Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обнаружение и разделение осаждением

    ОБНАРУЖЕНИЕ И РАЗДЕЛЕНИЕ ОСАЖДЕНИЕМ Осаждение хлорида серебра [c.46]

    Гель-электрофорез. Электрофорез на геле и крахмале применяют для аналитических целей. Наиболее важным применением гель-электрофореза является иммуноэлектрофорез. Для этого вида анализа используют макропористые гели, в частности гели агара и агарозы. Метод иммуноэлектрофореза основан на том, что после разделения электрофорезом происходит диффузия разделенных веществ — антигенов — в направлении, перпендикулярном направлению электрофореза. Навстречу этим соединениям диффундируют антитела. При соединении антигенов и антител образуются характерные дуги осаждения. Метод иммуноэлектрофореза очень чувствителен при обнаружении антигенов, специфических для данных антител. В настоящее время применяют метод введения радиоактивной метки в антигены, благодаря чему радиоиммуноэлектрофорез является одним из самых чувствительных методов анализа биополимеров. [c.364]


    По применению аналитические реакции подразделяют на реакции разделения (отделения), обнаружения (открытия, идентификации) и реакции для количественного определения. Реакции разделения должны практически полностью отделять одни вещества от других. Для этих целей чаще используют реакции осаждения, реже — реакции комплексообразования и окисления — восстановления. Реакции обнаружения должны быть как можно более селективными, т. е. позволять обнаруживать частицы данного вида в присутствии других (см. гл. 5). [c.35]

    Реакции образования труднорастворимых соединений— осадков — применяют в аналитической химии для разделения ионов, а также для их обнаружения в качественном анализе и для гравиметрического и титриметрического осадительного определения в количественном анализе. Процессы осаждения и растворения соединений являются сложными физико-химическими процессами и имеют большое значение не только в химическом анализе, но и для разделения и выделения различных веществ в химической технологии. Способность к осаждению зависит от многих факторов свойств катионов и анионов, входящих в состав труднорастворимого соединения, концентрационных условий, в которых проводят процесс осаждения, pH раствора, температуры, ионной силы раствора, состава и содержания других веществ в растворе, которые не должны принимать прямого участия в образовании осадка, однако могут соосаждаться с ним или, наоборот, препятствовать осаждению. Все это необходимо учитывать при проведении реакции осаждения. [c.158]

    МЕТОДЫ ОБНАРУЖЕНИЯ И РАЗДЕЛЕНИЯ ПОСРЕДСТВОМ ОСАЖДЕНИЯ [c.524]

    К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния др. компонентов образца. Особенно важно т. наз. относит, концентрирование-отделение малых кол-в определяемых компонентов от значительно больших кол-в основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамич., или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетич. параметров. Для разделения применяют гл. обр. хроматографию, экстракцию, осаждение, дистилляцию, а также электрохим. методы, напр, электроосаждение. [c.160]

    Осаждение ионов в виде труднорастворимых соединений для разделения или обнаружения элементов производится чаще всего в цилиндрических или в конических пробирках для центрифугирования (рис. 2), а также в маленьких стаканах или колбах емкостью 5—10 мл (рис. 3). Пробирки помещаются в штатив, изготовленный из дерева или пластмассы (рис. 4). [c.28]


    Приступая к работе по качественному анализу, студент вначале практически знакомится с наиболее важными и типичными реакциями катионов первой группы. Когда свойства ионов и образуемых ими соединений будут хорошо изучены, студент сам готовит смесь ионов этой группы и производит их осаждение групповым реактивом, а затем производит их разделение и обнаружение по приводимой ниже схеме. [c.57]

    Обнаружение тиоцианатов в присутствии иодидов вызывает затруднения. Обычно в таких случаях применяется метод, который сводится к осаждению серебряных солей иодида и роданида с последующим разделением их аммиаком и открытию тиоцианата солями Fe(III) в кислой среде. Метод сложен и требует большой затраты времени. [c.47]

    Концентрирование и разделение. Чтобы улучшить предел обнаружения и надежность определения, целесообразно использовать различные способы предварительного концентрирования и разделения (экстракцию, сорбцию, осаждение и соосаждение, дистилляцию, сублимацию, управляемую кристаллизацию, флотацию, фильтрацию и т. д.). [c.871]

    Для очистки изолированных гликозидов используются способы осаждения, экстракции, промывания экстракта щелочью, хроматографическое разделение в фиксированном в тонком слое силикагеля КСК и на бумаге. Сочетание нескольких приемов обеспечивает достаточную степень очистки извлечений для последующего обнаружения и определения гликозидов. [c.243]

    Основными недостатками сероводородного метода с позиций токсикологической химии являются 1) несовершенство осаждения и разделения катионов 2) длительность анализа 3) ядовитость газообразного сероводорода и 4) невозможность совместить качественный анализ с количественным при исследовании одной навески объекта. Как правило, после качественного анализа необходимо подвергать исследованию новую порцию объекта для количественного определения обнаруженного элемента. [c.290]

    Растворимость сульфидов, образованных некоторыми катионами, отнесенными по схеме классического метода к различным аналитическим группам, близка. Это осложняет разделение катионов, затрудняет их обнаружение и ведет к полной или частичной потере, например, катионов цинка, олова, висмута, сурьмы. Полное осаждение сероводородом ионов V и IV аналитических групп в виде сульфидов и сернистых соединений и их разделение представляют очень трудную задачу. [c.310]

    Осаждение растворами реактивов. Для получения осадков с целью разделения или обнаружения элементов употребляются чаще всего центрифужные пробирки. Осаждение [c.63]

    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    Для идентификации этих веществ имеются многочисленные реагенты, применимые для группового осаждения, и многие общие цветные реакции. После подобных предварительных исследований используют различные специальные способы обнаружения отдельных алкалоидов. Хроматографические методы разделения и обнаружения применяются в лабораториях, имеющих соответствующее оборудование. [c.132]


    Обычно обнаружение катионов 1-й аналитической группы (без аммония, который обнаруживается в предварительной пробе) производят из двух капель исследуемого раствора без предварительного разделения их. В случае, когда анализу подвергается раствор после осаждения щелочноземельных элементов, его выпаривают в микротигле досуха и слегка прокаливают. Остаток смачивают водой и вновь выпаривают и прокаливают. Операцию повторяют дважды. Сухие соли растворяют в сильно разбавленной соляной кислоте, и в отдельных порциях обнаруживают калий и натрий. Разделение калия и натрия производят очень редко (только если присутствуют большие количества калия), при этом калий уже не обнаруживается, так как его можно обнаружить из капли исследуемого раствора после удаления солей аммония реакциями образования тройных нитритов. Натрий можно отделить, если исследуемый раствор в микротигле упарить с концентрированной соляной кислотой досуха, добавить хлорную кислоту и выпарить до сиропообразного состояния. Затем развести раствор водой я вновь упарить до белых паров хлорной кислоты и по [c.182]

    Если анализу подлежит смесь, состав которой сложен или неизвестен, то дробный путь анализа не применяется, так как часто открытию одних ионов могут мешать другие ионы, присутствующие в растворе (например, они тоже образуют осадки с прибавляемыми реактивами). В таком случае обнаружение интересующего нас иона может проводиться только после отделения (например, осаждения) мешающих ионов. Проводимая в определенной последовательности система разделения и обна- [c.11]

    Катионы 2-й аналитической группы расположены во П группе Периодической системы. Барий и кальций являются типичными металлами, легко окисляющимися на воздухе и реагирующими с водой при комнатной температуре. Гидроокиси их хорошо растворимы в воде. Растворы гидроокисей являются сильными электролитами. В отличие от ионов К+, N3+ и аммония и подобно иону Mg2+ катионы 2-й группы образуют ряд малорастворимых солей карбонаты, фосфаты, оксалаты, отчасти сульфаты и хроматы и некоторые другие. Так же как и для катионов 1-й аналитической группы, для ионов Ва + и Са -ь окис-лительно-восстановительные свойства не характерны. Поэтому для их разделения и обнаружения применяются исключительно реакции осаждения. [c.65]

    Осадки — малорастворимые соединения, образующиеся при реакциях осаладения. Различают аморфные и кристаллические осадки. См. также Осаждение. Осадочные горные породы — породы, образовавшиеся путем осаждения в водной среде минеральных и органических веществ и последующего их уплотнения и изменения. По вещественному составу О. г. п. делятся на карбонатные, кремнистые, сернокислые, галоидные, углистые и др. С О. г. п. связано более 70 % полезных ископаемых (уголь, нефть, торф, алюминиевые и марганцевые руды, фосфориты, калийные солн, значительная часть руд железа, урана и редких металлов). Осаждение — выделение одного или нескольких ионов или веществ в виде малорастворимого соединения. О. применяется для разделения элементов при химическом анализе и в химической технологии. На образовании осадков основано множество методов обнаружения, разделения, гравиметрического и титриметрического определения ионов элементов и веществ. [c.95]

    Высокая чувствительность, достаточная селективность и простота выполнения большинства капельных реакций позволяет произвести замену обычных реакций капельными при выполнении систематического хода анализа. В результате такого хода анализа почти полностью устраняются операции разделения, осаждения, фильтрования и т. д., т. е. микрохимический качественный анализ производится с минимальной затратой времени и материала. В систематическом анализе с применением капельных реакций отпадают ошибки, обусловливаемые адсорбцией, индуцированным осаждением, величиной осадка и т. д. обнаружение становится надежным. Из многих предложений систематического обнаружения ионов следует рекомендовать для анионов систему, предложенную Файглем, а для катионов — Гутцайтом. [c.189]

    Предварительные испытания на Мо и W. Эти испытания необходимы для правильного выбора хода разделения катионов (в присутствии молибдена модифицируют операдию второго осаждения сероводородом (разд. 37.2.1.8, п. в), в присутствии вольфрама исключают водную вытяжку). Обнаружение мо-либдеь а и вольфрама проводят из содовой вытяжки, в которой они находятся, в виде ионов Мо04 и W04 . Нерастворимые соединение вольфрама, входящие в состав минералов, и прокаленный WO3 переводят в вольфраматы сплавлением со щелочами. [c.47]

    Каплю исследуемого раствора (1,5 мкл) помещают в центр фильтра и в небольшом стеклянном сосуде обрабатывают сероводородом. Если затем в центр пятна из капиллярной пипетки нанести раствор 0,05 н. H I, то катионы, не осажденные HjS, будут вымываться ею и перемещаться к периферии пятна. Так как в области нагрева печи растворитель испаряется, то катионы в виде хлоридов будут размещаться в узких кольцевых зонах по периферии пятна. Затем фильтр разрезают на секторы и приступают к обнаружению отдельных катионов. Середину фильтра вырезают в виде круга, который помещают в центр нового фильтра, находящегося на печи. Сульфиды растворяют таким же образом, а катионы вымывают в кольцевые зоны по периферии второго фильтра и т. д. Сочетание приемов экстракционного разделения с методом кольцевой печи описано Гашми с сотрудниками как для катионов, так и для анионов [24]. [c.55]

    При анализе в-в высокой чистоты, когда требуется определять элементы, содержание к-рых меньше 10 -10 %, а также прн анализе токсичных и радиоактивных в-в пробы предварительио обрабатывают напр., частично или полностью отделяют определяемые элементы от основы и переводят их в меньший объем р-ра или вносят в меньшую массу более удобного для анализа в-ва. Для разделения компонентов пробы применяют фракционную отгонку основы (реже-примесей), адсорбцию, осаждение, экстракцию, хроматографию, ионный обмен. АЭСА с использованием перечисленных хим. способов концентрирования пробы, как правило, наз. химико-спектральным анализом. Дополнит. операции разделения и концентрирования определяемых элементов заметно повышают трудоемкость и дта-тельность анализа и ухудшают его точность (относит, стандартное отклонение достигает значений 0,2-0,3), но снижает пределы обнаружения в 10-100 раз. [c.393]

    Разделения методы (в аналитической химии) — важнейшие аналитические опера ции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие другие элементы. Для разделения при меняют осаждение, электролиз, экстракцию, хроматографию, дистилляцию, зонную плавку и другие методы. В качественном анализе для разделения ионов элементов применяют групповые реагенты, которые позволяют трудно разрешимую задачу анализа сложных смесей привести к нескольким сравнительно простым задачам. Рассеянные элементы — химические элементы, которые практически не встреча ются в природе в виде самостоятельных минералов и концентрированных залежей а встречаются лишь в виде примесей в различных минералах. Р. э. извлекают попутно из руд других металлов или полезных ископаемых (углей, солей, фосфори тов и пр.). К Р. э. принадлежат рубидий, таллий, галлий, индий, скандий, германий п др. [c.111]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Как уже упоминалось, ограниченное число специфических аналитических реакций для вещества заставляет при его обнаружении принимать меры для устранения йли маскировки компонентов, которые мешают данной аналитической реакции. Это обстоятельство является причиной того, что при исследовании качественного состава какого-то образца используется система последовательных реакций для разделения его компонентов на группы, обычно групповые реакции осаждения. Каждую группу идентифицируют после дополнительного разделения с помощью соответствующих аналитических реакци-й, которые могут быть уже и неспецифнчёскими. Выполнение-анализа этим способом возможно, однако, только в том случае, когда исследованное вещество находится в растворе, из которого последовательно осаждаются и отделяются различные группы компонентов. Поэтому, прежде чем начать систематическое качественное исследование, используя аналитические реакции, необходимо анализируемый образец перевести в раствор. [c.184]

    Введение. При количественном определении различных веществ часто возникают трудности, связанные с очень малым количеством определяемого вещества или содержанием других веществ, мешающих разделению. Это может быть обусловлено тем, что малые количества определяются недостаточно точно или отсутствуют характерные реакции для их обнаружения [ 1 ]. Для анализа подобных соединений используется высокая чувствительность радиоактивных определений, разработан целый ряд методов, основанных на применении радиоактивных изотопов [2—4]. Имеются различные возможности проведения анализов. В простейшем случае используются такие радиоактивные изотопы, которые образуют малорастворимый осадок с определяемым веществом. Так, например, таллий можно осадить йодом-131 ь виде йодистого таллия и произвести радиометрические измерения осадка [5]. При отсутствии радиоизотопа, дающего малорастворимое соединение, анализ можно провести косвенным путем. Ишибаши и Киши [6] определяли кальций и литий, проводя осаждение фосфорной кислотой, растворяя фосфаты и устанавливая содержание свободной фосфорной кислоты при помощи радиоактивного свинца. (В то время еще не применялся фосфор-32.) [c.324]

    При систематическом разделении не обнаруживают те анионы, которые легко могут быть обнаружены дробным методом, но вызывают усложнение хода анализа, так как должны быть удалены из раствора перед групповым осаждением и обнаружением других анионов. К ним относятся следующие анионы I группа — -810 , Р и СгОГ П группа-З" , СМ , [Ре(СМ)/ , [Ре(СЫ)б] ВгОз и С10 . Не рассматриваются в систематическом ходе анализа также те анионы-окислители, которые легко восстанавливаются и переходят в соответствующие катионы (например, СгОГ, СггО/ и Мп01). [c.537]

    Целью качественного неорганического анализа является определение элементов, что практически всегда достижимо с помощью химических реакций. В противоположность этому, в качественном органическом анализе определение элементов служит только для ориентации основной целью является определение отдельных соединений или идентификация характерных функциональных групп органического соединения, для которых обычно известны составляющие их компоненты. Эти задачи, особенно определение функциональных групп, могут лишь частично решаться химическими методами. Это объясняется не только огромным числом существующих органических соединений и разнообразием их строения. Решающее значение имеет тот факт, что химические превращения многих органических соединений протекают в условиях, не осуществимых в аналитической практике. Кроме того, такие реакции реже сопровождаются характерными явлениями, чем реакции неорганических ионов. Следовательно, в реакциях органических соединений специфичность и избирательность—явление более редкое, чем при обнаружении неорганических ионов, а методы разделения, успешно применяющиеся в систематическом качественном неорганическом анализе для группового осаждения, или растворгния, почти совсем не применимы илн мало применимы в качественном органическом анализе. Большинство методов обнаружения органических веществ основано на взаимодействии определенных функциональных групп при химических реакциях, однако многие функциональные группы вообще мало реакционноспособны. Не следует также забывать, что определение функциональных групп дает представление только [c.19]

    Используется для разделения или удаления ионов, то следует обязательно проверить полноту осаждения. Для этого после центрифугирования к прозрачному раствору над осадком осторожно из пипетки добавляют 1—2 капли осадителя. Если даствор остается прозрачным, то осаждение полное если же раствор мутнеет, то проводят повторное добавление осадителя, и после центрифугирования системы вновь проверяют полноту осаждения. Если осаждение используется как реакция обнаружения иона, то объем раствора составляет 2—3 капли, а выделившийся осадок после центрифугирования и промывания исследуется дополнительно. [c.53]

    Применяют К. к. в аналитич. химии для разделения s и Rb для микрохимич. обнаружения калия для осаждения алкалоидов для определения атропина, никотина, для идентификации стеринов. [c.401]

    Сульфиды металлов представляют собой соединения со сложной структурой. Строение и состав осадков обычно зависят от соотношения концентраций реагирующих веществ, скорости осаждения, температуры и других условий, поэтому почти все сульфиды существуют в виде модификаций, отличающихся по своим свойствам (цвет, растворимость). Кроме того, они редко образуют строго стехиометрические соединения при осаждении из раствора. Некоторые сульфиды, например сульфид мышьяка(III) и (V), сульфид сурьмы(III) и (V), имеют аморфную структуру и представляют собой полимерные образования. Осадки сульфидов имеют сильно развитую поверхность, что способствуег значительному соосаждению других катионов. Многие сульфиды имеют специфическую окраску, что используется для обнаружения ионов металлов после их разделения (см. опыт 12). [c.262]


Смотреть страницы где упоминается термин Обнаружение и разделение осаждением: [c.225]    [c.359]    [c.165]    [c.298]    [c.147]    [c.687]    [c.193]    [c.266]    [c.467]    [c.180]    [c.155]    [c.155]    [c.296]   
Смотреть главы в:

Неорганический ультрамикроанализ -> Обнаружение и разделение осаждением




ПОИСК





Смотрите так же термины и статьи:

Методы обнаружения и разделения посредством осаждения

Обнаружение осаждением

Разделение осаждения



© 2024 chem21.info Реклама на сайте