте исходно восстановлены переносчики в акцепторной части, вакантные места для переноса электрона заняты и Р также не может дать начало электронному потоку. Очевидно, в этих условиях возрастает выход р и длительность т флуоресценции хлорофилла, энергия электронного возбуждения которого не может использоваться в первичных процессах фотосинтеза. Однако значения т и р при закрытых РЦ не достигают величин, характерных для разбавленных растворов пигментов, где отсутствует фотосинтез. Дело в том, что ион-радикал Р+, образованный в окисленных РЦ, обладает собственным спектром поглощения, который частично перекрывается со спектром флуоресценции пигментов ПБК. В результате этого происходит миграция энергии возбуждения от молекул ПБК на Р или диссипация в тепло на Р . В РЦ в состоянии PIQ появление отрицательного заряда на Q препятствует первичному разделению зарядов и появлению электрона на I PIQ Р I Q ) в силу электростатического отталкивания. [c.298]

    Первичный акт фотосинтеза, приводящий к разделению зарядов и восстановлению первичного акцептора, осуществляется в реакционных центрах. В настоящее время благодаря развитию методов препаративной биохимии удалось выделить в нативном состоянии РЦ фотосинтезирующих бактерий, который представляет собой отдельный пигмент-белковый комплекс. [c.308]

    Димерная структура фотоактивного Бхл в бактериальных РЦ вызывает интерес исследователей, тем более, что есть указания на подобное устройство первичного донора электрона и у высших растений. Возможно, что такое строение фотоактивного пигмента обеспечивает какие-то определенные преимущества в первичном акте фотосинтеза. Так, высказываются предположения, что димерная структура Р способствует эффективному первичному захвату фотовозбуждения до отрыва электрона и переноса его в цепь переносчиков. Это происходит благодаря сверхбыстрому разделению зарядов в самом димерном комплексе с быстрой (за сотни фемтосекунд) сопутствующей поляризацией ближайшего белкового окружения. Имеются и доводы в пользу прочной стабилизации во времени положительного заряда на Р, образованного при его фотоокислении, в результата делокализации дырки по структуре димера. Это способствует замедлению бесполезных обратных рекомбинационных процессов. Последнему благоприятствует в димере наличие большого числа степеней свободы для небольших структурных изменений, которые сопровождают фоторазделение зарядов (см. гл. XXVHI). [c.311]

    Одной из центральных проблем биофизики является выяснение механизмов начального разделения зарядов в РП и транспорта электронов между переносчиками в первичных процессах фотосинтеза. Эта проблема по своей важности выходит за рамки фотосинтеза, а ее решение приобретает принципиальное значение для понимания глубоких механизмов функционирования биологических макромолекул. В многокомпонентных макромолекулярных комплексах переносчиков, объединенных в единый РЦ, начиная о самых первых этапов (т < 1 пс) происходит высокоэффективный и направленный транспорт электронов. Добавим, что в пределах РЦ перенос электрона может происходить с высокой эффективностью и при сверхнизких температурах (100 К-4 К). Очевидно, обычные диффузионные механизмы химических реакций в растворах по типу сталкивающихся частиц не в состоянии обеспечить такого рода перенос электрона в плотной белковой среде. Мы видели (гл. XXVH), что в основе этого лежит туннелирование электрона, сопряженное с колебательными и конформационными изменениями в белковой матрице (гл. ХП1). [c.359]

    В настоящей главе мы рассмотрим механизмы электронных переходов, сопряженные с колебательными и конформационными степенями свободы, которые ответственны за высокие скорости и эффективность начального разделения зарядов и переноса электрона в РЦ фотосинтеза высших растений и бактериального типа. Мы будем опираться на схемы первичных процессов, которые были приведены в предыдущей главе (XXVII), а также на экспериментальные данные по кинетике переноса электрона в РЦ. [c.359]

    Это аналогично событиям в первичных реакциях фотосинтеза, где начальная стадия разделения зарядов в РЦ дает толчок всей цепи переноса электрона. Как мы увидим ниже, в фотоцикле Бр, как и в фотосинтезе, фотоиндуцированные электронные переходы тесно сопряжены с колебательными и конформационными изменениями ближайшего белкового окружения хромофора. [c.400]

    Разумеется, на пути к максимальной краткости нельзя обойтись без жертв, возможно не всегда оправданных. Некоторые аспекты проблемы хотелось бы видеть более полно и глубоко орвещенными. На наш взгляд, это в первую очередь касается первичных процессов фотосинтеза и в особенности вопроса о реакционных центрах фотосинтеза и механизме их действия. Фотосинтез как специфический фотоэнергетический процесс отличается от других биохимических темновых процессов прежде всего теми первоначальными звеньями, благодаря которым энергия кванта трансформируется в энергию химической связи. Это — поглощение квантов молекулами. пигмента, перенос энергии электронного возбуждения в фотосинтетической единице, разделение зарядов и первичная стабилизация энергии в реакционных центрах. Именно здесь, в этих звеньях, преодолеваются наибольшие и специфические для фотосинтеза трудности, связанные с необходимостью сопряжения столь различных процессов, как поглощение электромагнитного излучения и биохимические реакции. И современные исследования шаг за шагом вскрывают механизм этих процессов, показывая, каким образом природа преодолела эти трудности и, создав уникальную молекулярную организацию фотосинтетических единиц реакционных центров, обеспечила высокую скорость и эффективность запасания энергии света (увы, пока еще не достигнутые в искусственных фотохимических системах ). Неудивительно поэтому, что изучение первичных процессов и в особенности реакционных центров фотосинтеза — одно из наиболее быстро развивающихся направлений, успехи которого основаны на использовании самых современных физических методов исследования (в частности, сверхбыстрой (пикосекундной) лазерной спектроскопии) и па объединении идей целого ряда наук от молекулярной биологии до квантовой механики. Несомненно этим достижениям должно быть уделено большее внимание несмотря на те очевидные трудности, которые возникают при изложении физических аспектов фотосинтеза в кни- [c.6]

    Развитие идей фотоэлектрохимии на поверхности раздела раствор — полупроводник связано с измельченными полупроводниковыми частицами. Порошки ТЮ2 в смеси с платиной, нанесенные на поверхность, оказались особенно эффективными. Каждая частица может рассматриваться как фотоэлектрохи-мический элемент с замкнутой цепью, соединяющей полупроводниковый и противоэлектроды. Обрисованные выше в общих чертах основные принципы остаются применимыми, несмотря на то, что внешняя электрическая цепь отсутствует. Хотя расстояние между анодом и катодом существенно меньше, чем в обычных электрохимических элементах, продукты реакций переноса заряда остаются разделенными, что невозможно в гомогенных процессах, когда оба противоположных продукта образуются в одной и той же клетке раствора. Описан ряд гетерогенных фотосинтетических и фотокаталитических процессов, использующих определенные полупроводники, для получения СНзОН из СО2, РН из КСООН и ЫНз из N2. В отдельных случаях в качестве фотокатализатора могут действовать чистые порошки полупроводника без примеси металла. Выходы продуктов обычно получаются относительно низкими из-за кинетических ограничений и необходимости применять полупроводниковые материалы с большой шириной запрещенной зоны, которые неэффективно используют солнечный спектр. Возможно, следует придерживаться стратегии природного фотосинтеза, делая энергетические потери полезными путем использования двух фотонов низкой энергии для переноса одного электрона. [c.281]

    У прокариот известны три типа фотосинтеза I — зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых, пурпурных бактерий и гелиобактерий II — зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам III — зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий. В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом. Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в [c.96]


Смотреть страницы где упоминается термин Фотосинтез разделение зарядов: [c.77]    [c.421]    [c.66]    [c.144]    [c.364]    [c.368]    [c.239]    [c.130]    [c.319]    [c.84]   
Фотосинтез (1983) -- [ c.64 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте