Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и свойства D-глюкозы

    Глюкоза по своей распространенности далеко превосходит остальные моносахариды в свободном виде она встречается во фруктах, растениях, меде, в крови и моче животных, а в связанном виде также во многих гликозидах, дисахаридах и полисахаридах. Структура и свойства глюкозы будут рассматриваться более подробно, чем свойства других сахаридов, не только вследствие ее большого значения, но и потому, что многое из относяш,егося к глюкозе справедливо также и для других моносахаридов. [c.10]


    Следовательно, свойства глюкозы, которые не могут быть объяснены при рассмотрении альдегидной формулы глюкозы, находят свое объяснение, если придать ей циклическую формулу (полуацетальную, или окисную). Форма углевода, описываемая циклической структурой, представляет собой таутомерную модификацию, находящуюся в равновесии с альдегидной формой  [c.156]

    Особые свойства граничных слоев воды проявляются также и в том, что вследствие отличия структуры воды изменяется ее растворяющая способность. Пониженная растворяющая способность широко использовалась ранее для определения количества связанной воды в дисперсных системах [68]. При этом в качестве индикаторов, не проникающих в связанную воду, широко использовались сахароза, глюкоза, некоторые спирты. Одним из нас [69] была развита теория нерастворяющего объема, основанная на рассмотрении поля поверхностных сил, выталкивающих молекулы растворенного вещества из граничного слоя. Современная форма этой теории обсуждается в главах X (см. 1) и V. [c.205]

    Ациклические структуры альдоз (см. схему 1), однако, не адекватно отражают все химические свойства этих соединений. Например, /)-глюкоза не дает реакции Шиффа на альдегиды и в зависимости от условий кристаллизуется в двух формах (а- и (5-), которые имеют различное начальное оптическое вращение [а]о+ + 11Г и 4-19°. соответственно, постепенно достигающее равновесного значения -)-53°. Кроме того, при попытке получения диметилацеталей реакцией с метанолом в условиях кислотного катализа присоединяется одна 0-метильная группа, а не две. При этом образуются два изомерных монометильных производных, называемых метилгликозидами ([а] о-)-159° и —34°, соответственно). Было высказано предположение, что альдозы существуют в виде циклических полуацеталей, например (1) — (4). Такие структуры [c.128]

    Используемые фишеровские проекции с альдегидными или кетон-ными группами, так называемые открытые или оксо-структуры, хорошо применимы для описания конфигурации моносахаридов. Однако некоторые свойства этих соединений не могут быть объяснены с помощью таких формул. К ним принадлежит, например, мутаротация. Если перекристаллизованный из воды образец /)-(-г)-глюкозы растворить в воде, то удельное вращение полученного раствора сначала будет [ t] = + in ". В водном растворе -глюкозы, перекристаллизован- [c.627]

    Такое, казалось бы, небольшое различие в строении приводит к существенной разнице в свойствах клетчатка построена в основном из линейных цепей, тогда как в крахмале преобладают сильно разветвленные структуры. В растениях клетчатка образует волокна, а крахмал - сферические зернышки. Крахмал гидролизуется гораздо легче клетчатки, переходя в более простые структуры - декстрин, который легко дает коллоидные растворы, затем в растворимую мальтозу и, наконец, в глюкозу. Все эти процессы легко протекают при нагревании взвеси крахмала в воде. В организмах животных и человека они идут с участием ферментов при обычных условиях. Именно поэтому крахмал является одной из необходимых составных частей пищевых продуктов. [c.428]


    Целлюлоза — главный компонент древесины как хвойных, так и лиственных пород, занимающий примерно ее половину. Целлюлоза представляет собой линейный полимер с высокой молекулярной массой, построенный исключительно из остатков, Р-О-глюкозы. Благодаря своим химическим и физическим свойствам, а также надмолекулярной структуре она выполняет функцию основного структурного компонента клеточных стенок растений. [c.18]

    Микологическое исследование. Посев материала дает возможность на основании изучения культуральных свойств определить род грибов — возбудителей дерматомикозов. Исследуемый материал сеют на плотную среду (например, агар Сабуро с глюкозой, гентамицином и пенициллином или агар Сабуро с 2 % дрожжевого лизата, метиленовым синим и стрептомицином). Для этого волосы или чешуйки измельчают и 4—5 кусочков переносят на поверхность среды в пробирке, которую инкубируют при 27 °С или при комнатной температуре. Через 3—4 нед после посева образуются колонии, типичные по морфологии, консистенции и цвету. На основании изучения структуры колоний и данных их микроскопии определяют вид гриба. [c.325]

    СТРУКТУРА И СВОЙСТВА D-ГЛЮКОЗЫ [c.546]

    Целлюлоза состоит из цепочек -D-глюкозы со степенью полимеризации около 14000 (разд. 2.2.3). Физические свойства целлюлозных фибрилл (особенно их механическая прочность и нерастворимость) зависят не от структуры отдельных цепочек. Цепочки должны быть связаны между собой таким образом, чтобы гидрофильные группы были скрыты (это повышает стабильность). По данным рентгеноструктурного анализа, участки, имеющие кристаллическое строение, чередуются в целлюлозе с некристаллическими участками. Целлюлозные волокна представляют собой пучки фибрилл, одетые общей оболочкой, которая содержит воск и пектин. [c.404]

    Структура и свойства в-глюкозы [c.10]

    Химическая номенклатура — это совокупность названий индивидуальных химических веществ, их грзпп и классов, а также правила составления этих названий. Химическое название — это слово или ряд слов, однозначно указывающих на определенное вещество. Любое органическое вещество может иметь несколько названий. Все названия органических соединений можно подразделить на три типа тривиальные, полусистематические и систематические. Различие между тривиальными и систематическими названиями заключается в том, что тривиальные названия относятся к веществам, а систематические — к их структурам. В полусистема-тическом названии имеется только частичное указание на структуру вещества. До сих пор щироко используемые тривиальные названия веществ, как правило, вообще никак не связаны с их строением более того, часто они появлялись еще до установления строения соединения, и происхождение их носило случайный характер. Некоторые соединения, например, были названы по природному источнику, из которого они бьши вьщелены муравьиная и лимонная кислоты, мочевина. Названия других веществ отражают какое-либо их свойство глюкоза — сладкий вкус азулен — голубую окраску кубан, альбатроссидин — форму молекулы. И хотя тривиальные названия не отражают структуру вещества, многие из них часто используются, и будут использоваться в дальнейшем, поскольку соответствующие систематические названия порой оказываются слишком громоздкими для написания и совершенно непригодными для устной речи. [c.13]

    Химическое строение и свойства. Витамин С бььл выделен в 1928 г., но связь между заболеваемостью цингой и недостатком витамина была доказана только в 1932 г. Витамин С является у-лактоном, близким по структуре к глюкозе. Его молекула имеет два ассимметрических атома углерода С С и С) и четыре оптических изомера. Биологически активна только Ь-аскорбиновая кислота. Аскорбиновая кислота образует редокс-пару с дегидроаскорбиновои кислотой, сохраняющей витаминные свойства. [c.53]

    Путем перекристаллизации глюкозы из различных растворителей можно выделить две формы о-глюкозы (называемые а и р), которые отличаются по своей температуре плавления, а также удельным вращением свежеприготовленных растворов (это является подтверждением того, что обнаруженное отличие не является следствием полиморфизма — свойства кристаллической структуры). Однако при выдерживании свежеприготовленных растворов а-о-глюкозы (удельное вращение+110°) и р-о-глюкозы (удельное вращение +19,7°) вращающая способность растворов медленно изменяется и в конце концов достигает одной и той же величины - -52,5°. Это явление, называемое жу-таротацией , обусловлено медленным выравниванием соотношения С (1)-эпимеров возможно, оно осуществляется через образующуюся в небольшой концентрации открытую альдегидную или соответствующую диольную форму. Это взаимопревращение значительно ускоряется в присутствии следов кислоты или основания. [c.268]

    Глюкозо-6-фосфатаза — интегральный белок микросомальных мембран, Активный центр фермента обращен внутрь везикул, поэтому для полного выявления его активности и изучения кинетических свойств необходима обработка мембранного препарата поверхностноактивными веществами — детергентами. Детергенты представляют собой специальную группу липидов, относящихся к классу растворимых амфифиль-ных соединений, т. е. соединений, имеющих в своей структуре как гидрофильные, так и гидрофобные участки. В зависимости от пространственной структуры, соотношения гидрофильной и гидрофобной зон, наличия заряженных групп детергенты обладают различным характером действия на биологические мембраны от мягкого, вызывающего лишь дезориентацию структурных компонентов мембран, до значительно выраженной их солюбилизации и растворения мембран. [c.370]


    Глюкоза существует в большинстве случаев в циклической тет-рагидропирановой форме, хотя в малых концентрациях она способна участвовать во многих химических реакциях и в виде линейной полиоксиальдегидной цепи. Преобладание циклической формы свидетельствует о стабильности, свойственной таким шестичленным кольцам, принявшим конформацию кресла. Склонность н циклизации — общее свойство 5-оксипроизводных альдегидов, кетонов и кислот, поскольку шестичленные лактолы и лактоны легко образуются из соответствующих предшественников линейной структуры. [c.373]

    Больи1ую часть необходимых нам сведений о свойствах моносахаридов можно получить, рассмотрев всего одно из этих соединений, причем в одном лишь аспеите какова его структура и как она была установлена. Изучая вопрос о строении (-f )-глюкозы, мы в то же время познакомимся с ее свойствами, ибо структура была выведена именно на основании свойств. (-Ь)-Глюко а является типичным моносахаридом, и поэтому, изучая ее строение и свойства, мы йудем тем самым изучать строение и свойства других представителей этого класса. [c.932]

    Способность некоторых соединений вследствие особенностей их строения включать подходящие гостевые молекулы в свою структуру известна уже давно. Классическим примером соединений, обладающих подобными свойствами, являются мочевина и крахмал. Рентгеноструктурный анализ показал, что молекулы мочевины образуют комплексы благодаря наличию каналоподобных пустот, в которые легко входят неразветвленные алканы. Такие комплексы н-алкан—мочевина образуются самопроизвольно. Разветвленные алканы не могут входить в эти пустоты, поэтому данный эффект можно использовать для выделения н-алканов из смеси изомеров. Крахмал, как хорошо известно, образует комплексы включения с иодом. Циклодекстрины (декстрины Шардингера) — это кристаллические продукты разрушения крахмала, образующиеся под действием микроорганизмов (см. разд. 7.1.1.1). Полости а-циклодекстринов, построенных из шести остатков глюкозы, прекрасно подходят для образования комплексов включения с иодом или бензолом, но слишком малы для включения молекул бромбен-зола. В то же время -циклодекстрин, состоящий из семи остатков [c.77]

    Среди гормонов передней доли гипофиза, структура и функция которых выяснены в последнее десятилетие, следует отметить липотропины, в частности 3- и у-ЛТГ. Наиболее подробно изучена первичная структура 3-липо-тропина овцы и свиньи, молекулы которого состоят из 91 аминокислотного остатка и имеют существенные видовые различия в последовательности аминокислот. К биологическим свойствам 3-липотропина относятся жиромобилизующее действие, кортикотропная, меланоцитстимулирующая и ги-покальциемическая активность и, кроме того, инсулиноподобный эффект, выражающийся в повышении скорости утилизации глюкозы в тканях. Предполагают, что липотропный эффект осуществляется через систему [c.261]

    Для простоты мы рассматриваем только структуры, соответствующие моносахаридам )-ряда, поскольку ход рассуждений будет тем же самым и для -сахаров. В дейст- вительиости Э. Фишер работал с природной -арабинозой и сравнивал свойства антиподов, лолученных из -арабинозы, с одной стороны, и >-глюкозы н -манноэы, с другой. [c.22]

    Ряд полисахаридов проявляет свойства стереорегулярных полимеров и может с большей или меньшей легкостью образовывать квази-кристаллические структуры. В этом случае применение рентгеноструктурного анализа дает сведения о конформации полимерной цепи, способе упаковки полимерных цепей в кристаллических областях и размерах элементарной ячейки кристалла. Исследования проводят либо с природными образцами полисахаридов с высокой степенью ориентации молекул (например, кристалличность целлюлозы в клеточных стенках водоросли Valonia ventri osa приближается к 100%), либо с пленками полисахаридов, ориентация молекул в которых достигается наложением механического напряжения. С помощью рентгеноструктурного анализа установлено, например, что полимерная цепь целлюлозы имеет линейную конфор-мaцию с повторяющимся звеном длиной 10,3 А, состоящим из двух остатков глюкозы, повернутых друг относительно друга на 180°. Сходные [c.516]

    Близкое по структуре к цереброзидам вещество, обладающее антигенными свойствами, обнаружено в карциноме эпидермиса человека и получило название цитолипина . При гидролизе оно дает эквимолекулярные количес ва жирной кислоты, сфингозина, глюкозы и галактозы. Строение его аналогично строению цереброзидов, но вместо остатка галактозы он содержит лактозу. Цитолипин был синтезирован гликозилированием О-бензоил кер амида ацетобромлактозой .  [c.588]

    К моносахаридам относятся гексозы (глюкоза, фруктоза, манноза i галактоза) и пентозы (ксилоза, арабиноза, рибоза, дезоксирибоза i рамноза). Моносахариды благодаря свободной кетонной или альдегид ной группировке способны окисляться до соответствующих кислот Таким образом, они обладают редуцирующими свойствами, которы используются для качественных и количественных определений моно сахаридов. Редуцируют не только моносахариды, но и некоторые ди сахариды, имеющие в своей структуре полуацетальный (глюкозидный гидроксил. [c.148]

    Однако не Все реакции этих соединений и простых альдегидов аналогичны. Глюкоза и другие альдозы не дают реакции с реактивом Шиффа (фуксинсернистой кислотой), а также не образуют нормальных ацеталей при осторожном нагревании с раствором хлористого водорода в метиловом спирте, они превращаются в этих условиях в полуацетали. Из глюкозы при этом получается смесь двух стереоизомерных полуацеталей или глюкозидов, Один из кото ,ых называется а-глюкозидом, а другой -глюкозидом. Эти оба соединения не обладают восстанавливающими свойствами, стойки по отношению к водным щелочам и гидролизуются разбавленными минеральными кислотами с образованием глюкозы и метилового спирта. На основании этих реакций а- и р-глюкозидам была приписана циклическая структура. Следует, впрочем, отметить, что характер циклической структуры этих соединений может быть установлен только на основании ряда других данных. Соответственно л- и -глю-козидам различают две стереоизомерных формы глюкозы, обозначаемые соответственно как и- и р-глюкозы. Многие другие альдозы также известны в виде а- и р-форм и образуют соответственно два ряда глюкозидов. В нижеследующей табл. 13 приведены физические константы некоторых из этих углеводов и их глюкозидов. [c.233]

    Гидролиз протекает ступенчато. В промежуточных стадиях образуются целлодекстрины различной сложности, целлотетро-за, целлотриоза и наиболее важная целлобиоза, СхзНзгОц. В отличие от промежуточных продуктов и глюкозы, получаемых в результате ее гидролиза, целлюлоза в очень малой степени восстанавливает Фелингову жидкость и подобные растворы, т. е. она имеет низкое медное число . Однако, как бы тщательно природная целлюлоза ни была очищена, она никогда не бывает полностью лишена способности к восстановлению, причем чистейшие образцы ее имеют медные числа порядка 0,05, тогда как -глюкоза имеет 300. Е сли целлюлоза находится в условиях, содействующих гидролизу, ее медное число всегда возрастает. Так, разбавленные слабые кислоты при низких температурах вызывают небольшое увеличение медного числа, хотя условия эти таковы, что никаких следов конечного гидролиза до глюкозы обнарун ить нельзя. Что эти небольшие изменения медного числа сопровождаются фундаментальными изменениями в структуре целлюлозы подтверждается тем, что одновременно меняются и физические свойства. Так, действие холодной разбавленно] слабой кислоты постепенно вызывает падение сопротивления иа разрыв целлюлозных изделий или отдельного волокна. Эти факты неминуемо приводят к заключению, что целлюлоза представляет собой продукт конденсации -глюкозы, образующийся с выделением воды, причем химический механизм этого процесса приводит к значительному, но все же неполному исчезновению альдегидных групп сахара. [c.159]

    Теорию процессов замораживания в стекле разработали Розвир, Пауэлл и Айринг они же использовали ее на основании более ранних представлений Ал-4>рея, Голдфингера и Марка , для выяснения структуры жидкостей в предположении существования в них дырок . Жидкость, таким образом, представлена квази-жристаллом с дефектной структурой, т. е. с пустыми позициями, не занятыми молекулами. Вязкость жидкостей обусловлена отчасти количеством присутствующих дырок вязкость ее тем ниже, чем больше в ней имеется дырок . Это свойство влияет на температурную кривую вязкости главным образом ниже температуры ig, что согласуется с конкретными наблюдениями Лилли и Стотта (см. выще) над силикатными, а также над ор-. ганическими стеклами (глюкоза) 8. Эти наблюдения показывают, что вязкость ниже tg аномально низка по сравнению с ее значениями, экстраполированными по данным, полученным при температурах выше Вязкость при температуре ниже возрастает во времени раз в десять и даже более вследствие того, что согласно упомянутой теории, дырки постепенно исчезают при выдержке образца. [c.109]

    Декстрины Шардингера — это циклические полимеры глюкозы, полученные из крахмала под действием амилазы Ba illus та erans. Как и в амилозе, в декстринах Шардингера глюкозные структурные единицы соединяются 1,4-а-связями. Хотя есть доказательства существования семи циклических декстринов (Р = 6 ч- 12), при энзиматической переработке крахмала [63] тщательно были исследованы только три. К ним относятся а-, р- и у-циклодекстрины, содержащие 6, 7 и 8 глюкозных структурных единиц соответственно. Подробно процесс получения декстринов Шардингера описан в превосходной работе Френча [32], который сделал также обзор литературы (начиная с 1956 г.) о химической структуре, физических и биохимических свойствах декстринов Шардингера и их произ- [c.546]

    На рис. 11 -1 -11 -4 и 11 -6 строение различных альдоз и кетоз представлено в виде прямолинейных цепочек. Такая форма соответствует структуре лишь триоз и те-троз что касается моносахаридов, скелет которых состоит из 5 и более атомов углерода, то в растворах они существуют в виде замкнутых циклических структур, причем карбонильная группа находится не в свободном состоянии, как это изображено на рисунках, а образует ковалентную связь с одной из гидроксильных групп, связанньк с атомом углерода основной цепи. Одним из доказательств того, что D-глюкоза имеет замкнутую циклическую структуру, служит тот факт, что в кристаллическом виде это вещество существует в двух формах, несколько различающихся по свойствам. Если производят кристаллизацию D-глюкозы из воды, то образуется a-D-глюкоза с величиной удельного вращения (разд. 5.2) Мд 12,2°. Если же D-глюкозу кристаллизуют из пиридина, то образуется p-D-глюкоза, для которой [а]р = = + 18,7°. По химическому составу обе формы идентичны. На основе рада химических данньк бьш сделан вывод, что углеродные скелеты а- и Р-изомеров [c.306]

    В печени гликоген-фосфорилаза также присутствует в а- и fe-форме в принципе ф1ерменты печени функционируют подобно мышечньпл, от которых они, впрочем, несколько отличаются по своей структуре и регуляторным свойствам. Расщепление гликогена в печени имеет иное назначение, нежели в мышцах этот процесс служит источником свободной глюкозы крови. Под действием фосфорилазы печени образуется глюкозо-1-фосфат, который затем превращается в глюкозо-6-фосфат, являющийся уже непосредственным предшественником свободной глюкозы. Реакция, в ходе которой образуется D-глюкоза крови, катализируется ферментом глюкЬзо-6-фосфатазой  [c.464]

    Для образования большого количества полимера требуется легкодоступный и дешевый источник углерода. Ферментация позволяет культивировать организм-продуцент в строго определенных условиях среды, контролируя, таким образом, процесс биосинтеза и влияя на тип продукта и его свойства. Специфи- чески изменяя условия роста, можно менять молекулярную массу и структуру образующегося полимера, В ряде случаев максимальная скорость синтеза полисахарида достигается в логарифмической стадии роста, в других — в поздней логарифмической или в начале стационарной. Обычно углеводными субстратами служат глюкоза и сахароза, хотя полисахариды могут образовываться и при росте микроорганизмов на н-алка-,яах( С12-61), керосине, метаноле, метане, этаноле, глицероле и этиленгликоле. Недостатком проведения процесса в ферментерах является то, что среда часто становится очень вязкой, поэтому культура быстро начинает испытывать недостаток кислорода мы все еще не умеем рассчитывать соотношение между скоростью перемешивания неньютоновских жидкостей и подачей кислорода. Необходимо также контролировать быстрые изменения pH среды. И все же упомянутый метод позволяет быстро синтезировать полимер для того, чтобы определить его физические свойства, а также дает возможность оптимизировать состав среды, главным образом в отношении эффективно- сти различных углеводных субстратов. Часто в качестве лимитирующего фактора применяют азот (соотношение углерод азот — 10 1), хотя можно использовать и другие (серу, магний, калий и фосфор). Природа лимитирующего фактора способна определять свойства полисахарида, например его вяз- костные характеристики и степень ацилирования. Так, многие оолисахариды, синтезируемые грибами, фосфорилированы. При недостатке фосфора степень фосфорилирования может уменьшаться или становиться равной нулю в этих условиях может даже измениться соотношение моносахаридов в конечном по- [c.219]

    Вещество А при кислотном гидролизе образует сахар, идентифицированный с В-глюкозой (СбН120б [а]х>=Н-52° 147— 148°), и агликон, для которого на основании щелочной деструкции, ацетилирования, ИК- и УФ-спектров и других свойств была установлена структура 5,7,3, 4 -тетраоксифдавока (люте-олин). Для доказательства места присоединения В-глюкозы к агликону были использованы как спектральные данные вещества так и результаты его химических превращений. Характер гликозидной связи убыл определен на основании гидролиза при помощи амилолитического фермента эмульсина. Величину окисного цикла сахарного компонента определяли путем анализа разностей молекулярных вращений с достоверными фенилгликозидами, а так-н<е при помощи ИК-спектроскопии с применением метода дифференциального анализа. [c.57]

    Хотя структура II и отражает основные свойства а-В-глюкозы, она дает недостаточное представление о действительной форме молекулы и пространственном расположении различных функциональных групп относительно друг друга. Хеуорс много лет назад предложил более совершенный способ написания структурных формул углеводов. Примером проекционной формулы Хеуорса является структура III (фиг. 80). При таком изобра ке-нии считается, что углеродный остов молекулы вместе с этерифицпрованным кислородом лежит в одной плоскости располагая замещаюш ие группы выше или ниже плоскости кольца, обозначают таким способом их конфигурацию. При переходе от формул типа II к проекционным формулам Хеуорса (структура III) руководствуются следующими правилами 1) заместители, находящиеся справа от остова молекулы при ее линейном изображении, помещаются ниже плоскости кольца при изображении молекулы в циклической форме, а заместители, находящиеся слева, занимают положение выше плоскости кольца 2) обратное правило применяется только для того единственного углеродного атома, гидроксильная группа которого участвует в образовании циклического полуацеталя. Так, у В-сахаров группа СНзОН пишется в верхнем положении, а водородный атом при том же углероде — внизу, несмотря на то что он находится слева в линейной формуле. Эта необычная ситуация возникает потому, что линейные формулы типа II на самом деле не дают правильного представления о структуре. Структурную идентичность линейной и циклической формул значительно легче понять, если изобразить линейную формулу следующим образом (это не влечет за собой изменения конфигурации при С-5)  [c.258]

    Флоридзин — глюкозид флоретина он обнаружен в коре корня и ствола яблони. Хорошо известна его способность вызывать при инъекции глюкозу-рию у животных флоретин, нарингин и нарингенин этим свойством не обладают. Известно, что у собак и кроликов флоридзин образует глюкуронид флоридзина [123, 124]. У крыс этот конъюгат не найден, однако из флоридзина у них образуется глюкуронид флоретина. Флоридзин или флоретин, введенные крысам инъекцией или per os, распадаются на те же продукты, что и нарингенин. У собак и кроликов продукты распада флоридзина не обнаружены. Данные о метаболизме флоридзина, известные в настоящее время, излагаются ниже, однако судьба флороглюцинового кольца и структура глюкуронидов неизвестны. [c.195]

    Стереоизомерия оказывает существенное влияние на свойства изомерных полисахаридов — целлюлозы и крахмала (рис. 8.8). Оба они являются полимерами глюкозы, звенья которой связаны в них глюкозидными связями по углеродам 1 и 4. Их структура аналогична структурам, изображенным на рис. 8.7, разница состоит лишь в том, что шестичленные циклы глюкозы показаны в фор-Д10 кресла (форма кресла отвечает действительной конформации шестичленных колец, тогда как плоскостная структура, приведенная на рис. 8.7, на самом деле не существует). Эти полисахариды отличаются только конфигурацией при углероде 1. Вследствие этого в повторяющемся звене целлюлозы содержатся два остатка глюкозы, тогда как в звене крахмала — только один. Согласно номенклатуре, использующейся в стереорегулярных полимерах, целлюлоза имеет трео-дисиндиотактическую структуру, а крах- [c.489]


Смотреть страницы где упоминается термин Структура и свойства D-глюкозы: [c.753]    [c.86]    [c.478]    [c.161]    [c.633]    [c.266]    [c.162]    [c.59]    [c.310]    [c.74]   
Смотреть главы в:

Основы органической химии -> Структура и свойства D-глюкозы

Основы органической химии 2 Издание 2 -> Структура и свойства D-глюкозы




ПОИСК





Смотрите так же термины и статьи:

Глюкоза, свойства



© 2025 chem21.info Реклама на сайте