Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определения кинетической теории

    Эта книга могла бы также иметь название Кинетическая теория разрушения полимеров . Однако термин кинетическая теория нуждается в определении или по крайней мере некотором пояснении. В кинетической теории детально рассматривается влияние дискретности материи, движения и физических свойств молекул на макроскопическое поведение ансамбля в газообразном или другом состоянии вещества. В кинетической теории прочности приходится дополнительно учитывать упругие и неупругие деформации, химические реакции и физические процессы, типы различных этапов разрушения и их последовательность. [c.7]


    Сравнение уравнения (IV,22) с уравнением (IV, 15) показывает, что энергия активации есть разность между средней энергией активных столкновений и средней энергией всех столкновений. Приведенное определение энергии активации является наиболее строгим в рамках применения молекулярно-кинетической теории к изучению скоростей химических реакций. Другое истолкование энергии активации будет дано при разборе теории активного комплекса. [c.132]

    Теперь в неизотермическом случае диффузионный поток зависит не только от градиента относительной концентрации р Р = п п (концентрационная диффузия), но и от градиента температуры (термодиффузия). Величина й,, характеризует соотношение коэффициентов термодиффузии и концентрационной диффузии. Из (3-19) можно получить соотношение (3-7) для коэффициента взаимной диффузии (неточное) и выражение для кт (еще более неточное, непригодное для практических расчетов). Строгая кинетическая теория Энскога и Чепмена также приводит к соотношению (3-19). При этом получается формула (3-12) для коэффициента диффузии 0 2 находятся соотношения для определения термодиффузионного отношения кт- Однако эти соотношения получаются очень громоздкими, сложным оказывается даже расчет к- по первому приближению, он не обеспечивает к тому же (в отличие от вычисления достаточной точности. [c.73]

    Грубое определение условий, при которых диффузия оказывает существенное влияние, можно сделать, сравнивая время диффузии со временем протекания параллельных или последовательных процессов. Из кинетической теории (см. разд. VI.7) известно, что время, необходимое для того, чтобы молекула продиффундировала на расстояние х, дается выражением to x /D, где D — коэффициент диффузии, обратно пропорциональный давлению (т. е. Z) = DJP). Если процесс представляет собой захват радикалов на стенках, то по кинетической теории число ударов о стенку в секунду (см. разд. VII.8) дается соотношением ,N S, где с — средняя скорость молекул, S — поверхность, N — число молекул па единицу объема. Среднее время захвата молекулы при ударе о стенку равно общему числу молекул NV, деленному па скорость захвата, или = 4F/>5 e, где е— вероятность захвата при ударе о стенку. [c.386]

    Теплота и работа, Согласно молекулярно-кинетической теории каждое тело располагает определенным запасом внутренней энергии, который слагается из энергии движения молекул (поступательного и вращательного), называемой внутренней кинетической энергией, и энергии взаимного притяжения молекул — внутренней потенциальной энергии (в идеальных газах отсутствует). [c.25]


    Зависимость вязкости газовой смеси от состава обычно нелинейная, и использование правила аддитивности для ее определения может привести к существенным погрешностям. Более точные результаты получаются при использовании соотношений, выведенных исходя из кинетической теории газов. Для смеси, состоящей из к компонентов, при низких давлениях, вязкость можно рассчитать по соотношению [c.121]

    Для понимания сущности явлений переноса целесообразно вспомнить некоторые основные понятия и определения кинетической теории газов. [c.218]

    Задача о частоте тройных столкновений, т. е. столкновений, в которых принимают участие одновременно три молекулы, требует предварительного определения длительности двойного столкновения. Дело в том, что если рассматривать молекулы как идеальные упругие шары, а именно из этого исходит элементарная кинетическая теория газов, то двойное столкновение мгновенно, и вероятность участия в нем еще и третьей частицы равна нулю. Задачу можно решить приближенно, если отка- [c.114]

    Приведенный пример показывает, что применение молекулярно-кинетической теории идеального газа к химическим процессам связано с рядом затруднений. В рамках кинетической теории возможны два пути преодоления этих затруднений. Во-первых, можно попытаться принять определенную модель силового поля сталкивающихся молекул и, исходя из нее, вывести все необходимые соотношения. Однако типы взаимодействия частиц достаточно разнообразны, поэтому трудно всегда пользоваться одной и той же моделью. Кроме того, получаемые аналитические соотношения, как правило, трудно применимы к конкретным расчетам из-за сложности или необходимости находить дополнительные параметры. [c.122]

    Таким образом, внутренняя энергия представляет собой такое свойство, которое проявляется веществом при определенном сочетании условий. Из интуитивных соображений можно понять, что внутренняя энергия как-то связана с температурой, а простая молекулярно-кинетическая теория газов, изложенная в гл. 3, указывает, что для идеального одноатомного газа Е = = КТ [c.35]

    Исследуем возможность определения кинетических констант нелинейного химического процесса на основе теории оптимальной фильтрации. В данном случае уравнения состояния и наблюдения системы имеют вид [c.462]

    Название науки — физическая химия — отражает как историю возникновения ее на стыке двух наук — физики и химии, так и в значительно большей мере то, что она широко использует теоретические и экспериментальные методы физики при исследовании химических явлений. Два теоретических метода физики давно и широко используются при решении основных задач физической химии. Термодинамический метод применяется для решения проблемы направленности процессов химического и фазового равновесия. Метод молекулярно-кинетической теории — при определении свойств систем, состоящих из множества частиц, таких, как газы, кристаллы или растворы. [c.6]

    Решение. Для определения работы адиабатического расширения воспользуемся уравнением (VI.15). Величину у определим из Ср и Су. Аргон — одноатомный газ. Следовательно, его изохорная теплоемкость на основании молекулярно-кинетической теории идеальных газов равна v= /2 R = 1,5-9,3143 = 12,4715 Дж/(моль К)  [c.47]

    Теорию процессов, связанных с переходом в состояние равновесия, называют кинетической 1100], а соответствующие ей уравнения— кинетическими. Следуя этому определению, кинетическими уравнениями для эмульсий называют уравнения, отражающие изменение во времени и пространстве концентрации и распределения по размерам капель эмульгированной жидкости. [c.81]

    Такое определение справедливо и для жидкости, если при этом не происходит конвективного теплопереноса. Кинетическая теория дает простое объяснение теплопроводности в газа , связывая ее с удельной теплоемкостью газа с , средней скоростью частицы и и средней длиной свободного пробега  [c.190]

    Для определения механизма химической реакции и применения кинетических теорий с целью расчета абсолютных скоростей реакций следует рассматривать химическое превращение как процесс перегруппировки атомов, который в конечном счете определяется свойствами реагентов и характером их взаимодействия. В частности, знание поверхности потенциальной энергии целиком расшифровывает в адиабатическом приближении механизм химической реакции, а далее с помощью кинетических теорий возможен расчет ее скорости. Адиабата реакции определяется на основе квантовой химии. [c.50]

    Перрен устранил это затруднение, воспользовавшись более крупными частицами. В результате долгой кропотливой работы ему удалось наладить получение из некоторых смолистых веществ шариков приблизительно одинакового радиуса — порядка десятых долей микрона. Такие частицы хорошо видны под микроскопом. Зная их радиус и плотность примененного для изготовления вещества, легко вычислить массу каждого шарика. Будучи разболтаны с водой (или другой жидкостью) в маленькой стеклянной камере, они первоначально заполняют весь ее объем равномерно, но затем, после отстаивания, устанавливается определенное распределение частиц по высоте (рис. П1-2). Производя при помощи микроскопа (М) подсчет числа частиц в единице объема на разных высотах, можно проверить, совпадают ли результаты с требованиями кинетической теории.  [c.64]


    Решение. Для расчетов надежнее всего использовать формулу (3-12), вытекающую из кинетической теории газов. Приняв для описания взаимодействия молекул потенциальную функцию Леннарда-Джонса, можно взять значения параметров а и е/к для составляющих смесей из табл. 3-1, величины можно приближенно использовать и для температур, более высоких, чем 1000° К (данные табл. 3-1 взяты из результатов измерения вязкости в диапазоне температур 300—1000° К). При определении параметров для смесей по параметрам для составляющих газов следует использовать комбинационные правила (3-14) и (3-15). Значения приведенного интеграла столкновений можно взять из графика на рис. 3-3. Результаты расчетов приводятся в табл. 3-3. [c.83]

    Алфрей [28] установил, что для решения многопараметрического уравнения состояния, подобного приведенному выше, необходимо определить более чем один структурный параметр, влияющий на поведение материала. Так, параметр эффективная плотность сшивания , используемый в кинетической теории упругости каучуков для оценки степени молекулярно-структурного сшивания, в данном случае недостаточно полно отражает состояние полимера, и требуется определение дополнительных структурных характеристик, например гибкости цепей, плотности энергии когезии И пр, [c.572]

    Ассоциативные явления происходят и в газах при их рассмотрении с точки зрения молекулярно-кинетической теории газов и сил взаимодействия между молекулами, Наиболее ярко подобные явления выражены в газовых смесях при конденсации компонентов смеси или дальнейшем образовании в ней твердой фазы, происходящих в присутствии неконденсирующихся газов. При этом на процесс фазовых превращений дополнительно накладывается взаимодействие между молекулами пара и газа, приводящее к ассоциации, которая происходит тем интенсивнее, чем меньше кинетическая энергия сталкивающихся молекул, В этих условиях образование твердой фазы при конденсации приводит к тому, что отраженные от холодной поверхности молекулы газа сами выступают в виде ядер — центров сорбции и конденсации паров, а также переносчиками пара к поверхности, за счет чего процесс в определенных термобарических условиях может значительно интенсифицироваться, [c.100]

    Ценность этой группы работ Бона с сотр. обусловлена и еще одной причиной. Эти работы проводились в период, когда возникли и стали получать все большее распространение идеи цепной теории, когда, помимО характеристики реакции по ее продуктам, значительный интерес приобрели и сопутствующие химическим превращениям их различные кинетические проявления. Не только вещества, образующиеся при окислении углеводородов, и их кинетика накопления, но и то, как изменяется по всему ходу процесса давление, как влияют на реакцию температура, давление, природа и обработка поверхности, изменение отношения поверхности к объему, добавка инертных газов, химически активных примесей — все это начало подвергаться изучению и, как увидим позже, явилось очень важным материалом для установления кинетического механизма, лежащего в основе окислительного превращения углеводородов. Как будет ясно из приводимого ниже обзора результатов, полученных во второй группе работ Бона с сотр., эти работы отвечали задачам, которые стояли в то время перед исследованием окисления углеводородов. Во всяком случае в них чуть ли не впервые при изучении окисления углеводородов подверглись экспериментальному рассмотрению указанные выше кинетические характеристики реакции. В следующей главе будет показано, как широко использовал Н. Н. Семенов эти результаты Бона при определении кинетического механизма окисления углеводородов. [c.14]

    Рассмотренная молекулярно-кинетическая теория трения каучукоподобных сеточных полимеров имеет определенные границы применения. Она становится неприменимой в следующих условиях  [c.374]

    Зависимость скорости реакции от температуры. Молекулярно-кинетическая теория газов и жидкостей дает возможность подсчитать число соударений между молекулами тех или иных веществ при определенных условиях. Если воспользоваться результатами таких подсчетов, то окажется, что число столкновений между молекулами веществ при обычных условиях столь велико, что все реакции должны протекать практически мгновенно. Однако в действительности далеко не все реакции заканчиваются быстро. Это связано с необходимостью преодоления энергетического барьера реакции — энергии активации. Это осуществляют только активные молекулы, имеющие энергию выше, чем Е ,. [c.197]

    Изучение молекулярно-кинетических явлений важно по двум причинам. Одна из них— экспериментальная проверка основных положений молекулярно-кинетической теории. Коллоидные, системы в этом отношении являются прекрасным объектом исследования, так как с помощью ультрамикроскопа можно следить за движением отдельной частицы. Вторая причина — использование получаемых результатов для решения практических задач определения размеров и массы частиц и макромолекул, фракционирования систем и др. Рассмотрение молекулярно-кинетических свойств начнем с диффузии. [c.135]

    Теория активных столкновений. Для осуществления реа щии с точки зрения теории активных столкновений достаточно тесного сближения частиц, а скорость взаимодействия должна быть пропорциональна числу столкновений в данном объеме за данный промежуток времени. Если бы каждое соударение было результативным, то все реакции протекали бы мгновенно, так как, согласно кинетической теории, в 1 см газа происходит ежесекундно примерно 10 соударений, причем за этот промежуток времени каждая молекула сталкивается с другими. 100 миллиардов раз. Однако расчеты, приведенные для бимолекулярных реакций, показали, что отношение числа реагирующих молекул к числу сталкивающихся составляет 10 10 . Эта колоссальная диспропорция объясняется несколькими причинами. Столкнувшиеся молекулы, чтобы прореагировать, должны быть определенным образом ориентированы в пространстве, т. е. образовать конфигурацию, способствующую разрыву одних и формированию других связей. Тем самым резко снижается вероятность взаимодействия при столкновении активных молекул. Так, например, бензойная [c.147]

    Статистическая термодинамика, возникшая на основе кинетической теории вещества, позволяет непосредственно из свойств молекул, полученных с помощью спектроскопических исследований, найти для значительного числа веществ абсолютные значения термодинамических свойств и рассчитать равновесие, не прибегая к трудоемким и дорогостоящим калориметрическим определениям при низких температурах. При этом результаты подчас более точны, чем полученные другими методами, в частности расчетом по третьему закону термодинамики. [c.496]

    Согласно современной молекулярно-кинетической теории жидкостей, предложенной Френкелем, передвижение молекул в жидкости совершается таким образом, что при смещении одной молекулы происходит перегруппировка соседних молекул, при которой каждая молекула снова стремится занять положение, наиболее выгодное в энергетическом отношении. Молекулы непрерывно скачкообразно перемещаются, в результате чего происходит процесс самодиффузии. Растворенные в жидкости молекулы совершают скачки примерно так же, как и молекулы растворителя, и вследствие непрерывности и хаотичности движения они не остаются в каком-либо определенном месте. [c.121]

    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    Пока нет теоретического объяснения такого увеличения скорости гетерогенных каталитических реакций в жидкой фазе по сравнению с газовой. Можно предполагать, что это явление в какой-то мере связано с тем, что жидкость является иолуупорядоченной системой , к которой неприменимы принципы классической химической кинетики, базирующейся на теории столкновений и кинетической теории газов. Вследствие существования ближнего порядка в расположении молекул, т. е. их определенной ориентации и взаимного влияния, возможно, что понижение энтропии АЗ при образовании активированного комплекса реагентов с катализатором составляет незначительную величину это резко сказывается на скорости процесса (см. раздел 1.1). Точно так же объединение молекул в сольватацион-ные комплексы может сопровождаться понижением энергии активации реакции, подобно тому, как это имеет место при интермолекулярных превращениях. [c.42]

    Для жидкостей, которые не могут рассматриваться как идеальные смеси, уравнения, аналогичные уравнениям Максвелла—Стефана, отсутствуют. Недостатки кинетической теории жидкостей более существенны для многокомпонентных смесей, чем для бинарных, поскольку для последних необходимо знание только одного коэффициента диффузии, который может быть измерен или предсказан полуэм-пирическими методами, в то время как для многокомпонентной смеси число подлежащих определению коэффициентов диффузии значительно возрастает. [c.213]

    Р е ш е н и е. Для определения работы адиабатического расширения поспользуемся уравнением (VI.15). Величину определим из Ср и С /. Аргон — одноатомный газ. Следовательно, его изохорная теплоемкость на основании выводов из молекулярно-кинетической теории идеальных газов = /2 =1,5-8,3143=12,4715 Дж/(моль-К)  [c.49]

    Определение эквиналентного уширяющего давления Р основано на упрощенной кинетической теории молекул с оптическим столкновительным диаметром Од для поглощающих и Оь для уширяющих (в данном случае азот) компонентов. Ширина линии у — результат сдвига естественной ширины в процессе молекулярных столкно- [c.492]

    Кинетическая теория газов позволяет сделать некоторые обобщения. Для определения коэффициента диффузии можно использовать полуэмпирическое уравнение Гиллиленда  [c.546]

    Из рассмотренной кинетической теории стеклования следует согласующийся с экспериментальными данными вывод, что время релаксации обратно пропорционально скорости охлаждения вещества. Иначе можно сказать, что при температуре стеклования Тс произведение тш = onst (формула Б а р т е н е в а). Так как константа здесь равна kT lU (U — энергия активации при Тс), данное соотношение служит математическим определением температуры стеклования. Если скорость нагревания w+ = dTldt та же самая, что и скорость охлаждения, т. е. w- = q, то температура размягчения Тс = Тс и границы областей стеклования и размягчения совпадают. [c.40]

    Эти ограничения применимости молекулярно-кинетической теории трения эластомеров подтверждаются экспериментальными исследованиями разных авторов. Согласно данной теории, при Т— = сопз1 сила трения должна линейно возрастать с увеличением логарифма скорости скольжения. Оказалось, что это верно лишь до определенных значений V, а при дальнейшем росте 1п о и Т сила трения резко уменьшается. [c.374]

    Согласно молекулярно-кинетической теории, при u = onst сила трения F с понижением температуры увеличивается по линейному закону. Экспериментальная проверка показала, что это справедливо лишь в определенном интервале температур. При некотором значении температуры Тк сила трения резко падает. Эта температура, называемая критической, несколько выше температуры стеклования полимера. Понижение F с уменьшением температуры ниже критической Тц связано главным образом с резким увеличением модуля упругости, а следовательно, с уменьшением 5ф. Значение Г, можно рассчитать исходя из тех же соображений, которыми мы пользовались при расчете критической скорости скольжения. При и = onst с понижением температуры время оседлой жизни Т] практически остается постоянным, но зато значительно увеличивается время процесса самодиффузии сегментов цепей Т2, в результате [c.375]

    Из молекулярно-кинетической теории газов нам известно, что при повыщении температуры средняя кинетическая энергия молекул газа возрастает. Тот факт, что скорость реакции перегруппировки метилизонитрила при повьЕшении температуры возрастает, заставляет предположить, что перегруппировка молекул может быть связана с их кинетической энергией. В 1888 г. щведский ученый Сванте Аррениус выдвинул цредаоложение, что, прежде чем вступить в реакцию, молекулы должны получить некоторое минимальное количество энергии, чтобы перейти из одного химического состояния в другое. Такая ситуация очень напоминает изображенную на рис. 13.6. Валун, находящийся в долине Б, имеет более низкую потенциальную энергию, чем в долине А. Для того чтобы переместиться в долину Б, валун должен получить определенную энергию, необходимую для преодоления барьера, препятствующего переходу из одного состояния в другое. Подобно этому, молекулам может потребоваться некоторое минимальное количество энергии на преодоление сил, удерживающих их в исходном состоянии,-тогда они смогут образовать новые химические связи, создаю-Ецие другую структуру. В нащем примере с метилизонитрилом можно представить себе, что для протекания перегруппировки необходимо, чтобы в этой молекуле группа К= С перевернулась таким образом  [c.16]

    Реакции более высокой молекулярности маловероятны. По кинетической теории условием взаимодействия молекул является их одновременное столкновение друг с другом, а вероятность одновременного столкновения нескольких молекул определенного вида ничтожно мала, поэтому даже тримолекулярпые реакции немногочисленны, а тетрамо-лекулярные крайне редки, чаще встречаются бимолекулярные реакции. [c.325]

    Термодиффузия. При изменении температуры газовой смеси и поддержании ее на достигнутом уровне происходит определенное расслаивание компонентов смеси. При этом молекулы более тяжелого газа диффундируют в направлении более низкой температуры до достижения равновесного состояния. Это явление называют термодиффузией. Оно было предсказано на основе положений кинетической теории газов. При одной и той же температуре молекулы обоих компонентов газовой смеси обладают одинаковой средней кинетической энергией [уравнение (7.1.13)], но различным количеством движения ти = ЗкТт, большим у тяжелых молекул. Поэтому более тяжелые молекулы дольше сохраняют направление и скорость движения, перемещаясь преимущественно в направлении снижения температуры, несмотря на постоянные упругие соударения молекул. Это связано с увеличением разности количеств движения молекул тяжелых и легких газов с ростом, температуры. Явление термодиффузии наблюдается и в жидкостях (эффект Людвига — Соре). Термодиффузия возникает и в случае изомерных соединений, на основании чего можно сделать вывод о зависимости ее не только от величины, но и от формы молекул. [c.334]

    Для определения скорости молекул газа используют выводы кинетической теории газов, основы которой были заложены в XVIII в. работами М. В. Ломоносова и Д. Бернулли. Согласно этой теории давление р, которое оказывает газ на стенку сосуда, зависит от силы ударов его частиц. В свою очередь, сила удара зависит от кинетической энергии Е КИН поступательного дви-жения частиц, заключенных в данном объеме V газа и ударяющих в эту стенку  [c.80]

    Для определения скорости молекул газа используют выводы кинетической теории газов, основы которой были заложены в XVIII в. работами М. В. Ломоносова и Д. Бернулли. Согласно этой теории давление р, которое оказывает газ на стенку сосуда, зависит от силы ударов его частиц. В свою очередь, сила удара зависит от кинетической энергии поступа- [c.102]


Смотреть страницы где упоминается термин Определения кинетической теории: [c.533]    [c.89]    [c.196]    [c.196]    [c.176]    [c.5]    [c.370]   
Смотреть главы в:

Теория горения -> Определения кинетической теории




ПОИСК





Смотрите так же термины и статьи:

Теория, определение



© 2025 chem21.info Реклама на сайте