Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение в ароматических молекулах Механизм реакции

    Нуклеофильное замещение в ароматических молекулах. Механизм реакции [c.204]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]


    Механизм нуклеофильного замещения в ароматическом ядре. Незамещенный бензол не реагирует с нуклеофильными реагентами. Введение в молекулу бензола заместителей первого рода увеличивает электронную плотность в бензольном ядре и тем самым еще более затрудняет нуклеофильное замещение. При введении заместителей второго рода, например нитрогруппы, электронная плотность в кольце понижается особенно в о- и п-положениях в такой степени, что в этих положениях становится возможной реакция с нуклеофильными реагентами. [c.408]

    Данные, рассмотренные выше, указывают на правдоподобность предположения, что многие реакции нуклеофильного ароматического замещения протекают по двустадийному механизму с двумя переходными состояниями, которые отделяет друг от друга промежуточный продукт, обладающий некоторой устойчивостью. Ни в коем случае нельзя считать, что имеющиеся доказательства убедительны для всех рассматриваемых реакций замещения. Возможны различные механизмы в зависимости от числа и типов имеющихся в молекуле активирующих групп, природы применяемого нуклеофила и характера замещаемой группы. Тем не менее при последующем обсуждении в качестве удобной схемы будет использоваться механизм с образованием промежуточного комплекса. По мере надобности будут рассматриваться недостатки такого подхода и другие представления. [c.47]

    Процессы, протекающие по ионному механизму (например, реакция замещения 1а и 16), классифицируют на основании типа действующего реагента [1]. Реагент, который дает электронную пару для вновь возникающей связи, называется нуклеофильным реагентом, а реакции, осуществляемые при его участии,—реакциями нуклеофильного замещения (соответственно, отщепления или присоединения) реагирующая молекула при этом проявляет электрофильность. Приведенные выше реакции иодистых солей с хлористым бензилом или аммиака с иодистым метилом, а также распад катионов четвертичных аммониевых оснований под действием гидроксильных ионов являются реакциями нуклеофильного замещения. Если же реагент не дает электронной пары для вновь возникающей связи, он является электрофильным реагентом и реакции, осуществляемые при его участии, называют реакциями электрофильного замещения (соответственно отщепления, присоединения)-, реагирующая молекула при этом проявляет электронодонорные свойства, поскольку новая связь образуется за счет имеющихся у этой молекулы электронов. Например, приведенная реакция нитрования ароматических соединений является реакцией электрофильного замещения. [c.247]


    Статьи, вошедшие в сборник, отражают современное состояние исследований нуклеофильного и электрофильного замещения при насыщенном углеродном атоме и в ароматическом ряду. Большое внимание уделено переходному состоянию, роли и строению промежуточных частиц, в том числе классических и неклассических ионов и ион-радикалов, влиянию среды, свойств реагирующих молекул и продуктов реакции. Описано применение ЯМР-, ЭПР-и фотоэлектронной спектроскопии для исследования кинетики и механизмов реакций. Показаны возможности использования явления химической поляризации ядер для выяснения и изучения актов одноэлектронного переноса. [c.4]

    В 4-м томе серии Современные проблемы физической химии опубликована обзорная статья, освещающая основные этапы развития исследований электрохимической кинетики, состояние работ в этой области науки в СССР и за рубежом. В сборник включены обзорные работы по более узким актуальным проблемам, изучаемым иа химическом факультете МГУ химические реакции при низких температурах, химические методы разделения стабильных изотопов, изучение и при.меиение графитированных саж для газохроматографического разделения молекул, изучение каталитических свойств цеолитов, исследование фазовых превращений при высоких давлениях, вопросы методики расчетов силовых постоянных многоатомных молекул, механизм радиолиза иона перхлората, фотохимические реакции электрофильного и нуклеофильного замещения в ароматических соединениях, состояние и свойства молекул целлюлозы и ее производных в предельно разбавленных растворах, методика измерения диэлектрической проницаемости полярных жидкостей в области сверхвысоких частот электромагнитного поля, методика исследований энергетических характеристик химических реакторов тлеющего разряда. [c.2]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]

    Михаэля), в механизме присоединения-отщепления при нуклеофильном винильном и ароматическом замещении [57], а также в технически важных процессах, например анионной полимеризации винильных мономеров. Общий результат реакции в любом из приведенных примеров зависит от последующих превращений промежуточно образующихся карбанионов. Так, при анионной полимеризации условия реакции таковы, что образующийся карбанион может реагировать, только присоединяя другую молекулу виниль-ного мономера, и реакция останавливается, когда весь мономер израсходован, но при этом карбанион остается, поскольку нет условий обрыва процесса. Такие полимерные карбанионы часто называются живыми полимерами, потому что после прибавления к ним мономера полимеризация начинается вновь. [c.548]

    Ипсо-замещение — тип замещения в ароматических соединениях, заключающийся в замене присутствующего в исходной молекуле заместителя на другую группу. Не следует к данному типу замещения относить замещение атома Н, хотя обратный процесс есть ипсо-замещение. Реакция реализуется по различным механизмам, но более распространенными являются нуклеофильные с образованием в качестве интермедиатов анионных ст-комплексов  [c.132]


    Простые эфиры динитро- и тринитрофенолов служат модельными соединениями при изучении особенностей механизма нуклеофильного ароматического замещения под действием аминов. Установлено, что реакции 2,4-, 2,6-динитроанизолов и 2>4,б-три-нитродифенилового эфира с аминами имеют второй порядок но амину. Для интерпретации этого наблюдения предложен димерный механизм, согласно которому в качестве нуклеофила выступает сдвоенная молекула амина [745]. Однако более вероятен, по-видимому, циклический механизм с участием второй молекулы амина в образовании циклического переходного состояния [746]. [c.331]

    Катализ нуклеофильного замещения апротонными кислотами. В реакциях ацилирования и алкилирования ароматических соединений по Фриделю—Крафтсу имеет место увеличение электрофильности ацил- и алкилгалогенидов, вызванное комплексообразованием с безводным хлористым алюминием в качестве апротонной кислоты. Механизм такого катализа уже был рассмотрен выше. В случае алкилирования алкилгалогенидами каталитический э( х зект вызван резким увеличением активности электроотрицательной уходящей группы вследствие присоединения к ней молекулы апротонной кислоты. Это — частный случай катализа апротонными кислотами нуклеофильного замещения. Например, мягкий центр общей основности у первого атома электроотрицательной уходящей группы способен к взаимодействию с катионами металлов, склонными к комплексообразованию  [c.374]

    Механизм реакции представляет собой прямое нуклеофильное ацилирование триазинов, ацилирующим агентом является нитроалкениланион, образующийся за счет отщепления протона от молекулы нитроалкана (твердый КОН). В качестве промежуточного продукта образуется о-комплекс, который изомери-зуется с перемещением протона. Затем следует внутримолекулярный перенос электрона от нитрогруппы к водороду. Образовавшийся интермедиат стабилизируется за счет отщепления гидроксил-иона и образованием С-нитрозосоединения с последующей перегруппировкой в оксим. В отличие от других примеров нуклеофильного замещения в ароматическом ряду (аминирование пиридина) для проведения данной реакции нет необходимости во внешнем окислителе, роль последнего выполняет нитрогруппа  [c.146]

    Нуклеофильное замещение у атома серы является наиболее характерной реакцией ангидридов сульфоновых кислот. При гидролизе их водой образуются две молекулы сульфоновой кислоты изучен механизм этого превращения [136]. При действии спиртов на ангидриды образуются эфиры [2, 128] (уравнение 68). При взаимодействии спиртов с метансульфонилхлоридом вместо эфиров получаются хлориды. При сравнении этих двух реакций видна предпочтительность использования ненуклеофильного сульфо-нат-анирна пЬ сравнению с хлорид-ионом, который, по-видимому, реагирует с первоначально образующимся эфиром, в результате чего и образуются хлориды [137]. Ароматические соединения также выступают в качестве нуклеофилов при взаимодействии с ангидридами сульфоновых кислот по типу.реакции Фриделя— Крафтса, при этом образуются сульфоны [128, 138]. В таких реакциях особенно реакционноспособны смешанные ангидриды трифторметансульфокислоты с алкан- или аренсульфокислотами [134,135]. [c.536]

    Для механизма Нагакура характерно промежуточное образование комплекса типа б (рис. 144), которое происходит за счет переноса электрона от молекулы бензола к реагенту. Соединения такого рода Дьюар назвал я-комплексами [12. Мы еще вернемся к обсуждению этого механизма в разделе 11-7. Аналогичным образом реакции нуклеофильного замещения, по мнению Нагакура, предшествует перенос электрона, от реагента к молекуле ароматического соединения с образованием ароматического аниона. [c.297]

    Методом ЭПР-спектроскопии зафиксировано образование анион-радикалов в реакциях хинонов и ароматических нитросоединений [8, 9, 13—15, 17, 84, 99—108]. Наличие анион-радикалов нри взаимодействии ароматических соединений с нуклеофилами удается зафиксировать также по уширению и сдвигу линий в спектрах ПМР, происходящих в результате электронного обмена между анион-радикалом и исходной диамагнитной молекулой [109—112]. Некоторые анион-радикалы, например и-нитроиодбен-зола, разлагаются с образованием свободных фенильных радикалов [113]. Последние образуются также при взаимодействии арил-диазониевых и диарилгалогенониевых солей с нуклеофильными реагентами [114, 115]. Наряду с анион-радикалами субстрата в реакциях ароматических соединений с нуклеофильными реагентами зафиксированы катион-радикалы и свободные радикалы, образованные из реагентов [100, 103, 104, 115, 116]. Предложены различные механизмы, описывающие участие анион-радикалов в реакциях ароматического нуклеофильного замещения [99— 104, 114, 115]. В соответствии с одним из них [100, 115], происходит перенос электрона от донора к акцептору с последующим взаимодействием образовавшихся радикальных частиц  [c.61]

    В первом случае связь в образующемся соединении создается. электронами, которые принадлежат нуклеофильному реагенту. Реакцию правильнее было бы называть замещением посредством нуклеофильного реагента, для краткости ее обозначают как нуклеофильное замещение. Во втором случае электронная пара для создания новой связи предоставляется молекулой, в которой происходит замещение. В этом случае говорят об элек-трофильном замещении. Реакции нуклеофильного замещения характерны для алифатических и алициклических соединений, в то время как электрофильное замещение превалирует в ароматическом. ряду. К приведенным выще типам реакций замещения следует добавить реакции, в ходе которых связи разрываются гомолитически (радикальный механизм)  [c.109]

    В настоящее время ХПЯ обнаружена в самых разных классах реакций распад перекисей и азосоединений, термические перегруппировки и изомеризации молекул, фотохимические реакции распада, фотосенсибилизированные реакции, реакции с участием металлоорганических соединений ртути, магния, кремния, лития, свинца, олова и т. д., реакции переноса электрона, азосочетания, окисления, полимеризации, цепного галоидирования и т. д. [25]. ХПЯ дает важную информацию о механизмах, вскрывает их новые стороны. К новым результатам, полученным методом ХПЯ, относится обнаружение радикальных реакций синглетных карбепов и ориентации нуклеофильного типа в реакциях ароматического присоединения радикалов, установления ряда стабильности ацилоксиради-калов при распаде ацильных перекисей, доказательство роли диа-зофенильного радикала в ряде реакций термического распада и переноса электрона, обнаружение фотохимического распада кетонов в эксиплексах, установление радикального механизма для ряда реакций, считавшихся классическими примерами нуклеофильного или электрофильного замещения, и т. д. [c.223]

    Эффективным агентом реакции сочетания, проходящей гладко и быстро, является положительно поляризованный диазониевый радикал АгЫг, который благодаря большой электрофильности атакует акионоидные или нуклеофильные центры молекулы, например о- и л-положения фенолята натрия или анилина. Механизм реакции диазониевых солей с ароматическими фенолами или аминами еще не полностью освещен и есть различия в объяснении известных фактов. Хотя качественные наблюдения касаются рекордного количества случаев взаимодействия различных диазотированных аминов с разнообразными фенолами и аминами, а в некоторых случаях проведены и кинетические исследования, было бы интересным иметь более обширные данные о сочетании компонент с определенными и прогрессивно варьируемыми изменениями в строении. Имеющихся сведений, однако, достаточно для того, чтобы показать, что реакция азосочетания проходит по механизму, согласующемуся с теорией замещения в ароматическом ряду. [c.460]

    За прошедшие три десятилетия и после этапного обзора Баннета и Залера [1] химики-органики признали, что ароматические соединения могут легко вступать не только в реакции электрофильного замещения, но и в реакции нуклеофильного замещения. Механизмы этих реакций весьма разнообразны и определяются природой ароматической части молекулы, нуклеофила и условиями проведения реакций. Б общем случае [c.9]

    Первые главы книги, в которых излагаются основы теории строения молекул, природа химической связи, электронные эффекты, физические свойства молекул, представления об ароматичности и классификация реагентов и реакций, принципиально не отличаются от первого издания. Последующие главы, связанные с механизмами органических реакций, существенно изменены и дополнены. Так, сильно расширена глава, посвященная замещению в ароматическом ряду, в результате включения в нее реакций нуклеофильного и радикального замещения в бензольном ядре. Естественно, что основная часть этой главы посвящена электрофильному замещению в бензольном кольце. Этот раздел также существенно расширен за счет новых данных, полученных в 1953—1969 гг. В первом издании основные закономерности в ароматическом ряду (природа электрофильного агента, механизм реакции, правила ориентации) разбирались на примере реакции нитрования. Во втором издании эти вопросы оказалось более удобным разбирать на примере галогенирования, поскольку большинство имеющихся в настоящее время данных получено именно для этой реакции. Кроме классических реакций электрофильного ароматического замещения, где уходящей группой является протон, рассмотрена большая группа реакций протодеметаллирования ароматических производных элементов IV группы АгЭАШз (Э = 31, Ое, 8п, РЬ). [c.6]

    Венуто и сотр. [1, 15, 16] изучали алкилирование олефинами замещенных бензолов (например, фенола и анизола), а также гетероциклических соединений (тиофена, пиррола). При алкилировании фенола были получены необычные результаты. Оказалось, что алкилирование фенола этиленом идет в более жестких условиях ( 200° С), чем алкилирование бензола ( 120° С), хотя фенол более чувствителен к нуклеофильной атаке. Кроме того, было установлено, что присутствие фенола подавляет алкилирование бензола. Венуто и Вю [17] считают, что такое обращение реакционной способности бензола и фенола на цеолите ННдУ, активированном в токе кислорода при 550° С, объясняется сильной адсорбцией фенола на катализаторе, которая уменьшает доступность активных центров для слабо-адсорбируемых молекул этилена. Таким образом, адсорбированный этил-катион вступает в реакцию в соответствии с механизмом Ридила, т. е. взаимодействует с молекулой ароматического соединения, находящейся в свободном, а не в адсорбированном состоянии. [c.132]

    Как видно из выщеизложенного, реакции нуклеофильного ароматического замещения чаще всего идут по механизму Эти реакции, очевидно, начинаются с образования переходного состояния, структура субстрата в котором близка к исходной структуре молекулы. Далее это состояние переходит в а-комплекс — промежуточный продукт реакции. Третьим этапом, по-видимому, является еще одно переходное состояние, структура которого близка к структуре конечного продукта реакции  [c.142]

    Предполагается существование двух возможных способов атаки молекулы карбамата [14]. Согласно одному из них, вначале происходит нуклеофильная атака гидроксильным ионом карбонильного углерода, после чего следует распад промежуточного карба-матного иона. Скорость первой реакции (й]), вероятно, определяет скорость процесса в целом, так как решающее значение имеет полярность карбонильной группы. Увеличенная электрофильность спиртового остатка приводит к усиленной поляризации карбонильной группы, облегчая тем самым нуклеофильную атаку гидроксильным ионом. Этот механизм важен прежде всего для Ы, Ы-дизаме-щенных ароматических и Ы-замещенных алифатических карбаматов [14]. [c.124]

    Мояомолекуляриый тип (превращений 5л 1, протекающий с участием ароматических соединений, по своему механизму и формально-кинетическим данным полностью соответствует аналогичным реакциям в алифатическом ряду. Было найдено, что этот тип превращений имеет место при замещении N=N группы в результате атаки нуклеофильными реагентами. Среди реакций разложения диазосоединений этот тип превращений является самым важным. Механизм его выражается уравнениями (1) — (2 г). Еще в ранних кинетических исследованиях было установлено, что разложение диазосоединений протекает как моно молекулярная реакция (по уравнению 1-го порядка). Для реакций с участием молекул растворителя [(2а) и (2г)] данные эти не исключают возможности. механизма 5 однако в пользу механизма бл однозначно свидетельствуют установленные многими исследователями факты, - согласно которым скорость реакций, протекающих ло схеме (2в), не изменяется шропорцио-иально изменению концентрации ионов галоидов и существенно не зависит от природы последних. Найденное во многих исследованияхв большинстве случаев небольщое замедление разло- [c.84]


Смотреть страницы где упоминается термин Нуклеофильное замещение в ароматических молекулах Механизм реакции: [c.15]    [c.361]    [c.247]    [c.459]    [c.371]   
Смотреть главы в:

Основы органической химии. Ч.1 -> Нуклеофильное замещение в ароматических молекулах Механизм реакции




ПОИСК





Смотрите так же термины и статьи:

Ароматические молекулы

Замещение механизм

Замещение нуклеофильное

Механизмы нуклеофильного

Механизмы реакций замещения ароматического

Нуклеофильное замещение ароматическое

Нуклеофильное замещение механизм SnI

Реакции замещения

Реакции замещения механизмы

Реакция нуклеофильного



© 2025 chem21.info Реклама на сайте