Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Природа катализаторов Циглера

    Влияние природы катализаторов Циглера — Натта на стереоселективность процесса полимеризации бутадиена [c.99]

    Влияние природы катализаторов Циглера — Натта иа стереоселективность процесса полимеризации изопрена [c.99]

    Д. ПРИРОДА КАТАЛИЗАТОРОВ ЦИГЛЕРА [c.179]

    Как и в случае полимеризации ациклических соединений катализаторами Циглера — Натта, скорость полимеризации циклоолефинов, микроструктура и молекулярная масса образующегося полимера определяются не только природой компонентов катализатора, но и их мольным отнощением и условиями приготовления каталитического комплекса. [c.319]


    В последующем катализаторы Циглера—Натта нашли широкое применение при полимеризации любых мономеров — пропена, бутенов, диеновых углеводородов С — С. В результате появились полипропилен, г<ис-полибутадиен и 1<ис-полиизопрен (об этом см. в разделе Соревнуясь с природой в этой же главе), различные [c.126]

    Ионная полимеризация протекает благодаря образованию из молекулы мономера реакционноспособных ионов в присутствии катализаторов (кислоты, катализаторы Фриделя — Крафтса, щелочные металлы, амиды этих металлов, металлорганические соединения, комплексные катализаторы Циглера — Натта и др.). При ионной полимеризации катализатор регенерируется и не входит в состав полимера. Ионная полимеризация может происходить как по цепному, так и по ступенчатому механизму. В зависимости от природы катализатора различают полимеризацию катионную (рост цепи осуществляется карбкатионом) и анионную (рост цепи осуществляется карбанионом)  [c.262]

    Начиная с 1959 г., часто упоминается об использовании носителей для катализаторов Циглера — Натта с целью повышения выхода ПЭ с единицы массы активного компонента. Однако только в последнее десятилетие были найдены носители или добавки к катализаторам Циглера — Натта, которые оказывают синергическое действие на каталитический комплекс, увеличивая активность переходного металла в десятки и сотни раз. Создание таких катализаторов стало возможным, когда были-получены данные о структуре каталитического комплекса, решающей роли связи Ме—С в реакции роста цепи и механизме элементарных стадий процесса, протекающих по этой связи [69]. Прочность связи и ее дестабилизация зависят от природы и валентного состояния переходного металла природы и числа лигандов и свободных групп, окружающих [c.87]

    Сд-фракции пиролиза нефтепродуктов. Летучая жидкость, т. кип. 34,1 °С, нерастворима в воде, хорошо растворима в этаноле, диэтиловом эфире и углеводородах. Применяют для производства изопренового каучука. В присутствии катализаторов Циглера-Натта преимущественно образуются <мс-полиизопрены. Строение 1<ис-полиизопрена имеет натуральный каучук. транс-Полиизопрен также встречается в природе и называется гуттаперчей имеет невысокие механические свойства. В высоких концентрациях изопрен - наркотик, в малых [c.367]


    Исследования Циглера привели к обобщающим выводам относительно принципа подбора компонентов комплексных катализаторов для полимеризации этилена и отчасти пропилена. Натта установил факт образования стереорегулярных полимеров при использовании этих катализаторов, существенно расширил область их применения и детально исследовал связь между природой катализатора и микроструктурой различных полимеров. [c.403]

    До середины 1950-х гг. все попытки получить полиолефины из иных мономеров, чем этилен и изобутилен, приводили к образованию лишь низкомолекулярных продуктов, промышленная ценность которых невелика. Причиной этих неудач является протекание реакций переноса активного центра (путем отрыва атома водорода от олефина), конкурирующих с реакциями роста цепи путем присоединения радикала. Однако в 1954 г. Натта, продолжая исследования Циглера, обнаружил, что некоторые биметаллические катализаторы циглеровского типа способны превращать пропилен и многие другие а-олефины, в частности 4-метилпентен-1 и бутен-1, в кристаллические полимеры. Путем небольших изменений состава и физической природы катализаторов этому ученому удалось получить несколько видов высокомолекулярного полипропилена, значительно различающихся по свойствам. При дальнейшем изучении было установлено, что эти свойства обусловлены различной стереорегулярностью полученных продуктов (см. выше). Изотактический полипропилен оказался похожим во многих отношениях на полиэтилен высокой плотности, тогда как атактическая форма полипропилена характеризовалась аморфной структурой и низкими прочностными характеристиками. Метильные группы, связанные с альтернантными атомами углерода основной цепи, оказывают разностороннее влияние на свойства полимера. Так, с одной стороны, они увеличивают жесткость макромолекуляр- [c.256]

    Различие между полимеризацией этилена и полимеризацией других а-олефинов заключается в возможности придания структурной регулярности поли-а-олефинам. Поэтому катализатор Циглера может быть одинаково эффективен при полимеризации этилена и высших а-олефинов, не являясь при этом лучшим катализатором для получения высоких выходов изотактических полимеров. Природа компонентов, их соотношение, способ приготовления и физическое состояние катализатора оказывают существенное влияние на свойства образующегося полимера. Например, при полимеризации этилена соотношение компонентов и условия реакции определяют молекулярный вес полимера. Оба эти фактора наряду с молекулярным весом полимера и физическим состоянием катализатора определяют степень кристалличности полимера и относительные выходы изотактического и атактического продуктов. От соотношения компонентов катализатора при полимеризации сопряженных диенов зависит получение [c.104]

    Природа процесса инициирования полимеризаций катализаторами Циглера всегда являлась предметом серьезных размышлений. Дело в том, что ни катализатор, например четыреххлористый титан, ни сокатализатор, например триэтилалюминий (из которых получают активный катализатор Циглера), взятые в отдельности, не являются эффективными. Вместе с тем их смесь представляет собой активный катализатор полимеризации. В данном разделе и в разделе Е будет рассмотрен ряд соображений, в которых делаются попытки объяснить природу активных циглеровских катализаторов и механизм полимеризации на этих катализаторах. [c.179]

    Выбор экспериментальных условий проведения катализируемой диеновой конденсации определяется природой применяемых компонентов и сводится главным образом к подбору катализатора. Наиболее подходящим и изученным катализатором является хлористый алюминий, который обычно легко образует гомогенный раствор с диенофилом в инертном растворителе, например бензоле. Иногда для переведения суспензии хлористого алюминия в раствор рекомендуется прибавить к ней 1 моль-экв эфира, этилового спирта или метанола. Однако прибавление 3 моль-экв указанных веществ полностью дезактивирует катализатор Хлористый алюминий неприменим для а р-ненасыщенных кетонов и особенно альдегидов, так как вызывает их быстрое осмоление . Значительно лучшими катализаторами оказываются комплексы трех фтор истого бора, хлорное олово или его пентагидрат. Однако пентагидратом нельзя пользоваться при повышенных температурах, чтобы не вызвать его гидролиза, поскольку появление в реакционной среде протона приводит к катионной полимеризации аддукта или исходных соединений . Четыреххлористый титан и эфират треххлористого бора относительно малоактивны, но вместе с тем применение последнего дало возможность провести частичный асимметрический синтез с наиболее высоким оптическим выходом, какой только удалось достигнуть . Употребление других катализаторов описано лишь в единичных случаях, и их свойства пока не известны. Катализаторы Циглера, по-видимому, заметно уступают в активности катализаторам Фриделя — Крафтса. [c.47]


    Эффективность катализатора в очень большой степени зависит от природы лигандов, расположенных вокруг реакционного центра (насколько это важно, было показано на примере гетерогенных катализаторов Циглера — Натта). Необходимо, чтобы связь металл — олефин была достаточно сильной, чтобы притянуть олефин к реакционному центру, и в то же время а-связь металл — углерод должна быть достаточно слабой, чтобы позволить свободное перемещение лиганда. Интересно отметить, что катионная полимеризация олефинов с использованием простых протонных кислот или кислот Льюиса в качестве катализаторов возможна только тогда, когда в молекуле олефина существуют активирующие заместители. В то же время катализаторы Циглера — Натта более эффективны в тех случаях, когда молекулы олефина не обременены большим числом заместителей, — здесь сказывается влияние как электронных, так и пространственных факторов. Как уже говорилось выше, этилен трудно полимеризуется классическими методами, в то время как в присутствии катализаторов Циглера — Натта полимеризация идет легко. [c.252]

    Влияние природы компонентов катализатора Циглера — Натта [c.520]

    Стереоспецифичность и активность катализатора Циглера — Натта сильно зависят от природы и соотношения различных компонентов катализатора Циглера — Натта. [c.520]

    Скорость полимеризации зависит от строения диенов, внепших условий и природы катализаторов. С повьшхением темпфатуры и давления полимеризация ускоряется. Процесс полимеризации проходит как цепная свободиорадцкальная реакция в присутствии инициатора, но может протекать и по ионному пути, в частности, на катализаторах Циглера-Натта. [c.113]

    M. ациклич. олефинов-равновесная р-ция, протекающая практически без тепловых эффектов положение равновесия определяется природой олефина и т-рой р-ции. Катализаторы-соед. Мо, W, Re, реже Nb, Та и нек-рых др. металлов. Наиб, часто используют 1) оксиды и карбонилы Мо, W и Re, нанесенные на неорг. носители (M0O3/AI2O3) 2) катализаторы Циглера - Натты, состоящие из соед. тех же металлов чаще W lg) в сочетании с орг. производными А1, Sn, Mg, Sl. В присут. катализаторов 1-й группы М. проводят при т-ре от 20 °С (рениевый катализатор) до 400 °С (вольфрамовый катализатор) в присут. катализаторов 2-й группы-при 0-20 °С (равновесие при мол. соотношении олефин катализатор 10 достигается за неск. секунд). [c.56]

    Способность мономеров к полимеризации обусловлена термодинамическими и кинетическими факторами. Термодинамические факторы определяются количеством свободной энергии, выделяющейся при полимеризации (вследствие перехода напряженных хр -гибридизованных орбиталей атомов углерода в насыщенные ненапряженные хр -гибридизоваиные орбитали) и энтропиен, кинетические — природой активных центров и условиями процесса. Термодинамические и кинетические факторы не взаимосвязаны напри.мер, этилен имеет наибольшую теплоту полимеризации, однако до открытия катализаторов Циглера — Натта он считался инертным мономером наоборот, изобутилен, теплота полимеризации которого значительно ниже, чем у этилена, быстро полнмеризуется даже при очень низкой температуре (93 К). [c.109]

    Анионно-координационной полимеризацией называют процесс, происходящий под действием катализаторов Циглера — Натта, которые представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями. Типичными катализаторами этого типа являются системы тетрахлорид титана — триэтилалюминий и тетрахлорид ванадия — диэтилалюмининхло-рид, известны и другие системы. По-видимому, аналогично действуют и другие катализаторы, например дикобальтоктакарбонил и некоторые л-аллилникельгалогениды. Точная природа реакционноспособных промежуточных соединений, образуемых этими системами, продолжает оставаться предметом обсуждения, но полимеризация, по всей вероятности, протекает путем внедрения ви-нильного мономера по связи переходный металл — углерод (схема 19 М—металл). Важнейшими мономерами, вступающими в реакцию координационной полимеризации, являются этилен, пропилен, бутадиен-1,3 и изопрен. [c.307]

    Катализаторы Циглера - Натта являются достаточно акта ными в реак1щях изомеризации. Активность циглеровских каф лизаторов определяется природой переходного металла, металл органического соединения и соотношением между ними. Актш ность циглеровских каталитических систем падает в ряду  [c.578]

    Осуществление стереоспецифической полимеризации, направ ленной на образование стереоспецифического полимера зависит от природы выбранных мономеров Этилен а отефииы (иапри мер, пропилен и бутен 1) и другие алкены обладают низкой ко ординационной способностью и поэтому появляется необходи мость применять гетерогенные катализаторы Циглера Натта так как они оказывают наиболее серьезное препятствие синдио тактическому и атактическому присоединению мономера к кон цу растущей полимернои цепи Механизм образования стерео [c.22]

    Первыми гомогенными катализаторами для гидрирования -ароматических соединений были катализаторы Циглера, получаемые из солей переходных, металлов и алюминийалкилов. В качестве производных переходных металлов используют М(асас)п (М=Мп, Со, N1 я = 2 М = Ре, Со п = 3), М(2-этил-гексаноат)2 (М=Со, N1) или [Т1С12(т1-С5Н5)2]. При смешивании с триэтилалюминием эти системы дают темно-коричневые или черные растворы, которые эффективно гидрируют ароматические системы (например, бензол, ксилолы, нафталин, пиридин, фталаты) при 150—190°С и давлении водорода, равном 75 атм [72] [схема (7.61)]. Природа этих катализаторов не вполне ясна, но их растворы, по-видимому, содержат соединения гидридов металлов, стабилизированные в результате координации с алюминием. Применение этих катализаторов связано с определенными трудностями, так как необходимо использование неустойчивых на воздухе алюминийалкилов и высоких давлений. [c.276]

    Интерпретация результатов полимеризации на катализаторах Циглера-Натта наталкивается на большие затруднения вследствие того, что точно не установлены природа активных центров и роль соединений металлов I—П1 групп. В настоящее время получены убедительные доказательства того, что рост лолимерной цепи про. исходит по связи С — переходный металл, вероятно, путем внедре-.. 1ия мономера по ней. [c.180]

    В работах [33-35] найдено, что пространственное строение координационной сферы АЦ, определяющей стерические затруднения для би- или монодентантной координации мономера, и химическая природа мономера являются теми факторами, которые определяют стереоспецифичность катализаторов Циглера- [c.310]

    Прежде чем перейти к изложению особенностей процесса полимеризации в системах с участием катализаторов Циглера—Натта, необходимо остановиться на условиях их образования, структуре и на связи менгду природой и стереоспецифичностью катализатора. [c.403]

    Наконец, типичный катализатор Циглера для линейной полимеризации этилена при температуре от - -20 до - -100°С в углеводородной среде система Т1С14 — ЕгАКЗ при температуре от —100 до —50 °С в среде галогензамещенных углеводородов вызывает олигомеризацию этилена и а-олефинов в олефины с разветвленной цепью. Природа активных центров в такой каталитической системе, а. также механизм реакции обсуждались Бе-стианом и сотр. [21]. [c.179]

    В составе катализаторов Циглера—Натта соединения переходных элементов (обыкновенно используются галогениды, оксигалогениды, ацетилацетонаты, алкоголяты, ацетаты, бензоаты, комплексные галогениды и др.) восстанавливаются сокатализаторами (гидридами, алкилатами, арилатами, алкилгалогенидами, реактивом Гриньяра, цинком металлическим или металлами, расположенными в ряду напряжений выше цинка) до низшей степени окисления (титан, цирконий, гафний — до 3- и 2-валентных) или до металла (например, никель, кобальт, платина) в зависимости от соотношения и природы компонентов, чем и определяется характер полимеризации. Так, например, добавки к AIR3 платины, кобальта, никеля [420] в виде коллоидов или ацетилацетоната вызывают тримеризацию - -олефинов добавка три- или тетраалкилтитаната либо цирконата также дает димер или тример этилена [20, 21, 280], но в основном катализаторы с добавками соединений титана, циркония, тория, урана к AIR3 вызывают глубокую полимеризацию. Обычно это гетерогенные системы, твердый осадок в которых может быть частично (иногда и полностью) диспергирован до коллоида. Катализаторы Циглера—Натта, содержащие соединения титана, являются одними из лучших [c.411]

    Ц.— Н. к. названы в честь немецкого химика К. Циглера, к-рый в 1954 открыл возможность получения высокомолекулярного полиэтилена в присутствии указанных каталитич. систем, и итальянского химика Д. Натта, установившего факт образования на таких системах стереорегулярных полимеров и детально иссле-доваишего связь между природой катализатора и микроструктурой полимерной цепи. [c.439]

    Скорость полимеризации с катализаторами Циглера — Натта зависит от концентрации Т1С14, природы взятого мономера, характера алкильных групп в алюмииийалкиле и мольного отношения алюминийалкила к четыреххлористому титану. Истинный носитель каталитической активности почти наверняка представляет собой сложное комплексное соединение, содержащее титан, алюминий, атомы галогена и алкильные группы, причем поверхность катализатора играет роль матрицы и независимо от геометрической структуры первой присоединившейся молекулы мономера оказывает влияние на стереохимию присоединения следующей молекулы. [c.244]

    Производство полиэтилена высокой плотности удобно рассматривать, исходя из природы применяемого катализатора. Существует два типа катализаторов полимеризации этилена при низком давлении катализаторы Циглера и окиснометал-лические катализаторы. [c.254]

    Как отмечалось в разделе Б (стр. 159), катализаторы Циглера и эфират трехфтористого бора полимеризуют винилизобутиловый эфир и ви-нилаллиловый эфир. При этом образуются полимеры, одинаковые по своим свойствам и структуре, несмотря на различия в природе катализаторов. Лал [349] считает, что это обстоятельство указывает на катионный механизм полимеризации виниловых эфиров на катализаторах Циглера. [c.199]

    Сравнение инфракрасных спектров полиэтилена низкой плотности, полученного полимеризацией под высоким давлением, инициированной свободным радикалами, полиэтилена высокой плотности, полученного на катализаторах Циглера, и полиэтилена высокой плотности, полученного на окиснохромовых катализаторах, указывает на различие в природе имеюпгейся у них ненасыщенности. Хотя общая ненасыщенность всех упомянутых полиэтиленов лежит в пределах 0,5—1,5 двойных связей на тысячу углеродных атомов, но характер их значительно меняется. Полиэтилен марлекс имеет главным образом концевые винильные группы с небольшим содержанием та/ аис-олефиновых звеньев и практически не имеет боковых винилиденовых групп. [c.315]

    Движущая сила для синдиотактического присоединепия на катализаторах Циглера — Натта имеет ту же природу (см. разд. 8.36.2), что и прп низкотемпературной радикальной и ионной некоординационпой полимеризации отталкивание заместителей у мономерного звена на конце цепи и у вновь входящего мономера. Обычно это называют моделью взаимодействия мономер — мономер для синдиотактического присоединения [40]. На рис. 8.15 приведено схематическое изображение этой модели для сиидиотактиче ского присоединения [20, 64]. За исключением двух важных особенностей, она очень близка соответствующей модели для изотактического присоединения (рис. 8.13). [c.517]


Смотреть страницы где упоминается термин Природа катализаторов Циглера: [c.50]    [c.150]    [c.6]    [c.187]    [c.418]    [c.422]    [c.432]    [c.80]    [c.52]    [c.526]    [c.244]    [c.503]    [c.506]   
Смотреть главы в:

Линейные и стереорегулярные полимеры -> Природа катализаторов Циглера

Линейные и стереорегулярные полимеры -> Природа катализаторов Циглера




ПОИСК





Смотрите так же термины и статьи:

Катализаторы природа

Циглера катализатор



© 2024 chem21.info Реклама на сайте