Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы титрования с применением индикаторов

    Широкое применение в практике аналитической химии нашел другой раздел потенциометрии, известный под названием потенциометрического титрования. Оно заключается в регистрации изменения равновесного потенциала электрода в процессе химической реакции между потенциалопределяющим компонентом в растворе и специально введенным реагентом в качестве титранта. Потенциометрический метод титрования по своим возможностям значительно превосходит титри-метрический метод с применением цветных индикаторов и обладает по сравнению с ним следующими основными преимуществами  [c.108]


    Титриметрический метод. Титрование раствором соли Мора. Четырехвалентный ванадий окисляют в сернокислой среде перманганатом калия до пятивалентного состояния. Затем титруют раствором соли Мора с применением индикатора — фенилантраниловой кислоты. Определению мешает вольфрам. [c.341]

    Адсорбционные индикаторы можно применять для определения йодидов в присутствии хлоридов, а также при методах титрования, основанных на образовании других осадков, в частности — нерастворимых солей свинца. Известно также применение смешанных адсорбционных индикаторов. [c.420]

    Ю. В. Карякин. Кислотно-основные индикаторы. Госхимиздат, 1951, (197 стр.). В книге дан обзор различных теорий изменения окраски и приведены характеристики важнейших индикаторов. Даются практические указания и расчеты ио применению индикаторов в различных случаях кислотно-основного титрования. Описаны также методы колориметрического определения pH, в частности, в м тных и окрашенных растворах. [c.486]

    При объемных методах анализа во многих случаях невозможно подобрать индикатор, как, например, при титровании темных окрашенных или мутных растворов. Поэтому помимо методов титрования в присутствии индикаторов нашли применение и электрохимические методы титрования. Методы эти просты в исполнении и более объективны, так как конечная точка титрования определяется электрометрически. Точка эквивалентности определяется по скачку потенциала электрода, погруженного в испытуемый раствор. [c.147]

    Возможна также автоматизация серийных анализов. Автоматизация включает все ступени анализа взятие пробы, ее приготовление, добавление титранта, определение конечной точки титрования, считывание данных и расчет [1—5]. Автоматизация может быть применена при контроле процесса в замкнутом контуре и для непрерывного анализа. Мы не будем подробно рассматривать автоматизацию анализа. Однако развитие инструментальных методов и автоматизация анализа ни в коем случае не обесценивают методы с применением индикаторов и рН-методы, а также работу химиков-аналитиков. [c.123]

    Методы титрования в неводных растворах находят широкое применение в аналитической практике. Их используют для анализа разнообразных неорганических и органических веществ и для дифференцированного титрования многокомпонентных смесей солей, кислот и оснований. Одно из важнейших преимуществ методов неводного титрования — возможность определять нерастворимые в воде соединения, а также вещества, разлагаемые водой или образующие в водных растворах стойкие нерасслаивающиеся эмульсии. Титрование неводных растворов может выполняться визуальным методом с применением индикаторов. потенциометрическим, кондуктометрическим, амперометрическим и другими физикохимическими методами. [c.409]


    Помимо методов титрования в присутствии индикаторов, нашли применение и электрохимические методы определения точки эквивалентности. В процессе электрохимического титрования наблюдение ведут не за изменением окраски раствора (так как в этом случае индикаторы не применяют), а за изменением электрохимических показателей титруемого раствора электропроводности (кондуктометрическое титрование), окислительно-восстановительного потенциала (потенциометрическое титрование), диффузионного тока (амперометрическое титрование) и т. п. При этом титрование выполняют обычным способом, но вместо визуального наблюдения за изменением окраски индикаторов пользуются приборами, показания которых не зависят от субъективных наблюдений экспериментатора. [c.327]

    В отличие от обычного титриметрического метода, основанного на применении цветных индикаторов, в потенциометрическом методе титрования индикатором является электрод, на котором протекает индикаторная электрохимическая реакция. В первом методе показателем достижения точки эквивалентности служит переход окраски цветного индикатора, во втором — резкое изменение потенциала электрода (обычно называемое скачком потенциала), связанное с возникновением другой электрохимической реакции на поверхности раздела электрод — раствор. [c.37]

    Кондуктометрическое титрование, наряду с рассматриваемым в разд. X. 4 потенциометрическим титрованием, принадлежит к инструментальным методам химического анализа, которые имеют определенные преимущества перед обычными методами титрования, связанными, например, с применением цветных индикаторов. Эти преимущества заключаются в возможности работать с мутными и окрашенными жидкостями в объективности и часто достигаемой большей точности определения в возможности использования таких реакций, для которых не имеется соответствующего индикатора, и т. д. [c.465]

    Метод 11 титрования с применением индикаторов [c.78]

    Измерение э.д.с. концентрационных цепей используется в потенциометрическом методе анализа. Недостатком обычного метода титрования является то, что для некоторых реакций не удается найти подходящего индикатора. Кроме того, в окрашенных и загрязненных растворах применение индикатора становится затруднительным. [c.191]

    При осаждении сульфатов солями свинца используют как электрохимические (потенциометрическое и амперометрическое титрование), так и визуальные методы с применением металлохромных индикаторов на ион свинца. [c.94]

    В тех случаях, когда при титровании по каким-либо причинам невозможно или нецелесообразно применение индикаторов, конечную точку титрования определяют с помощью одного из инструментальных методов, реагирующих на изменение физико-химических или физических свойств раствора. [c.455]

    Метод с применением ионообменных смол. Сущность метода заключается в пропускании анализируемого раствора через колонку, заполненную катионитом в Н-форме (применяют СДВ-3, КУ-2, амберлит IR-120 и др.). Весь фосфор при этом в виде фосфорной кислоты (вместе с другими кислотами, если они находились в анализируемом растворе в свободном виде или в виде солей) находится в фильтрате. Фосфорную кислоту (или смесь кислот) определяют титрованием щелочью в присутствии соответствующих индикаторов. Ионообменный метод применяют для определения относительно больших количеств фосфора в фосфоритах [358, 366, 1111], для определения при совместном присутствии фосфатов, сульфатов и хлоридов [526], фосфатов и сульфатов [485, 646]. [c.34]

    Были предложены два метода прямого определения ангидридов, по которым содержащаяся в пробе кислота не определяется. Смит, Брайант и Митчел разработали методику с применением реактива Фишера [50, 51]. Метод, описанный ниже, также позволяет определить ангидрид независимо от содержания кислоты в пробе. Это быстрый метод, удобный для обычного визуального титрования с индикатором, характеризуется высокой точностью при определении высоких и низких концентраций ангидрида. [c.186]

    Карякин Ю. В. Кислотно-основные индикаторы. М. Госхимиздат, 1951, 197 стр. В книге дается обзор различных теорий и характеристика важнейших индикаторов. Даны практические указания по применению индикаторов в различных случаях" кислотноч)сновного титрования. Описаны колориметрические методы определения pH. [c.383]

    Таким образом, инициатором метода титрования с применением ртутного капельного электрода в качестве индикатора конечной точки является Гейровский (и его школа).  [c.10]

    По методу прямой потенциометрии определяют значение электродного потенциала, затем вычисляют концентрацию определяемого иона в растворе. Этот метод нашел большое практическое применение для определения концентрации водородных ионов. Он имеет целый ряд преимуществ по сравнению с другими методами определения pH. В объемном методе анализа при потенциометрическом титровании цветной индикатор заменяют металлическим электродом. Конец реакции определяют по резкому изменению электродного потенциала в эквивалентной точке (скачок потенциала). [c.177]


    Одним НЗ методов окислительно-восстановительного титрования является перманганатометрия. Метод перманганатометрии основан на реакциях окисления восстановителей перманганатом калия. Чаще всего титрование проводят в кислой среде. Это обусловлено тем, что в кислой среде МПО4-ИОН, окрашивающий раствор в розовый цвет, восстанавливается до бесцветного иоиа что позволяет достаточно точно фиксировать точку эквивалентности титрования без применения индикаторов. Кро.ме того, окислительная способность перманганата в кислой среде несравненно выше и, следовательно, область применения шире, чем в нейтральной и щелочной средах. [c.104]

    Хотя индикаторные свойства окращенных веществ природного происхождения были известны давно, определение кислотности оптическими методами имеет не только исторический интерес. Такого рода измерения выполняются быстро и хорошо воспроизводимы. Методика измерений настолько проста, что доступна неквалифицированному персоналу. Приборы, необходимые для визуальной колориметрии, дешевы и портативны. Фотометрическое титрование [1] легко автоматизируется в ряде случаев колориметрию выгодно использовать для контроля промышленных процессов [2]. Дифференциальная спектрофотометрия с применением индикаторов обеспечивает наиболее точное определение точки эквивалентности при кислотно-основном титровании [3]. [c.125]

    Для определения брома в отсутствие иода предложен а с к о р-бинометрический вариант метода с применением вариаминового синего в качестве индикатора (464, с. 122—1231, но он сложнее иодометрического способа, не превосходит его по чувствительности и не обеспечивает выигрыша точности. То же можно сказать о других методах аскорбинометрии, основанных на восстановлении брома растворами соли Мора или ферроцианида калия и последующем титровании образовавшегося в эквивалентном количестве Fe(III) раствором аскорбиновой кислоты в присутствии роданида калия [35] или 2,6-дихлорфенолиндофенола [465]. [c.76]

    Методы с применением индикаторов. Наиболее часто при арген-тометрическом титровании пользуются в качестве индикаторов растворами хромата калия К2СГО4 (метод Мора) или железо-амью-нийных квасцов NH,,Fe(S04)2 (метод Фольгарда). [c.434]

    Один из первых аргентометрических методов определения га" логенид-ионов — безындикаторный метод Ж. Гей-Люссака [24]. Титрование проводят маленькими порциями до прекращения помутнения после прибавления раствора азотнокислого серебра. Метод дает точные результаты, но кропотлив и требует определенного навыка. Поэтому на практике обычно пользуются методами с применением индикаторов. Основные варианты аргенто-метрического титрования сводятся к трем методам Мора, Фоль-гарда. Фаянса. [c.35]

    Целью данной работы было изучение возможности использования индикаторов бромфенолового синего и дифенилкарбазона для определения хлоридов в двууглекислом натрии и разработка методики меркуриметрического определения их с упомянутыми выше индикаторами для включения методики в проект ГОСТа Натрий двууглекислый (бикарбонат) взамен меркуриметрического метода с применением индикатора нит-ропруссида натрия. Установлено, что оптимальным является последовательное применение индикаторов растворение пробы двууглекислого натрия в присутствии индикатора бромфенолового синего и последующее титрование хлоридов с индикатором дифенилкарбазоном [4]. [c.54]

    Кондуктометрическое титрование применяется при исследова НИИ мутных или окрашенных растворов, исключающих возмож ность применения индикаторов. Метод основан на присутствии I растворах кислот (или оснований) высокоподвижных ионов Н4 (или 0Н ), обусловливающих хорошую электропроводность. При титровании происходит реакция нейтрализации и вместо этих ионов в растворе накапливаются ионы солей, обладающие меньшей подвижностью  [c.57]

    К достоинствам метода кондуктометрического титрования относится возможность проводить измерения с высокой точностью даже в очень разбавленных растворах. В термостатированной ячейке погрешность определения для МО" М растворов не превышает 2%. В отличие от титриметрических методов с применением визуальных индикаторов кондуктометрическое титрование пригодно для анализа окрашенных или мутных растворов. Графический способ нахождения конечной точки титрования позволяет избежать трудностей, возникающих из-за замедления реакции вблизи конца титрования и снижающих точность фиксирования конечной точки. Иногда с помощью кондуктометрического титрования можно проводить последовательное определение компонентов смеси, например, титровать кислоты с разлтающимися константами диссоциации. [c.819]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    Другим важным элементом титрования, от которого зависит точность измерения, является метод определения конечной точки. В методах титрования, которые рассматриваются ниже, использовались главным образом потенциометрические способы определения эквивалентной точки при нулевом токе, а также окислительно-восстановительные индикаторы. Небольшое применение нашли методы потенциометрического титрования при заданном токе с двумя поляризованными электродами и совсем не использовались методы потенциометрического титрования при заданном токе с одним поляризованным электродом и метод амперометрического титрования при постоянном напряжении с двумя поляризованными электродами [82], Последние три метода имеют простое аппаратурное оформление и могут иметь серьезные преимущества в определении конечной точки для малообра.-тнмых систем. [c.180]

    Метод основан на том, что фенольный гидроксил в б-м положении легко образует соли. Титрованием с метиловым красным производят нейтрализацию вещества, а применение индикатора тимолфталеина дает возможность определить конец образования соли. По количеству вступившего в эту реакцию NaOH определяют содержание 2-метил-4-метоксиметил-5-циан-6-оксипиридина. [c.173]

    Вападатометрическпе методы. Титрование гипобромит-ионов растворами солей У(П) и У(1У) проводят с применением редокс-индикаторов в инертной атмосфере, но это усложнение процедуры не компенсируется какими-либо преимуществами по сравнению с другими методами [405, 885]. [c.94]

    Индикатор образует с катионами кобальта в кислом растворе соединение красного или красно-фиолетового цвета. При прямом титровании раствором комплексона 1П окраска в точке эквивалентности изменяется из красной в желтую (цвет свободного красителя). Можно также титровать избыток комплексона обратно растворами Ti la, ТЬ(ЫОз)4, В1(ЫОз)з, Zn( 2Ha02)2. Метод был применен [944] для определения кобальта в присутствии больших количеств меди, например при анализе латуней и бронз. Мешающее влияние меди рекомендуется устранять восстановлением ионов двухвалентной меди иодидом калия и аскорбиновой кислотой. [c.123]

    Применимость метода. Концентрированные водные растворы нейтральных солей увеличивают скачок потенциала при титровании большинства оснований. Из-за отсутствия подходящих индикаторов визуальное титрование не дает удовлетворительных результатов с аминами, имеющими константу диссоциации менее 1-10 Потенциометрическое титрование нельзя применять для определения аминов с константой диссоциации ниже 1-10 . Метод не применим для анализа аминокислот, но им можно пользоваться для титрования некоторых солей слабых кислот с сильными основаниями. Достоинством метода титрования в концентрированных растворах является возмолсность его применения для раздельного титрования индивидуальных аминогрупп в многоатомных аминах он вообще применим для дифференциального титрования оснований. [c.416]

    Для нахождения КТТ следу ет выбирать такой индикатор, который дает сигнал (изменение цвета, степени люминесценции, появление осадка и т.д.) в пределах скачка титрования. КТТ и ТЭ обычно несколько не совпадают, что обусловливает систематическую погрешность в J yчae применения индикатора ее называют индикаторной погрешностью (ошибкой) [16, 18]. Индикаторная погрешность в зависимости от правильности выбранного индикатора может колебаться в диапазоне от сотых до нескольких процентов. В общем случае интервал перехода окраски индикатора должен находится в пределах скачка титрования и как можно ближе к ТЭ кривой титрования, а в оптимальном варианте — перек-рывать ТЭ. Методики и формулы расчета индикаторных погрешностей при кислотноосновном, комплексонометрргческом и окислительновосстановительном титровании широко представлены в З ебной [1-13, 19-23, 39] и научной [14, 43 4] литературе. При визуальной регистрации добавление реагента прекращают, достигнув конечной точки титрования. При инструментальной регистрации титрант обычно добавляют и после конечной точки (примерно до двойного стехиометрического количества), определяя затем КТТ графически из кривой титрования. Основные методы регистрации КТТ приведены ниже.  [c.579]

    Физико-химические методы определения точки эквивалентности. Способы определения точек эквиналентности с помощью индикаторов не являются единственными. Существуют и другие, так называемые физикохимические методы определения точки эквивалентности. Во многих случаях применение индикаторов в процессе объемно-аналитических определений оказывается невозможным по разным причинам. Трудно или практически невозможно наблюдать изменение окраски индикатора в окрашенных или мутных растворах. В других случаях, например при титровании слабых и очень слабых кислот и оснований, индикаторы оказываются бесполезными, так как с их помощью невозможно достичь требуемой точности определения. Наконец, для многих объемно-аналитических определений еще не найдены требуемые индикаторы. Это в особенности относится к случаям дифференцированного (раздельного) титрования смесей разнообразных кислот или оснований. [c.327]

    Описанные в литературе методы определения ртути не дают точных результатов определения очень малых количеств ртути. Сюда относятся колориметрические методы, основанные на применении дитизона, дифенилкарбазида, метод Штока, а также метод спектрофотометрического определения ртути по поглощению мер-курициапатного комплекса в ультравполете и др. По мнению В. И. Кузнецова и Е. В. Митрофановой [1], метод титрования ртути йодедами с применением в качестве индикатора йодистого крахмала [2] для определения микрограммовых количеств ртути оказывается также непригодным конечная точка нечеткая и титрования плохо воспроизводятся. Малоудовлетворительные результаты получены этими авторами и при использовании растворов этилендиамин-тетраацетата (трилон В) с индикатором эриохром-черным. [c.114]

    Расмуссин и Нильсон сообщают, что при анализе растворов серебра с концентрацией выше 0,025-м. этот метод дает аналитически приемлемые результаты. Сравнение результатов термометрического определения цианида описанным выше методом и методом титрования с применением иода в качестве индикатора показало, что расхождение между ними было меньше 0,3%. [c.91]

    Нашими работами [8, 18—20] показано, что обменная адсорбция из растворрв солей избирательно выводит активные центры алюмосиликатного комплекса, практически не затрагивая обменных центров окислов, присутствующих, как правило, в избытке. Этот метод, по нашему мнению, позволяет точно фиксировать каталитическую активность образцов по мере введения иона щелочного металла в катализатор, Метод титрования катализатора в безводной среде веществами основного характера с применением различных индикаторов [16] является удовлетворительным для определения кислотной силы и числа кислотных мест, однако результаты зависят от величины молекул основания. Этот метод не дает четкого разграничения природы кислоты также и потому, что оставляет возможность образования комплекса Кат. Н КК и дает завышенные значения кислотности, определяемые этим методом по сравнению с расчетом на один атом Л1 [16]. [c.83]

    Применение этих методов особенно удобно тогда, когда титруемый раствор окрашен, т. е. когда работать с индикаторами невозможно, а также при титровании смесей, когда на кривой титрования появляется больше одной точки эквивалентности. Существенны преимущества потенциометрических методов и при титровании разбавленных растворов (обычно до 0,001 н.), когда эквивалентный участок кривой титрования узок и применение индикаторов в отдельных случаях связанр со значительными ошибками. Потенциометрические методы используют широко не только для анализа, но и как метод исследования при решении разнообразных химических проблем (определение констант протолиза кислот и оснований, констант устойчивости комплексов и др.). [c.328]


Смотреть страницы где упоминается термин Методы титрования с применением индикаторов: [c.399]    [c.43]    [c.39]    [c.503]    [c.434]    [c.435]    [c.202]    [c.39]   
Смотреть главы в:

Аналитическая химия серебра -> Методы титрования с применением индикаторов




ПОИСК





Смотрите так же термины и статьи:

Индикаторы применение

Индикаторы применение при титровании

Титрование методами



© 2025 chem21.info Реклама на сайте